数学七年级下册数学期末模拟试卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学七年级下册数学期末模拟试卷(含答案)
一、选择题
1.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).
A .a c b >>
B .c a b >>
C .a b c >>
D .c b a >>
2.下列等式由左边到右边的变形中,属于因式分解的是( )
A .(a ﹣2)(a+2)=a 2﹣4
B .8x 2y =8×x 2y
C .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2
D .x 2+2x ﹣3=(x ﹣1)(x+3)
3.若a =-0.32,b =-3-2,c =21()2--,d =0
1()3-,则它们的大小关系是( ) A .a <b <c <d B .a <d <c <b C .b <a <d <c D .c <a <d <b
4.下列图形可由平移得到的是( )
A .
B .
C .
D .
5.若a >b ,则下列结论错误的是( )
A .a −7>b −7
B .a+3>b+3
C .a 5>b 5
D .−3a>−3b
6.不等式3+2x>x+1的解集在数轴上表示正确的是( )
A .
B .
C .
D .
7.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高
B .一条中线
C .一条角平分线
D .一边上的中垂线 8.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M
的坐标是( )
A .(2,﹣5)
B .(﹣2,5)
C .(5,﹣2)
D .(﹣5,2)
9.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )
A .90°
B .100°
C .105°
D .110°
10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到
了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )
A .0个
B .1个
C .2个
D .3个
二、填空题
11.积的乘方公式为:(ab )m = .(m 是正整数).请写出这一公式的推理过程.
12.若把代数式245x x --化为()2
x m k -+的形式,其中m 、k 为常数,则m k +=______.
13.已知2m+5n ﹣3=0,则4m ×32n 的值为____
14.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.
15.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________
16.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.
17.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.
18.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.
19.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____.
20.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.
三、解答题
21.已知:如图,//AB DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且
∠1=∠A .
(1)求证://FE OC ;
(2)若∠BFE =110°,∠A =60°,求∠B 的度数.
22.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)
(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;
(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=
∠,13
BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).
23.计算:(1)2201(2)3()3
----÷- (2)22(21)(21)x x -+ 24.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少?
(2)若用W 元钱全部用于制作领带,总共可以制作几条?
(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.
25.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.
(1)请在图中画出平移后的△A′B′C′;
(2)在图中画出△A′B′C′的高C′D′.
26.(知识生成)
通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.
(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是
(知识应用)
(2)根据(1)中的结论,若74,4
x y xy +==
,则x y -= (知识迁移)
类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.
(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.
27.阅读材料:
求1+2+22+23+24+…+22020的值.
解:设S =1+2+22+23+24+…+22020,将等式两边同时乘以2得,
2S =2+22+23+24+25+ (22021)
将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1.
即1+2+22+23+24+…+22020=22021﹣1
仿照此法计算:
(1)1+3+32+33+ (320)
(2)2310011111 (2222)
+++++. 28.已知关于x ,y 的二元一次方程组233741
x y m x y m +=+⎧⎨
-=+⎩它的解是正数. (1)求m 的取值范围; (2)化简:22|2|(1)(1)m m m --+-
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.
【详解】
解:a=0.32=0.09,b= -3-2=19
-
,c=(-3)0=1, ∴c >a >b ,
故选B .
【点睛】
本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂. 2.D
解析:D
【分析】
认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.
【详解】
解:A .不是乘积的形式,错误;
B .等号左边的式子不是多项式,不符合因式分解的定义,错误;
C .不是乘积的形式,错误;
D .x 2+2x ﹣3=(x ﹣1)(x+3),是因式分解,正确;
故选:D .
【点睛】
本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.
3.C
解析:C
【分析】
直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.
【详解】
∵2090.3.0a =-=-,2
193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=,
∴它们的大小关系是:b<a<d<c
故选:C
【点睛】
本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.
4.A
解析:A
【详解】
解:观察可知A选项中的图形可以通过平移得到,
B、C选项中的图形需要通过旋转得到,
D选项中的图形可以通过翻折得到,
故选:A
5.D
解析:D
【解析】
分析:根据不等式的基本性质对各选项进行逐一分析即可.
详解:A.不等式两边同时减去7,不等号方向不变,故A选项正确;
B.不等式两边同时加3,不等号方向不变,故B选项正确;
C.不等式两边同时除以5,不等号方向不变,故C选项正确;
D.不等式两边同时乘以-3,不等号方向改变,﹣3a<﹣3b,故D选项错误.
故选D.
点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.
