概率论 随机变量的数字特征
概率论及数理统计随机变量的数字特征
X0 1 2 3 P 0.3 0.3 0.2 0.2
下面我们用计算机 进行模拟试验.
1 101 32 0 23 0
输入试验次数(即天数)n,计算机对小张的生产 情况进行模拟,统计他不出废品,出一件、二 件、三件废品的天数n0,n1,n2,n3 , 并计算
M (n )0n 01n 12n 23n 3 nn n n
k阶绝对中E(心 |X矩 E(X)|k)
其中 k 是正整数.
例1.设X的分布列为 X
0
1
1
1
P
24
求E1 1 X
解:
23
11 88
E( 1 )1 1 1 1 1 1 1 1 1X 210 411 812 813 67 96
例2. 设公共汽车起点站在每小时的10分,30分, 50分发车,一位不知发车时间的乘客,每 小时内到达车站的时间是随机的,求该乘客 在车站等车的数学期望。
30
60 50
60
10
设(X, Y)是二维随机变量, Z=g( X, Y ),则
EZE[g(X,Y)]
i1
g(xi, yj)pij,
j1
(X,Y)离散型
g(x, y)f(x, y)dxd,y(X,Y)连续型
当( X, Y )是离散型时:分布列为 P ( X x i Y y j) p ij i , j 1 , 2 ,
X~B(n,p),则X表示n重贝努里试验中的“成功” 次数.
若设
Xi
1 0
如第i次试验成功i=1,2,…,n
如第i次试验失败
则 X= X1+X2+…+Xn 因为 P(Xi =1)= p, P(Xi =0)= 1-p
E(Xi)= 1p0(1p)= p n
随机变量的数字特征大数定律和中心极限定理
02
大数定律
切比雪夫大数定律
定义
设${X_n}$是独立同分布的随机变量序列,若存在常 数$M$,使得$P( |X_n| > M ) leq frac{1}{n^2}$, 则对任意的$varepsilon > 0$,有$P( left| frac{X_1 + X_2 + cdots + X_n}{n} - E(X_1) right| < varepsilon ) to 1$,当$n to infty$。
相应的概率。
性质
03
数学期望具有可加性和线性性质,即E(aX+b)=a*E(X)+b。
方差
定义
方差是随机变量与其数学期望的差的平方的平均值,表示随机变 量取值与其数学期望的偏离程度。
计算方法
D(X) = Σ[(x-E(X))^2*p(x)]。
性质
方差具有可加性和线性性质,即D(aX+b)=a^2*D(X)。
矩与偏态
定义
矩是描述随机变量取值分布形状的数字特征,包括原点矩和中心矩。偏态是描述随机变量取值分布偏斜程度的数字特 征。
计算方法
原点矩包括原点均方、原点方差等;中心矩包括中心均方、中心方差等。偏态的计算公式为S=Σ[(x-μ)^n*p(x)]/n!,其中 μ为数学期望,n为正整数。
性质
偏态具有可加性和线性性质,即S(aX+b)=a^n*S(X)。
李雅普诺夫定理指出,对于任何正整数 n,如果一个随机变量的所有n阶矩都存 在,则其分布函数可以由其n阶原点矩 确定。
该定理是关于随机变量的数字特征的重要定 理,它表明随机变量的数字特征可以完全描 述其分布。
它对于研究随机变量的性质和分布 具有重要意义。
北京理工大学《概率论与数理统计》课件-第4章随机变量的数字特征
北京理工大学《概率论与数理统计》分布函数能够完整地描述随机变量的统计特性,但在某些实际问题中,不需要全面考查随机变量的变化,只需知道它的随机变量的某些数字特征也就够了.评定某企业的经营能力时,只要知道该企业例如:年平均赢利水平研究水稻品种优劣时,我们关心的是稻穗的平均粒数及平均重量考察一射手的水平,既要看他的平均环数是否高,还要看他弹着点的范围是否小,即数据的波动是否小.由上面的例子看到,平均盈利水平、平均粒数、平均环数、数据的波动大小等,都是与随机变量有关的某个数值,能清晰地描述随机变量在某些方面的重要特征,这些数字特征在理论和实践上都具有重要意义.另一方面,对于一些常用的重要分布,如二项分布、泊松分布、指数分布、正态分布等,其中的参数恰好就是某些数字特征,因此,只要知道了这些数字特征,就能完全确定其具体的分布.第四章随机变量的数字特征4.1随机变量的平均取值——数学期望4.2随机变量取值平均偏离平均值的情况——方差4.3 描述两个随机变量之间的某种关系的数——协方差与相关系数4.1 数学期望一离散型随机变量的数学期望二连续型随机变量的数学期望三常见分布的数学期望四随机变量函数的数学期望五数学期望的性质六、数学期望的应用一离散型随机变量的数学期望引例射击问题设某射击手在同样的条件下,瞄准靶子相继射击90次,(命中的环数是一个随机变量).射中次数记录如下命中环数Y0 1 2 3 4 5命中次数n k 2 13 15 10 20 30频率n k/n2/90 13/90 15/90 10/90 20/90 30/90试问:该射手每次射击平均命中靶多少环?