九年级数学上册4.4第2课时利用两边及夹角判定三角形相似教案2北师大版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时利用两边及夹角判定三角形相似
一、教学目标
1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.
2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.
3.能够运用三角形相似的条件解决简单的问题.
二、重点、难点
1.重点:掌握判定方法,会运用判定方法判定两个三角形相似.
2.难点:(1)三角形相似的条件归纳、证明;
(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.
3.难点的突破方法
判定方法2一定要注意区别“夹角相等"的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
三、课堂引入
1.提出问题:由三角形全等的SAS判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?
2.教材P91做一做
让学生画图,自主展开探究活动.
【归纳】三角形相似的判定方法2 两边成比例且夹角相等的两个三角形相似.
四、例题讲解
例1(教材P91例2)
解:略
例 2 (补充)已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217,求AD 的长.
分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角
相等”来证明.计算得出
AC
CD CD AB =,结合∠B=∠ACD ,证明△ABC ∽△DCA ,再利用相似三角形的定义得出关于AD 的比例式AD
AC AC CD =,从而求出AD 的长. 解:略(AD=425).
五、课堂练习
1.教材P92 随堂练习
2.如果在△ABC 中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B'=10㎝,A'C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看.
六、课后练习
1.教材P93 习题4.6
2.如图,AB •AC=AD •AE ,且∠1=∠2,求证:△ABC ∽△
AED .
※3.已知:如图,P为△ABC中线AD上的一点,且BD2=PD•AD,
求证:△ADC∽△CDP.
教学反思
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

相关文档
最新文档