〖汇总3套试卷〗上海市徐汇区某名校2018年中考达标检测数学试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.一次函数y=kx+k (k≠0)和反比例函数()0k y k x
=≠在同一直角坐标系中的图象大致是( ) A . B . C . D .
【答案】C
【解析】A 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象过二、四象限可知k <0,两结论相矛盾,故选项错误; B 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象与y 轴交点在y 轴的正半轴可知k >0,两结论相矛盾,故选项错误;C 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象过二、三、四象限可知k <0,两结论一致,故选项正确;D 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象与y 轴交点在y 轴的负半轴可知k <0,两结论相矛盾,故选项错误,
故选C .
2.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩
则-a b 的值为( ) A .1
B .3
C .14-
D .74
【答案】D 【解析】先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩
代入式中,可得解. 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②
+①②,
得447x y -=,
所以74x y -=, 因为,,x a y b =⎧⎨=⎩
所以74x y a b -=-=
. 故选D.
【点睛】
本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型.
3.如图是由长方体和圆柱组成的几何体,它的俯视图是( )
A .
B .
C .
D .
【答案】A
【解析】分析:根据从上边看得到的图形是俯视图,可得答案.
详解:从上边看外面是正方形,里面是没有圆心的圆,
故选A .
点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
4.一元二次方程210x x --=的根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .没有实数根
D .无法判断
【答案】A
【解析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况. 【详解】21,1,14145a b c b ac ==-=-∴∆-=+=
∴方程有两个不相等的实数根.
故选A.
【点睛】
本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口.
5.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( )
A 25
B 5
C .2
D .12
【答案】D
【解析】根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.
【详解】∵∠DAB=∠DEB,
∴tan∠DEB= tan∠DAB=1
2

故选D.
【点睛】
本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.6.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()
①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;
⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
A.2个B.3个C.4个D.5个
【答案】B
【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答.
【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
②慢车0时出发,快车2时出发,故正确.
③快车4个小时走了276km,可求出速度为69km/h,错误.
④慢车6个小时走了276km,可求出速度为46km/h,正确.
⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.
⑥快车2时出发,14时到达,用了12小时,错误.
故答案选B.
【点睛】
本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
7.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()
A .100cm
B .10cm
C .10cm
D .1010
cm 【答案】C 【解析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.
【详解】设母线长为R ,则
圆锥的侧面积=2
36360
R π=10π, ∴R=10cm ,
故选C .
【点睛】
本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.
8.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )
A .1
B .2
C .3
D .4
【答案】A 【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB ,
∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB , ∵∠C=90°,∴3∠CAD=90°,
∴∠CAD=30°, ∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC , ∴CD=DE=BD , ∵BC=3, ∴CD=DE=1 考点:线段垂直平分线的性质
9.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )
A .34-
B .1-
C .32-
D .2-
【答案】A
【解析】由题意(),3A m m -,因为O 与反比例函数k y x
=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题; 【详解】函数3y x =-与k y x
=的图象在第二象限交于点()1,A m y , ∴点(),3A m m - O 与反比例函数k y x
=
都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称, ()3,B m m ∴-,
31m m ∴=-,
12
m ∴=- ∴点13,22A ⎛⎫- ⎪⎝⎭ 133224
k ∴=-⨯=- 故选:A .
【点睛】
本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称.
10.在△ABC 中,∠C =90°,sinA =45
,则tanB 等于( ) A .43 B .34
C .35
D .45
【答案】B 【解析】法一,依题意△ABC 为直角三角形,∴∠A+∠B=90°,∴cosB=
45,∵22cos sin 1B B +=,∴sinB=35
,∵tanB=sin cos B B =34故选B 法2,依题意可设a=4,b=3,则c=5,∵tanb=34
b a 故选B 二、填空题(本题包括8个小题) 11.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .
【答案】(7+63)
【解析】过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,得到两个直角三角形和一个矩形,在Rt △AEF 中利用DF 的长,求得线段AF 的长;在Rt △BCE 中利用CE 的长求得线段BE 的长,然后与AF 、EF 相加即可求得AB 的长.
【详解】解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,
∵坝顶部宽为2m ,坝高为6m ,
∴DC=EF=2m ,EC=DF=6m ,
∵α=30°,
∴BE=63tan30EC =︒
(m ), ∵背水坡的坡比为1.2:1,
∴ 1.2 1.21
DF AF AF ==, 解得:AF=5(m ),
则3(3m ,
故答案为(3m .
【点睛】
本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解. 12.写出一个大于3且小于4的无理数:___________. 10π,等,答案不唯一.
【解析】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和1610,11,12,
,15都是无理数.
13.请看杨辉三角(1),并观察下列等式(2):
根据前面各式的规律,则(a+b)6= .
【答案】a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
【解析】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
14.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.
【答案】1
【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.
解:∵同一时刻物高与影长成正比例.
设旗杆的高是xm.
∴1.6:1.2=x:9
∴x=1.
即旗杆的高是1米.
故答案为1.
考点:相似三角形的应用.
15.如果一个正多边形的中心角为72°,那么这个正多边形的边数是.
【答案】5
【解析】试题分析:中心角的度数=360
n
︒360
72
n