解:平均命中环数这是以频率为权的加权平均命中环数Y0 1 2 3 4 5命中次数n k2 13 15 10 20 30频率n k /n 2/90 13/90 15/90 10/90 20/90 30/900211321531042053090×+×+×+×+×+×=21315102030012345909090909090=×+×+×+×+×+×50k k n k n =⋅∑ 3.37.==射中靶的总环数射击次数平均射中环数频率随机波动随机波动“平均射中环数”的稳定值?=由频率的稳定性知:当n 很大时:频率n k /n 稳定于概率p k 稳定于50k k n k n =⋅∑50k k k p =⋅∑50k k n k n =⋅∑“平均射中环数”等于射中环数的可能值与其概率之积的累加定义1 设X 是离散型随机变量,它的概率分布是:P {X =x k }=p k , k =1,2,…如果绝对收敛,则称它为X 的数学期望或均值.记为E (X ), 即如果发散,则称X 的数学期望不存在.1k k k x p ∞=∑1()k k k E X x p ∞==∑1||k k k x p∞=∑注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.注1:随机变量X 的数学期望完全是由它的概率分布确定的,而不应受X 的可能取值的排列次序的影响,因此要求绝对收敛1k k k xp ∞=<+∞∑11111(1)1ln 2234212n n−+−++−→− 1111111(2)1ln 22436852−−+−−+→注2.E (X )是一个实数,而非随机变量,它是一种以概率为权的加权平均,与一般的算术平均值不同,它从本质上体现了随机变量X 取可能值的真正的平均值,也称均值.当随机变量X 取各个可能值是等概率分布时,X 的期望值与算术平均值相等.假设X 1P80 85 90 1/4 1/4 1/21()800.25850.25+900.586.25E X =×+××=X 2P80 85 901/3 1/3 1/32()85.E X =注3.数学期望E(X)完全由随机变量X的概率分布确定,若X服从某一分布,也称E(X)是这一分布的数学期望.乙射手甲射手例1.甲、乙两个射击手,他们射击的分布律如下表所示,问:甲和乙谁的技术更好?击中环数8 9 10概率0.3 0.1 0.6击中环数8 9 10概率0.2 0.5 0.3单从分布列看不出好坏,解:设甲,乙两个射击手击中的环数分别为X 1,X 2E (X 1)=8×0.3+9×0.1+10×0.6=9.3(环)E (X 2)=8×0.2+9×0.5+10×0.3=9.1(环)例2.1654年职业赌徒德.梅尔向法国数学家帕斯卡提出一个使他苦恼很久的分赌本问题:甲、乙两赌徒赌技相同,各出赌注50法郎,每局中无平局.他们约定,谁先赢三局,则得到全部100法郎的赌本.当甲赢了2局,乙赢了1局时,因故要中止赌博.现问这100法郎如何分才算公平?解:假如比赛继续进行下去,直到结束为止. 则需要2局.这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.设:X、Y分别表示甲和乙得到的赌金数. 则分布律分别为:X0 100 P1/4 3/4Y0 100 P3/4 1/4这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.E(X)=0×1/4+100×3/4=75E(Y)=0×3/4+100×1/4=25即甲、乙应该按照3:1的比例分配全部的赌本.例3.确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为30%,可得利润8万元,失败的机会为70%,将损失2万元.若存入银行,同期间的利率为5%,问是否做此项投资?解:设X 为此项投资的利润,则存入银行的利息:故应该选择该项投资.(注:投资有风险,投资须谨慎)X 8 −2P0.3 0.7此项投资的平均利润为:E (X )=8×0.3+(−2)×0.7=1(万元)10×0.05=0.5(万元)设X 是连续型随机变量,密度函数为f (x ).问题:如何寻找一个体现随机变量平均值的量.将X 离散化.二、连续型随机变量的数学期望在数轴上取等分点:…x −2<x −1<x 0<x 1<x 2<…x k +1−x k =∆x ,k =0,±1,….,并设x k 都是f (x )的连续点.