八年级(下)学期3月份段考数学试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)学期3月份段考数学试题含答案
一、选择题
1.若实数m 、n 满足等式02m +=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12
B .10
C .8
D .6
2.下列各式中,运算正确的是( )
A .=-=.2=D 2=-
3.下列算式:(1=
2)3)
=7;(4)+= ) A .(1)和(3)
B .(2)和(4)
C .(3)和(4)
D .(1)和(4) 4.下列各式中正确的是( )
A 6
B 2=-
C 4
D .2(=7
5.下列各式中,正确的是( )
A .
B .a 3 • a 2=a 6
C .(b+2a) (2a -b) =b 2 -4a 2
D .5m + 2m = 7m 2
6.有意义,则字母x 的取值范围是( ) A .x≥1 B .x≠2
C .x≥1且x =2
D ..x≥-1且x ≠2
7.当x =时,多项式()
2019
3419971994x x --的值为( ).
A .1
B .1-
C .20022
D .20012-
8.已知实数x ,y 满足(x y )=2008,则3x 2-2y 2+3x -3y -2007
的值为( ) A .-2008
B .2008
C .-1
D .1
9.a =-成立,那么a 的取值范围是( ) A .0a ≤ B .0a ≥ C .0a < D .0a > 10.下列二次根式中是最简二次根式的是( )
A
B C
D
11.下列运算一定正确的是( )
A a =
B =
C .222()a b a b ⋅=⋅
D ()0n
a m
=
≥ 12.下列运算中正确的是( )
A .=
B
===
C 3===
D 1==
二、填空题
13.实数a 、b 10-b 4-b-2=+,则22a b +的最大值为_________. 14.设12211112S =+
+,22211123S =++,32211
134
S =++,设
...S =S=________________ (用含有n 的代数式表示,其中n 为
正整数).
15.下面是一个按某种规律排列的数阵:
根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 16.若实数x ,y ,m 满足等式
()2
23x y m +-=m+4的算术平方根为
________.
17.化简二次根式_____.
18.若a 、b 、c 均为实数,且a 、b 、c 均不为0=___________
19.. 20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记
2
a b c
p ++=
,那么三角形的面积S =ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______.
三、解答题
21.先观察下列等式,再回答问题:
=1+1=2;
12=2 12

=3+
13=31
3
;… (1)根据上面三个等式提供的信息,请猜想第四个等式;
(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.
【答案】(1=144+=144;(2=211n n n n
++=
,证明见解析. 【分析】
(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,
=414+
=414

(2=n 211
n n n
++=
”,再利用222
112n n n n
++=+()()开方即可证出结论成立.
【详解】
(1=1+1=2=212+
=212

=313+
=31
3;里面的数字分别为1、2、3,
= 144+
= 1
44

(2=1+1=2,
=212+=212=313+=313=414+=4
14
= 211
n n n n
++=

证明:等式左边==n 211
n n n
++==右边.
=n 211
n n n
++=
成立. 【点睛】
本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律
=n 211
n n n
++=
”.解决该题型题目时,根据数值的变化找出变化规律是关键.
22.已知1,2y =. 【答案】1 【解析】 【分析】
根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤18
8x-1≥0,x≥18,∴x=18,y=12

∴原式532-==1222
. 【点睛】
本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.
23.(1)计算:
(2)先化简,再求值:(()8a a a a +--,其中14
a =