︒=,5
n=
考点:正多边形中心角的概念.
16.计算:5353=_________ . 【答案】2
【解析】利用平方差公式求解,即可求得答案. 【详解】()()
5353+-=(5)2-(3)2=5-3=2. 故答案为2.
【点睛】
此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.
17.如图,这是一幅长为3m ,宽为1m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m 1.
【答案】1.4
【解析】由概率估计图案在整副画中所占比例,再求出图案的面积.
【详解】估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m 1.
故答案为1.4
【点睛】
本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.
18.化简))201720182121的结果为_____.
2+1 【解析】利用积的乘方得到原式=[2﹣1)2)]2017•2+1),然后利用平方差公式计算.
【详解】原式=[21)2+1)]2017•2)=(2﹣1)2017•22+1.
2+1.
【点睛】
本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
三、解答题(本题包括8个小题)
19.阅读下面材料,并解答问题.
材料:将分式42231
x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为﹣x 2+1,可设﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b 则﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )
+b=﹣x 4﹣ax 2+x 2+a+b=
﹣x 4﹣(a ﹣1)x 2+(a+b )
∵对应任意x ,上述等式均成立,∴113a a b -=⎧⎨+=⎩
,∴a=2,b=1 ∴42231x x x --+-+=222(1)(2)11
x x x -+++-+=222(1)(2)1x x x -++-++211x -+=x 2+2+211x -+这样,分式42231
x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和. 解答:将分式422681x x x --+-+ 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明422681
x x x --+-+的最小值为1.
【答案】 (1) =x 2+7+21
1x -+ (2) 见解析
【解析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;
(2)原式分子变形后,利用不等式的性质求出最小值即可.
【详解】(1)设﹣x 4﹣6x+1=(﹣x 2+1)(x 2+a )+b=﹣x 4+(1﹣a )x 2+a+b ,
可得168a a b -=-⎧⎨+=⎩
, 解得:a=7,b=1, 则原式=x 2+7+21
1x -+;
(2)由(1)可知,422681
x x x --+-+=x 2+7+211x -+ . ∵x 2≥0,∴x 2+7≥7;
当x=0时,取得最小值0,
∴当x=0时,x 2+7+21
1x -+最小值为1,
即原式的最小值为1.
20.某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+1.设李明每月获得利润为W (元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
【答案】 (1)35元;(2)30元.
【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;
(2)令w=2000,然后解一元二次方程,从而求出销售单价.
【详解】解:(1)由题意,得:
W=(x-20)×y
=(x-20)(-10x+1)
=-10x 2+700x-10000
=-10(x-35)2+2250
∴ 当x=35时,W 取得最大值,最大值为2250,
答:当销售单价定为35元时,每月可获得最大利润为2250元;
(2)由题意,得:210700100002000x x -+-=,
解得:130x =,240x =,
销售单价不得高于32元,
∴ 销售单价应定为30元.
答:李明想要每月获得2000元的利润,销售单价应定为30元.
【点睛】
本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.
21.已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.
【答案】(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
试题解析:(1)设方程的另一根为x 1,
∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12
x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,
∴不论a 取何实数,该方程都有两个不相等的实数根.
考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
22.如图,已知一次函数y=kx+b 的图象与x 轴交于点A ,与反比例函数m y x = (x <0)的图象交于点B
(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
【答案】(1)-6;(2)
1
2
2
y x
=-+.
【解析】(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数
m
y
x
=(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;
(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.
【详解】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数
m
y
x
=(x<0)的图象上,