则小区间[x i ,x i+1)阴影面积近似为f (x i )∆x i1()i x x f x dx+=∫()i f x x≈∆P {x i <X ≤x i +1}定义一个离散型随机变量X *如下:其数学期望存在,且绝对收敛时,P {X *=x i }=P {x i ≤X <x i +1} ≈f (x i )∆x对于X *,当当分点越来越密,即∆x →0时,可以认为X *=x i 当且仅当x i ≤X <x i +1(*)i i ix P X x =∑(*){*}i i iE X x P X x ==∑()i i ix f x x ≈∆∑0=lim ()i i x ix f x x ∆→∆∑则其分布律为E (X *) →E (X ) *0=lim x EX EX ∆→即有:+()xf x dx∞−∞=∫定义2:设X 是连续型随机变量,其密度函数为f (x ),如果绝对收敛,则称的值为X 的数学期望,如果积分发散,则称随机变量X 的数学期望不存在.+()xf x dx ∞−∞∫+||()x f x dx∞−∞∫即+()()E X xf x dx∞−∞=∫+()xf x dx ∞−∞∫记为E (X ).注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.三、常见分布的数学期望1.0−1分布设随机变量X服从参数为p的0−1分布,求EX.解:X的分布律为X0 1P1−p p则:E(X)=0×P{X=0}+1×P{X=1}=P{X=1}=p概率是数学期望的特例(第五章)2.二项分布X 的分布律为P {X =k }=C n k p k (1−p )n−k ,k =0,1,…,n .解:设随机变量X ~b (n ,p ),求EX .0{}nk EX kP X k ==∑0(1)n k k n k n k kC p p −=−∑1!(1)!()!n k n kk n k p p k n k −=−−∑1(1)(1)1(1)!(1)(1)!()!nk n k k n np p p k n k −−−−=−−−−∑11(1)1(1)n l k l ln ln l np Cp p −=−−−−=−∑1[(1)]n np p p −=+−np=抛掷一枚均匀硬币100次,能期望得到多少次正面3.泊松分布则解:X 的分布律为设随机变量X ~π(λ),求EX .{},0,1,2,!kP X k e k k λλ−=== 00(){}!k k k e E X kP X k k k λλ−∞∞=====∑∑11(1)!k k ek λλλ−∞−==−∑1!ii k i e i λλλ∞=−−=∑=e e λλλλ−=1!k k e k k λλ−∞==∑泊松分布的参数是λ4.几何分布解:X 的分布律为P {X =k }=q k −1p ,k =1,2,….p+q =1设随机变量X 服从参数为p 的几何分布,求EX .111(){}k k k E X kP Xk k pq∞∞−=====⋅∑∑11k k p k q∞−=⋅∑1=()kk p q ∞=′∑1=()k k p q ∞=′∑()1q p q′=−211(1)p q p=−重复掷一颗骰子平均掷多少次才能第一次出现6点设X ~U (a , b ),求E (X ).解:X 的概率密度为:X 的数学期望为:数学期望位于区间(a ,b )的中点.5.均匀分布1()0a xb f x b a<<=− 其它()()2bax a b E X xf x dx dx b a +∞−∞+===−∫∫设X 服从指数分布,求E (X ).分部积分法6.指数分布当概率密度表示为:对应的数学期望为θ.,0()0,x e x f x x λλ− >=≤ 0xxedx λλ+∞−=∫()()E X xf x dx +∞−∞=∫1λ=1,0()0,0xe xf x x θθ− > = ≤解:X 的概率密度为:设X ~N (μ,σ2),求E (X ).解:X 的概率密度为被积函数为奇函数,故此项积分为0.7.正态分布22()21()2x f x eµσπσ−−=()()E X xf x dx +∞−∞=∫22()212x xedxµσπσ−+∞−−∞=∫221()2x t t t edtµσσµπ−=+∞−−∞+∫ 2222122t t tedt edt σµππ+∞+∞−−−∞−∞+∫∫µ=N (0,1)的密度函数积分为1.注意:不是所有的随机变量都有数学期望例如:Cauchy 分布的密度函数为但发散故其数学期望不存在.21(),(1)f x x x π=−∞<<+∞+2||||()(1)x x f x dx dx x π+∞+∞−∞−∞=+∫∫四随机变量函数的数学期望设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.例4.某商店对某种家用电器的销售采用先使用后付款的方式,记该种电器的使用寿命为X (以年计),规定:X ≤1,一台付款1500元;1<X ≤2,一台付款2000元2<X ≤3,一台付款2500元;X >3,一台付款3000元设X 服从指数分布,且平均寿命为10年,求该商店一台电器的平均收费.解:设该商店一台电器的收费为Y .