6.A
解析:A
【分析】
先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】
解:移项,得2x-x>1-3,
合并同类项,得x>﹣2,
不等式的解集在数轴上表示为:
.
故选:A.
【点睛】
本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.
7.B
解析:B
【分析】
根据三角形中线的性质作答即可.
【详解】
解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线.
故选:B.
【点睛】
本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.
8.A
解析:A
【分析】
先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.
【详解】
∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).
故选:A.
【点睛】
本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.
9.C
解析:C
【分析】
根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.
【详解】
解:∵△ACB是等腰直角三角形,
∴∠BAC=45°,
∵CF//AB,
∴∠ACF=∠BAC=45°,
∵∠E=30°,
∴∠EFC=180°﹣∠E﹣∠ACF=105°,
故选:C.
【点睛】
本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.10.B
解析:B
【分析】
观察图象,明确每一段行驶的路程、时间,即可做出判断.
【详解】
由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确;
从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),
在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;
在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,
故选:B.
【点睛】
此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.
二、填空题
11.:ambm,见解析.
【解析】
【分析】
先写出题目中式子的结果,再写出推导过程即可解答本题.
【详解】
解:(ab)m=ambm,
理由:(ab)m=ab×ab×ab×ab×…×ab
解析::a m b m,见解析.
【解析】
【分析】
先写出题目中式子的结果,再写出推导过程即可解答本题.
【详解】
解:(ab)m=a m b m,
理由:(ab)m=ab×ab×ab×ab×…×ab
=aa…abb…b
=a m b m
故答案为a m b m.
【点睛】
本题考查幂的乘方与积的乘方,解题的关键是明确它们的计算方法.
12.-7
【解析】
【分析】
利用配方法把变形为(x-2)-9,则可得到m和k的值,然后计算m+k的值.【详解】
x −4x −5=x −4x+4−4−5
=(x −2) −9,
所以m=2,k=−9,
所以
解析:-7
【解析】
【分析】
利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值.
【详解】
x 2−4x−5=x 2−4x+4−4−5
=(x−2) 2−9,
所以m=2,k=−9,
所以m+k=2−9=−7.
故答案为:-7
【点睛】
此题考查配方法的应用,解题关键在于掌握运算法则.
13.8
【解析】
试题分析:
直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.
本题解析:
∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5
解析:8
【解析】
试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.
本题解析:
∵2m+5n −3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.
14.南偏西25°,
【分析】
根据方位角的概念,画图正确表示出方位角,即可求解.
【详解】
解:从图中发现船返回时航行的正确方向是南偏西,
故答案为:南偏西.
【点睛】
解答此类题需要从运动的角度
解析:南偏西25°,
【分析】
根据方位角的概念,画图正确表示出方位角,即可求解.
【详解】
解:从图中发现船返回时航行的正确方向是南偏西25︒,
故答案为:南偏西25︒.
【点睛】
解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.
15.23×10-7
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的
解析:23×10-7
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000000823=8.23×10-7.
故答案为: 8.23×10-7.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
16.20cm.
【分析】
根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.
【详解】
解:∵△ABE向右平移2cm得到△DCF,
∴D
解析:20cm.
【分析】
根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.
【详解】
解:∵△ABE向右平移2cm得到△DCF,
∴DF=AE,
∴四边形ABFD的周长=AB+BE+DF+AD+EF,
=AB+BE+AE+AD+EF,
=16+AD+EF,
∵平移距离为2cm,
∴AD=EF=2cm,
∴四边形ABFD的周长=16+2+2=20cm.
故答案为20cm.
【点睛】
本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
17.6
【分析】
设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解
【详解】
解:设这个多边
解析:6
【分析】
设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解
【详解】
解:设这个多边形的边数是n,重复计算的内角的度数是x,
则(n ﹣2)•180°=840°﹣x ,
n =6…120°,
∴这个多边形的边数是6,
故答案为:6.
【点睛】
本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.
18.【分析】
根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.
【详解】
解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;
【点睛】
本题考查了坐标与图
解析:()1,2--
【分析】
根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.
【详解】
解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,
故答案为:()1,2--;
【点睛】
本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
19.4×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解析:4×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.00 000 094=9.4×10﹣8,
故答案是:9.4×10﹣8.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
20.2
【分析】
利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m =2.
【详解】
解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,
∴m=2,
故答案为2
解析:2
【分析】
利用多项式乘以多项式法则计算(x﹣4)(x+6)=x2+2x﹣24,从而得出m=2.
【详解】
解:∵(x﹣4)(x+6)=x2+2x﹣24=x2+mx﹣24,
∴m=2,
故答案为2.