2
33
n m
n m
-=


-=

,解得:
3
6
n
m
=


=-


(2)由(1)知反比例函数解析式为
6
y
x
=-,∵n=3,∴点B(﹣2,3)、D(﹣6,1),
如图,过点D作DE⊥BC于点E,延长DE交AB于点F,
在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,
∴△DBE≌△FBE(ASA),∴DE=FE=4,
∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,

23
21
k b
k b
-+=


+=

,解得:
1
2
2
k
b

=-


⎪=


∴12
2
y x
=-+.
【点睛】
本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的
长.
23.△ABC在平面直角坐标系中的位置如图所示.
画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,
作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
【答案】(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
【解析】(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
【详解】(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.
【点睛】
本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
24.一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是;搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
【答案】(1)2
3
;(2)
4
9
【解析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率. 【详解】解:(1)因为1、-1、2三个数中由两个正数,
所以从中任意取一个球,标号为正数的概率是2 3 .
(2)因为直线y=kx+b经过一、二、三象限,
所以k>0,b>0,
又因为取情况:
k b 1 -1 2 1 1,1 1,-1 1,2 -1 -1,1 -1,-1 -1.2 2 2,1 2,-1 2,2 共9种情况,符合条件的有4种,
所以直线y=kx+b经过一、二、三象限的概率是4 9 .
【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.
25.漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:
请将以上两幅统计图补充完整;若“一般”和
“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
【答案】(1)见解析;(2)1;(3)估计全校达标的学生有10人
【解析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数.
(2)将成绩一般和优秀的人数相加即可;
(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.
【详解】解:(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,
测试的学生总数=24÷20%=120人,
成绩优秀的人数=120×50%=60人,
所补充图形如下所示:
(2)该校被抽取的学生中达标的人数=36+60=1.
(3)1200×(50%+30%)=10(人).
答:估计全校达标的学生有10人.
26.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.
【答案】(1)1
3
;(2)
2
3

【解析】(1)利用概率公式直接计算即可;
(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【详解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,
∴小明诵读《论语》的概率=1 3 ,
(2)列表得:
小明
小亮
A B C
A (A,A)(A,B)(A,C)
B (B,A)(B,B)(B,C)
C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.
所以小明和小亮诵读两个不同材料的概率=62
=
93

【点睛】
本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.
中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()
A.1处B.2处C.3处D.4处
【答案】D
【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.
【详解】满足条件的有:
(1)三角形两个内角平分线的交点,共一处;
(2)三个外角两两平分线的交点,共三处.
如图所示,
故选D.
【点睛】
本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.
2.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()
A.2mn B.(m+n)2C.(m-n)2D.m2-n2
【答案】C
【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.
又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.
故选C.
3.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()
A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2
【答案】A
【解析】根据中位数,众数,平均数,方差等知识即可判断;
【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.
【点睛】
本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.4.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()
A.75°B.90°C.105°D.115°
【答案】C
【解析】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
详解:∵AB∥EF,
∴∠BDE=∠E=45°,
又∵∠A=30°,
∴∠B=60°,
∴∠1=∠BDE+∠B=45°+60°=105°,
故选C.
点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
5.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()
A .3y x =
B .3y x =
C .1y x =-
D .2y x
【答案】B 【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误;
y=
3x
的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x 的图象在二、四象限,故选项C 错误; y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误;
故选B.
6.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )
A .13
B .14
C .15
D .16
【答案】C 【解析】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .
因为六边形ABCDEF 的六个角都是120°,
所以六边形ABCDEF 的每一个外角的度数都是60°.
所以AFI BGC DHE GHI 、、、都是等边三角形.
所以31AI AF BG BC ====,.
3317GI GH AI AB BG ∴==++=++=,
7232DE HE HI EF FI ==--=--=,
7124CD HG CG HD .
=--=--= 所以六边形的周长为3+1+4+2+2+3=15;
故选C .
7.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x 的值是( ).
A .3-
B .3
C .2
D .8
【答案】D 【解析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x 的值.
【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D .
【点睛】
本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.
8.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( )
A .m 1≥
B .1m
C .1m
D .1m <
【答案】D
【解析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.
【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点,
∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0,
解得:m <1.
故选D .
【点睛】
本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 9.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )
A .
B .
C .
D .
【答案】D
【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.
【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,
∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.
故选D.
【点睛】
本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.
10.下列四个多项式,能因式分解的是()
A.a-1 B.a2+1
C.x2-4y D.x2-6x+9
【答案】D
【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
试题解析:x2-6x+9=(x-3)2.
故选D.
考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
二、填空题(本题包括8个小题)
11.若关于x、y的二元一次方程组
21
33
x y m
x y
-=+