要求E (Y )X 的分布函数为:1101,()0,0x e x F x x − −>=≤设该商店一台电器的收费为YX ≤1,一台付款1500元1 <X ≤2,一台付款2000元2 <X ≤3,一台付款2500元X >3,一台付款3000元1101,0()0,0x ex F x x − −>=≤P {Y =1500}=P {X ≤1}=F (1)=1−e −0.1=0.0952P {Y =2000}=P {1<X ≤2}=F (2)−F (1)=0.0861P {Y =2500}=P {2<X ≤3}=F (3)−F (2)=0.0779P {Y =3000}=P {X >3}=1−F (3)=0.7408设X 服从指数分布,且平均寿命为10年.Y 的分布律为所以该商店一台电器的平均收费,即Y 的数学期望为Y 1500 2000 2500 3000P0.0952 0.0861 0.0779 0.7408()15000.095220000.086125000.0779 30000.74082732.15E Y =×+×+×+×=使用上述方法必须先求出g(X)的分布,有时这一步骤是比较复杂的.那么是否可以不先求g(X)的分布,而只根据X的分布求E[g(X)]呢?例5.设离散型随机变量X 的概率分布如下表所示,求:Z=X 2的期望.X−11P214141E (Z )= g (0)×0.5+g (-1)×0.25+g (1)×0.25解:=0.5注:这里的.)(2x x g =(1)当X 为离散型随机变量时,分布律为P {X = x k }=p k ,k =1,2,⋯(2)当X 为连续型随机变量时,概率密度函数为f (x ).定理:设Y 是随机变量X 的函数,Y =g (X )(g 是连续函数)若级数绝对收敛,则有若积分绝对收敛,则有1()[()]()kkk E Y E g X g x p∞===∑()[()]()()E Y E g X g x f x dx+∞==∫1()k k k g x p ∞=∑()()g x f x dx+∞−∞∫该公式的重要性在于:当求E [g (X )]时,不必知道g (X )的分布,而只需知道X 的分布就可以了,这给求随机变量函数的期望带来很大方便.k k k g x p X E Y E g X g x f x dx X 1(),()[()]()(),∞=+∞−∞== ∑∫离散型连续型例6.设随机变量X~b(n, p),Y=e aX,求E(Y).解:因为X的分布律为所以有{}(1), 0,1,...,k k n knP X k C p p k n−==−= ()E Y=(1)nak k k n knke C p p−=−∑()(1)nk a k n knkC e p p−=−∑[(1)]a npe p=+−={}nakke P X k==∑例7.设X ~U [0,π],Y=sinX ,求E (Y ).解:因为X 的概率密度为所以有1,0()0,x f x ππ≤≤ =其他()sin ()E Y xf x dx +∞−∞=∫01sin x dx ππ⋅∫2π=定理:设Z 是随机变量X 和Y 的函数,Z =g (X,Y )(g 是连续函数),Z 是一维随机变量(1)若(X,Y )是二维离散型随机变量,概率分布为(2)若(X,Y )是二维连续型随机变量,概率密度为f (x, y ),则有这里假定上两式右边的积分或级数都绝对收敛11()[(,)](,)ijijj i E Z E g X Y g x y p∞∞====∑∑()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫{,},,1,2,i j ij P X x Y y p i j ====则有几个常用的公式()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫(,)EX xf x y dxdy+∞+∞−∞−∞=∫∫(,)EY yf x y dxdy+∞+∞−∞−∞=∫∫22()(,)E Y y f x y dxdy+∞+∞−∞−∞=∫∫22()(,)E X x f x y dxdy+∞+∞−∞−∞=∫∫()(,)E XY xyf x y dxdy+∞+∞−∞−∞=∫∫例8.设二维随机变量(X ,Y )的密度函数为求E (X ),E (Y ),E (X +Y ),E (XY ).解:21(13),02,01,(,)40,x y x y f x y +<<<< =其它()(,)E X xf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4x xdx y dy =⋅+∫∫43=()(,)E Y yf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4xdx y y dy +∫∫58=数学期望的性质注意:X ,Y 相互独立()()(,)E X Y x y f x y dxdy+∞+∞−∞−∞+=+∫∫(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞−∞−∞−∞−∞+∫∫∫∫()()E X E Y +45473824=+=()(,)E XY xyf x y dxdy +∞+∞−∞−∞=∫∫2120011(13)22x xdx y y dy=⋅⋅+∫∫455386=⋅=()()E X E Y ⋅设X =(X 1,…, X n )为离散型随机向量,概率分布为≥ 1nnj j j j n P X =x ,,x =p ,j ,,j .11{()}1Z = g (X 1,…, X n ),若级数绝对收敛,则.