【答案】(1)2)82-a ,【分析】
(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;
(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的
式子计算即可. 【详解】
(1)
=
=;
(2)(()8a a a a +--
2228a a a =--+
82a =-,
当14a =时,原式1824⎫=⨯-=⎪⎭.
【点睛】
本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.
24.先化简,再求值:a ,其中
【答案】2a-1,【分析】
先根据二次根式的性质进行化简,再代入求值即可. 【详解】
解:
1a =-∴原式=1a a --=21a -
当1a =-
∴原式=(211-
=1-【点睛】
此题主要考查化简求值,正确理解二次根式的性质是解题关键.
25.先化简,再求值:(()69x x x x --+,其中1x =
.
【答案】化简得6x+6,代入得 【分析】
根据整式的运算公式进行化简即可求解. 【详解】
(()
69x x x x +--+
=22369x x x --++ =6x+6
把1x =
代入原式=61)
【点睛】
此题主要考查实数的运算,解题的关键熟知整式的运算法则.
26.观察下列各式.
====…… 根据上述规律回答下列问题. (1)接着完成第⑤个等式: _____;
(2)请用含(1)n n ≥的式子写出你发现的规律; (3)证明(2)中的结论.
【答案】(1=2(n =+3)见解析 【分析】
(1)当n=5=
(2(n =+ (3)直接根据二次根式的化简即可证明. 【详解】
解:(1=
(2(n =+
(3=(n ==+【点睛】
此题主要考查探索数与式的规律,熟练发现规律是解题关键.
27.(1)计算:21)-
(2)已知a ,b 是正数,4a b +=,8ab =
【答案】(1)5-2 【分析】
(1)根据完全平方公式、平方差公式可以解答本题;
(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】
解:(1)原式21)=-
(31)(23)=---
5=-;
(2)原式=
=
= a ,b 为正数, ∴原式
=
把4a b +=,8ab =代入,则
原式
=
= 【点睛】
本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.
28.2020(1)- 【答案】1 【分析】
先计算乘方,再化简二次根式求解即可. 【详解】
2020(1)-
=1 =1. 【点睛】
本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.
29.已知长方形的长a =
b =. (1)求长方形的周长;
(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.
【答案】(1)2)长方形的周长大. 【解析】
试题分析:(1)代入周长计算公式解决问题;
(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:
(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝
∴长方形的周长为 .
(2)11
4.23
=⨯⨯=
正方形的面积也为4. 2.= 周长为:428.⨯=
8.>
∴长方形的周长大于正方形的周长.
30.02020((1)π-.
【答案】 【分析】
本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】
原式11=-= 【点睛】
本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【分析】
先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得. 【详解】
由题意得:20,40m n -=-=,
解得2,4m n ==,
设等腰ABC 的第三边长为a ,
,m n 恰好是等腰ABC 的两条边的边长, n m a n m ∴-<<+,即26a <<,

ABC 是等腰三角形, 4a n ∴==,
则ABC 的周长为24410++=, 故选:B . 【点睛】
本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.
2.A
解析:A 【分析】
由合并同类项、二次根式的性质分别进行判断,即可得到答案. 【详解】
解:A 、-=A 正确;
B =B 错误;
C 、2不能合并,故C 错误;
D 2=,故D 错误;
故选:A . 【点睛】
本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.
3.B
解析:B 【分析】
根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案. 【详解】
(1
(2),正确;
(3=22
=,错误;
(4)== 故选:B . 【点睛】
本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行
解题.
4.D
解析:D 【分析】
直接利用二次根式的性质分别化简得出答案. 【详解】
解:A ,故A 错误;
B 1
2
=
,故B 错误;
C =C 错误;
D 、2(=7,故D 正确; 故选:D . 【点睛】
此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.
5.A
解析:A 【分析】
比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误. 【详解】
A 、=,= ∵1812>,
∴>,故该选项正确; B 、3a •25a a =,故该选项错误;
C 、()()2
2
224b a a b a b +-=-,故该选项错误;
D 、527m m m +=,故该选项错误; 故选:A . 【点睛】
本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.
6.D
解析:D 【分析】
直接利用二次根式的有意义的条件分析得出答案. 【详解】
有意义,则x+1≥0且x-2≠0,
解得:x≥-1且x≠2.
故选:D .
【点睛】
本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.
7.B
解析:B
【解析】
【分析】
由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.
【详解】
∵12
x +=, ()2211994x ∴-=,即24419930x x --=,
()()32241997199444199344199311x x x x x x x ∴--=--+---=-.
∴原式()
201911=-=-.
【点睛】
本题难度较大,需要对要求的式子进行变形,学会转化. 8.D
解析:D
【解析】
由(x y )=2008,可知将方程中的x,y 对换位置,关系式不
变,
那么说明x=y 是方程的一个解
由此可以解得,或者
则3x 2-2y 2+3x -3y -2007=1,
故选D. 9.A
解析:A
【分析】
由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.
【详解】
得-a≥0,所以a≤0,所以答案选择A 项.
【点睛】
本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.
10.A
【分析】
根据最简二次根式的定义判断即可.
【详解】
A是最简二次公式,故本选项正确;
B
C
D=
故选A.
【点睛】
本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.
11.C
解析:C
【分析】
直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.
【详解】
A|a|,故此选项错误;
B.,则a,b均为非负数,故此选项错误;
C.a2•b2=(a•b)2,正确;
D m n a(a≥0),故此选项错误.
故选C.
【点睛】
本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.
12.B
解析:B
【分析】
根据二次根式的乘除法则求出每个式子的值,再判断即可.
【详解】
=⨯==42,故本选项不符合题意;
解: A. 67
===,故本选项,符合题意;
===,故本选项不符合题意;
D. ==3,故本选项不符合题意;
【点睛】
本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.
二、填空题
13.【分析】
首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出的最大值.
【详解】
解析:【分析】
10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.
【详解】
10-b 4-b-2=+,
1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,
∵264a a -+-≥,426b b ++-≥,
∴ 264a a -+-=,42=6b b ++-,
∴2≤a≤6,-4≤b≤2,
∴22a b +的最大值为()2
26452+-=,
故答案为52.
【点睛】
本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 14.【分析】
先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.
【详解】
解:∵,∴;
∵,∴;
……
∵,
∴;