【点睛】
本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.
三、解答题
21.(1)见详解;(2)50°.
【分析】
AB DC,可知∠A=∠C ,然后等量代换得到∠C=∠1,利用同位角相等两直线平(1)由//
行即可得证;
(2)由EF与OC平行,利用两直线平行同旁内角互补得到∠BFE+∠DOC=180°,然后通过三角形内角和即可求出∠B的度数.
【详解】
(1)证明:∵AB∥CD,
∴∠A=∠C ,
又∵∠1=∠A,
∴∠C=∠1,
∴FE∥OC;
(2)解:∵FE∥OC,
∴∠BFE+∠DOC=180°,
又∵∠BFE=110°,
∴∠DOC=180°-110°=70°,
∴∠AOB=∠DOC=70°,
∵∠A =60°,
∴∠B=180°-60°-70°=50°.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键. 22.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603
H α∠=︒-.
【分析】
(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.
(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.
【详解】
(1)如图1,过点M 作//ML AB ,
//AB CD ,
////ML AB CD ∴,
1AEM ∴∠=∠,2CFM ∠=∠,
12EMF ∠=∠+∠,
M AEM CFM ∴∠=∠+∠;
(2)过M 作//ME AB ,
//AB CD ,
//ME CD ∴,
24180BEM DFM ∴∠+∠=∠+∠=︒,
1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠,
EN ,FN 分别平分MEB ∠和DFM ∠,
112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=
︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;
(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .
//AB CD ,
BEH DKH x ∴∠=∠=,
PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,
H x y ∴∠=-,
EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,
180BQG α∴∠=︒-,
QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,
3QME MFG y ∴∠=∠=,
BEM QME MQE ∠=∠+∠,
33180x y α∴-=︒-,
1603
x y α∴-=︒-, 1603
H α∴∠=︒-. 【点睛】
本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.
23.(1)374-
.(2)16x 4−8x 2+1. 【分析】
(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914
-
-÷,再计算即可得到结果;
(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.
【详解】
(1)2201(2)3()3----÷-= 1914--÷=374
-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.
【点睛】
本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.
24.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条
领带;(3)42a b =⎧⎨=⎩
【分析】
(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =
,代入可得2000W x =,即可求得答案;
(3)根据44600(2)300()33
x x ax bx +
=+即可表达出a 、b 的关系式即可解答. 【详解】
解:(1)设领带及丝巾的制作成本是x 元和y 元, 则600(2)240000400(3)240000
x y x y +=⎧⎨+=⎩ 解得:120160x y =⎧⎨=⎩
答:领带的制作成本是120元,丝巾的制作成本是160元.
(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,
∴600(2)400(3)x y x y +=+, 整理得:43
y x =,代入 600(2)W x y =+ 可得:4600(2)20003
W x x x =+
=, ∴可以制作2000条领带.
(3)由(2)可得:43y x =, ∴44600(2)300()33
x x ax bx +
=+ 整理可得:3420a b +=
∵a 、b 都为正整数, ∴42a b =⎧⎨=⎩
【点睛】
本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.
25.(1)图见解析;(2)图见解析.
【详解】
解:(1)△A′B′C′如下图;
(2)高C′D′如下图.
26.(1)22
()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.
【分析】
(1)根据两种面积的求法的结果相等,即可得到答案;
(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.
(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;
(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.
【详解】
(1)22()4()a b ab a b +-=-.
(2)4x y +=,74xy =,()()22274441679.4
x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .
(4)由4a b +=,1ab =,根据第(3)得到的公式可得
()()()()33
3322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.
【点睛】
本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键. 27.(1)21312
-;(2)101100212-. 【分析】
(1)仿照阅读材料中的方法求出所求即可;
(2)仿照阅读材料中的方法求出所求即可.
【详解】
解:(1)设S =1+3+32+33+ (320)
则3S =3+32+33+ (321)
∴3S ﹣S =321
﹣1,即S =21312-, 则1+3+32+33+…+320=21312-; (2)设S =1+
2310011112222+++⋯+, 则12S =231001011111122222
+++⋯++, ∴S ﹣12S =1﹣10112=101101212-,即S =101100212
-, 则S =1+2310011112222+++⋯+=101100212
-. 【点睛】
此题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.
28.(1)213
m -
<< (2)m -
【分析】
(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;
(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.
【详解】 解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩
, 得321x m y m =+⎧⎨=-⎩
因为解为正数,则32010
m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.
【点睛】
本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列
出关于m的不等式组及绝对值的性质.。