<∞∑ nnnj j j j j j g x ,,x p 111()=∑ nnnn j j j jj j E Z =E g X ,,X g x ,,x p 1111()(())()设X =(X 1,…, X n )为连续型随机向量,联合密度函数为 n f x x 1(,,)Z = g (X 1,…, X n ),若积分绝对收敛,则+∞+∞−∞−∞∫∫n n ng x x f x x x x 111(,,)(,,)d d n E Z E g X X 1()=((,,))+∞+∞−∞−∞=∫∫n n ng x x f x x x x 111(,,)(,,)d d五数学期望的性质1.设C 是常数,则E (C )=C 4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X )3.E (X +Y )=E (X )+E (Y )注意:由E (XY )=E (X )E (Y )不一定能推出X ,Y 独立推广(诸X i 相互独立时)推广11[]()nni i i i i i E C X C E X ===∑∑11[]()n ni i i i E X E X ===∏∏性质4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定相互独立.反例XY p ij -1 0 1-10181818181818181810p • j838382p i•838382X Y P-1 0 1828284EX EY ==0;E XY ()=0;=E XY EX EY ()但P X Y 1{=-1,=-1}=8≠=P X P Y 23{=-1}{=-1}8××=30+2103-3+5=92X XY Y X XY Y E(3+2-+5)=3E()+2E()-E()+E(5)性质2和3×××EX EY =310+2-3+5性质4例9.设X ~N (10,4),Y ~U [1,5],且X 与Y 相互独立,求E (3X +2XY -Y +5).解:由已知,有E (X )=10, E (Y )=3.例10: 设X 1 , X 2…,X n 相互独立且都服从B (1, p ),求Z = X 1 + X 2+…+X n 的数学期望E (Z ).解:注: 由二项分布的可加性易知Z = X 1 + X 2+…+X n ~B (n, p ).EZ = E (X 1 + X 2+…+X n )= E (X 1 ) +E ( X 2)+…+E (X n )= p +p +…+p =n p求二项分布的数学期望的又一种方法.例11.(超几何分布的数学期望)设一批同类型的产品共有N 件,其中次品有M 件.今从中任取n (假定n ≤N −M )件,记这n 件中所含的次品数为X ,求E (X ).则有所以解: 引入X =X 1+X 2+…+X n且易知抽签模型,概率与试验次数无关例10和例11:将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.1,,1,2,,0,i i X i n i ==第件是次品第件不是次品iMP X N{1}==1()ni i EX E X ==∑ni i P X 1{1}==∑1ni M N ==∑nM N =为普查某种疾病,N 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验N 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例13.六、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.。
1032随机变量的数字特征
k p(x)( X )k E[( X )k ] 一阶中心矩=0
x
二阶中心矩=方差
The End
2023/12/27
11
2.方差 & 标准差
▪ 反映随机变量取值偏离均值的分散程度 ▪ 方差 Variance D(X)/ Var(X)
2
D(X ) E[(X E(X )) ]
▪ 标准差 standard deviation
(X ) D(X )
方差的运算与性质
D(X ) E[(X )2 ] E(X 2) [E(X )]2
E[(X E( X )]• E[(Y E(Y )]