故答案为:
【点睛】
本题 解析:221
n n n ++ 【分析】
n 的式子表示其规律,再计算S 的值即可.
【详解】 解:∵1221191=124S =+
+
311122===+-; ∵222114912336S =+
+=
7111116623===+=+-; ∵32211169134144S =+
+=
1311111121234===+=+-; …… ∵()()()2
22222111111n n n S n n n n ++=++=++,
()()2111111111n n n n n n n n ++=
==+=+-+
++;
∴...S =1111111112231
n n =+-++-++-+…+ 111
n n =+-+.
221
n n n +=+ 故答案为:221
n n n ++ 【点睛】
本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,
同时要注意对于式子()11111
n n n n =-++的理解. 15.;.
【分析】
根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.
【详解】
观察表
【分析】
根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.
【详解】
观察表格中的数据可得,第5行从左向右数第3=
∵第(n-1,
∴第n (n ≥3且n 是整数)行从左向右数第n-2个数是


【点睛】
本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.
16.3
【解析】
【分析】
先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.
【详解】
依题意得:,解得:x=1,y=1,m =5,∴3
解析:3
【解析】
【分析】
先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.
【详解】
依题意得:3530230
2x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩
,解得:x =1,y =1,m =5
,∴==3.
故答案为3.
【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.
17.【解析】
根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==. 故答案为.
解析:【解析】
根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知
=
故答案为
18.【解析】
根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:
当b >0时,=;
当b <0时,=.
故答案为:.
解析:2002b a b b 当时当时>⎨⎪-<⎪⎩
【解析】
根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:
当b >0
=
当b<0
=
故答案为:
2
2
a
b
b
b

>
⎪⎪

⎪<
⎪⎩
当时
当时
.
19.【解析】
【详解】
根据二次根式的性质和二次根式的化简,可知==.
故答案为.
【点睛】
此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.
解析:
2
【解析】
【详解】
2
2
.
故答案为
2
.
【点睛】
此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.
20.【分析】
根据a,b,c的值求得p=,然后将其代入三角形的面积S=求值即可.
【详解】
解:由a=4,b=5,c=7,得p===8.
所以三角形的面积S===4.
故答案为:4.
【点睛】
本题主
解析:
【分析】
根据a,b,c的值求得p=
2
a b c
++
,然后将其代入三角形的面积S=
【详解】
解:由a =4,b =5,c =7,得p =
2a b c ++=4572++=8.
所以三角形的面积S .
故答案为:.
【点睛】
本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题
21.无
22.无
23.无
24.无
25.无
26.无
27.无
28.无
29.无
30.无。

相关文档
最新文档