+=

的解满足x+y>0,则m的取值范围是____.
【答案】m>-1
【解析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
【详解】解:
21
33
x y m
x y
-=+


+=




①+②得1x+1y=1m+4,则x+y=m+1,
根据题意得m+1>0,
解得m>﹣1.
故答案是:m>﹣1.【点睛】
本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x+y 的值,再得到关于m 的不等式.
12.有三个大小一样的正六边形,可按下列方式进行拼接:
方式1:如图1;
方式2:如图2;
若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n 个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n 的最大值为__________.
【答案】18 1
【解析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.
【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18; 按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n 的最大值为1.
故答案为:18;1.
【点睛】
本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键.
13.已知同一个反比例函数图象上的两点()111P x ,y 、()222P x ,y ,若2
1x x 2=+,且21111y y 2=+,则这个反比例函数的解析式为______.
【答案】y=4x
【解析】解:设这个反比例函数的表达式为y=
k x .∵P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象
上的两点,∴x 1y 1=x 2y 2=k ,∴11y =121x k y ,
=2211112x k y y =+.,∴21y ﹣11y =12,∴21x x k k -=12,∴21x x k -=12,∴k=2(x 2﹣x 1).∵x 2=x 1+2,∴x 2﹣x 1=2,∴k=2×2=4,∴这个反比例函数的解析式为:y=4x
.故答案为y=4x
. 点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.
14.如图,在平面直角坐标系中,⊙P 的圆心在x 轴上,且经过点A (m ,﹣3)和点B (﹣1,n ),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P 的圆心的坐标是_____.
【答案】(2,0)
【解析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE ≌△PAF ,根据PE=AF=3,列式可得结论.
【详解】连接PB 、PA ,过B 作BE ⊥x 轴于E ,过A 作AF ⊥x 轴于F ,
∵A (m ,﹣3)和点B (﹣1,n ),
∴OE=1,AF=3,
∵∠ACB=45°,
∴∠APB=90°,
∴∠BPE+∠APF=90°,
∵∠BPE+∠EBP=90°,
∴∠APF=∠EBP ,
∵∠BEP=∠AFP=90°,PA=PB ,
∴△BPE ≌△PAF ,
∴PE=AF=3,
设P (a ,0),
∴a+1=3,
a=2,
∴P (2,0),
故答案为(2,0).
【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
15.将一副三角尺如图所示叠放在一起,则BE EC 的值是 .
【答案】3 【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB ∥CD .
∴△ABE ∽△DCE .∴BE AB EC CD
=. ∵在Rt △ACB 中∠B=45°,∴AB=AC . ∵在RtACD 中,∠D=30°,∴AC CD 3AC tan30=
=︒. ∴BE AB 3EC CD 3AC ===. 16.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.
【答案】1.
【解析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.
【详解】解:设小矩形的长为x ,宽为y ,则可列出方程组,
3522x y y x =⎧⎨-=⎩,解得106
x y =⎧⎨=⎩, 则小矩形的面积为6×10=1.。

相关文档
最新文档