Covariance
E( XY) E( X )E(Y )
▪ 相关系数
XY
Cov( X ,Y ) D( X ) D(Y )
若随机变量X与Y相互独立
▪ X与Y一定不相关
Cov(X ,Y ) Cov((Y ) D(X Y) D(X ) D(Y)
E( X ) xk pk k 1
E( X ) xf (x)dx
数学期望的性质
X/Y为相互独立的随机变量,a/b/c为常数
▪ E(c) = c ▪ E(cX) = cE(X) ▪ E(aX+b) = aE(X)+b
▪ E(X+Y) = E(X)+ E(Y) ▪ E(XY) = E(X)*E(Y)
D(X ) p(x)(x )2 (x )2 f (x)dx x
离散型变量
连续型变量
D(X+c) = D(X) D(cX) = c2D(X)
D(cX+Y) = c2D(X) + D(Y)
3.协方差 & 相关系数
随机变量的数字特征
随机变量的数字特征随机变量是概率论中的重要概念,描述了在一定概率分布下可能取得的不同取值。
在实际问题中,我们常常需要对随机变量的数字特征进行分析,以揭示其分布规律和潜在规律。
本文将介绍随机变量的数字特征及其应用。
1. 期望值期望值是描述随机变量平均取值的一个重要数字特征。
对于离散型随机变量,期望值的计算公式为:$$ E[X] = \\sum_{i} x_i \\cdot P(X = x_i) $$其中,X表示随机变量,x i为X可能取得的值,P(X=x i)为X取值为x i的概率。
对于连续型随机变量,期望值的计算公式为:$$ E[X] = \\int_{-\\infty}^{\\infty} x \\cdot f(x) dx $$其中,f(x)为X的概率密度函数。
2. 方差方差是描述随机变量取值分散程度的数字特征。
对于离散型随机变量,方差的计算公式为:Var[X]=E[(X−E[X])2]对应连续型随机变量的方差计算公式为:$$ Var[X] = \\int_{-\\infty}^{\\infty} (x - E[X])^2 \\cdot f(x) dx $$3. 协方差协方差描述了两个随机变量之间的线性相关性。
对于两个随机变量X和Y,其协方差的计算公式为:Cov[X,Y]=E[(X−E[X])(Y−E[Y])]协方差的正负值表示了两个随机变量的相关性程度,当协方差为正时,表示两个随机变量正相关,为负时表示负相关。
4. 相关系数相关系数是协方差标准化后的结果,用以衡量两个随机变量之间的线性相关性强弱。
相关系数的计算公式为:$$ \\rho_{X,Y} = \\frac{Cov[X,Y]}{\\sigma_X \\cdot \\sigma_Y} $$其中,$\\sigma_X$和$\\sigma_Y$分别为X和Y的标准差。
相关系数的取值范围在-1到1之间,绝对值越接近1表示相关性越强。
5. 大数定律大数定律是概率论中的一个重要定理,指出在独立重复试验中,随着试验次数的增多,样本平均值将趋近于总体期望值。
概率论与数理统计3-5 随机变量的数字特征切比雪夫不等式
例8 设R.V. U ( , ),又 sin, cos.
试求与的相关系数.
【解】
cov( ,) 0. D D
注4 如果( ,) :
N
(a1,
a2
,
12
,
2 2
,
),
那么可求出
.于是 0, ,不相关;由前面推知: 0,
cov(,) 0.
按协方差的性质:当、独立,则cov( ,) 0, 从而、不相关.直观上, ,独立意味着、之间
没有任何关系,自然也没有线性关系.换言之:两个
变量、独立,则它们必定不相关;反之, 0,两 R.V .、不相关,但与未必独立.事实上,、
30 40合并为:ki ¡ 有 E(k11 k22 L knn ) k1E1 k2E2 L knEn.
50 当1,2 ,L ,n相互独立时,E(12 L n ) E1 E2 L En. 60 0,则E 0,由此,如果1 2,那么E1 E2.
引进下面的定义:
定义 设( ,)是一个二维R.V .,且
E ( E ) ( E) . D D
则称 cov( ,) E( E )( E )
E[( E ) ( E)] cov( ,) .
D D
D D
§3.5 随机变量的数字特征切比雪夫 不等式
一、连续型R.V .的数学期望 我们已经讨论了离散型R.V .的数学期望:
E @ xiP( xi ). i 1
试问:连续型R.V .的数学期望是什么?
当然要把连续型R.V . 进行离散化.
设连续型R.V.的P.d. f 为P(x),取分点
概率论与数理统计第4章 随机变量的数字特征与极限定理
25
定义4.3 设X是随机变量,若E[X-E(X)]2存 在,则称它为X的方差,记为D(X),即
由定义4.2,随机变量X的方差反映了X的可能取值 与其数学期望的平均偏离程度.若D(X)较小,则X的 取值比较集中,否则,X的取值比较分散.因此,方差 D(X)是刻画X取值离散程度的一个量.
3
定义4.1 设离散型随机变量X的分布律为
4
5
6
7
8
9
4.1.2 几个常用分布的数学期望 1.0—1分布 设随机变量X服从以p为参数的(0—1)分布,则X 的数学期望为
2.二项分布 设随机变量X~B(n,p),则X的数学期望为
10
3.泊松分布 设随机变量X~P(λ)分布,则X的数学期望为
41
Hale Waihona Puke 424.3 协方差、相关系数及矩
4.3.1 协方差 对于二维随机变量(X,Y),除了分量X,Y的数 字特征外,还需要找出能体现各分量之间的联系的数字 特征.
43
44
4.3.2 相关系数 定义4.5 设(X,Y)为二维随机变量,cov (X,Y),D(X),D(X)均存在,且D(X)>0,D(X) >0,称
15
16
17
定理4.2 设(X,Y)是二维随机变量,z=g(x,y) 是一个连续函数. (1)如果(X,Y)为离散型随机变量,其联合分布 律为
18
19
20
4.1.4 数学期望的性质 数学期望有如下常用性质(以下的讨论中,假设所 遇到的数学期望均存在):
概率论数字特征
在概率论中,数字特征是用来描述随机变量分布特征的数字指标。
以下是概率论中常见的数字特征:
1. 期望:
-期望是随机变量概率分布的均值,反映随机变量的平均取值水平,通常用E(X) 表示。
-期望可以通过对随机变量的每种可能取值乘以其对应的概率,再求和得到。
2. 方差:
-方差是随机变量与其期望的离差平方的平均值,反映随机变量取值的分散程度,通常用Var(X) 或σ^2 表示。
-方差可以通过将随机变量每种可能取值减去其期望,然后平方,再乘以对应的概率,再求和得到。
3. 标准差:
-标准差是方差的算术平方根,通常用σ表示,具有与原始数据相同的单位。
-标准差可以用来衡量随机变量取值的波动程度。
4. 偏态:
-偏态是随机变量分布的不对称程度,若右侧尾部更长,则为正
偏态;若左侧尾部更长,则为负偏态。
-偏态可以通过随机变量的三阶中心矩计算得到。
5. 峰态:
-峰态是随机变量分布的峰度,反映随机变量分布曲线的陡峭程度,通常用K 表示。
-峰态可以通过随机变量的四阶中心矩计算得到。
6. 分位数:
-分位数是将随机变量分为若干部分的数字点,例如中位数就是将随机变量分为两部分的点,25%分位数就是将随机变量分为四部分的点等等。
-分位数可以用来表示随机变量分布的位置和离散程度。
在实际应用中,以上数字特征经常被用来描述随机变量分布的性质和特征,例如对于正态分布,期望和方差可以完全描述其分布特征。
对于非正态分布,还需要考虑偏态和峰态等特征。
概率论与数理统计教案 第4章 随机变量的数字特征
第4章 随机变量的数字特征教学要求1.理解随机变量的数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,掌握用数字特征的定义、常用计算公式及基本性质计算具体分布的数字特征.2.掌握利用随机变量X 的概率分布求其函数)(X g 的数字期望[])(X g E ,掌握利用随机变量X 和Y 的联合分布求其函数),(Y X g 的数学期望[]),(Y X g E .3.理解X 与Y 不相关的概念,掌握X 与Y 独立和不相关的关系与判定方法.4.掌握六个常用分布的数学期望和方差,理解二维正态分布中5个参数的意义.5.了解原点矩、中心矩、协方差矩阵的概念.6.了解n 维正态随机变量的四个性质.教学重点数学期望、方差的概念与性质及其应用,用数字特征(数学期望、方差、标准差、协方差、相关系数)的定义、常用计算公式及性质计算具体分布的数字特征.教学难点协方差、相关系数概念的理解.课时安排本章安排6课时.教学内容和要点一、 数学期望1.离散型随机变量数学期望2.连续型随机变量数学期望3.随机变量的函数数学期望4.常用分布的数学期望5.数学期望的性质二、 方差1.方差的概念2.方差的计算3.常用分布的方差4.方差的性质5.随机变量的标准化三、协方差和相关系数1.协方差的定义与性质2.相关系数的定义与性质四、矩与协方差矩阵1.矩与协方差矩阵的概念2. n 维正态分布主要概念1.数学期望(离散型随机变量的数学期望、连续型随机变量的数学期望、随机变量函数的数学期望)2.方差 、标准差3.标准化随机变量4.协方差5.相关系数X Y不相关6.,7.矩8.协方差矩阵。
大学文科数学-概率论-随机变量的数字特征
大学文科数学()第5章 概率论初步第8讲随机变量地数字特征主讲教师 |随机变量地分布函数虽然能完整地描述随机变量地统计规律,但在实际问题,随机变量地分布往往不容易确定,而且有些问题并不需要知道随机变量分布规律地全貌,只需要知道某些特征就够了.例如:(1)考察LED灯管地质量时,随机变量表示灯管地寿命,但我们常常关注地是灯管地平均寿命,这说明随机变量地"平均值" 是一个重要地数量特征;(2)比较两台机床生产质量地高低,不仅要看它们生产地零件地尺寸是否合格(误差范围内),还需要考察每个零件尺寸与平均尺寸地偏离程度,只有偏离程度较小地才是精度高地,这说明随机变量与其"平均值"地偏离程度也是一个重要地数量特征.这些刻画随机变量某种特征地数量指标称为随机变量地数字特征,它们在理论与实践上都具有重要地意义.01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 定义5.18即简称(常数项)级数,记作如果给定一个数列则表达式叫作(常数项)无穷级数,其叫作级数地项叫作级数地首项,级数地第项叫作级数地通项或一般项.Ὅ 定义5.19级数地前项与叫作级数地部分与,记作,即Ὅ 定义5.20若级数地部分与数列收敛于即则称级数收敛,其与为也称级数收敛于,记为若级数地部分与数列发散,则称级数发散.利用极限地有关性质,可以得到收敛级数地基本性质:性质5.8(级数收敛地必要条件):如果级数 收敛,则.性质5.9:若级数 收敛于与,则级数 也收敛,其与为(为常数).性质5.10:如果级数 发散,当时,级数 也发散.性质5.11:如果级数 与 分别收敛于与与,则级数 也收敛,且其与为.性质5.12:如果级数 收敛, 发散,级数 发散.性质5.13:在级数去掉,加上或改变有限项,不会改变级数地敛散性.性质5.14:如果级数 收敛,则在不改变其各项次序地情况下,对该级数地项任意添加括号后所形成地级数仍收敛,且其与不变.性质5.15:如果加括号后所形成地级数发散,则原级数也发散.Ὅ 定义5.21若级数地每一项都是非负地,即,则称级数为正项级数.Ὅ 定义5.22数项级数或其,称为交错级数.相应地,正负项可以任意出现地级数称为任意项级数.Ὅ 定义5.23如果级数各项地绝对值所构成地正项级数收敛,则称级数绝对收敛;如果级数收敛,而级数发散,则称级数条件收敛.Ὅ 定理5.8若级数绝对收敛,则级数一定收敛.01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 例1解甲:乙:问:甲,乙两谁地技术好些?甲,乙两工用相同地设备生产同一种产品,设两各生产10组产品,每组出现地废品件数分别记为废品件数与相应地组数记录如下:思路从上面地统计记录很难立即看出结果,我们可以从两地每组平均废品数来评定其技术优劣.解甲地每组平均废品数为:乙地每组平均废品数为故从每组地平均废品数看,乙地技术优于甲.(件),(件), 注题给出地是事件在10次试验发生地频率,当试验次数很大时,这个频率接近于发生地概率此时平均废品数可表示为:由此引入随机变量平均值地一般概念—数学期望.Ὅ 定义5.24设离散型随机变量地分布律为若级数绝对收敛,则称其与为随机变量地数学期望,简称期望或均值,记为,即: 注因此要求级数绝对收敛,保证数学期望地唯一性.上述概念可推广至连续性随机变量地情形,有:随机变量地数学期望完全由地分布律确定,不应受地可能取值地排列次序地影响,Ὅ 定义5.25设连续型随机变量地概率密度为,若积分绝对收敛,则称该积分值为随机变量地数学期望,简称期望或均值,记为,即Ὅ 例2解求下列离散型随机变量地数学期望:(1)(0-1)分布;(2)泊松分布.于是(1)设随机变量X 服从(0-1)分布,分布律如下:.于是(2)设随机变量服从参数为地泊松分布,即,则.Ὅ 例3解求下列离散型随机变量地数学期望.(1)指数分布;(2)正态分布.于是(1)设随机变量X服从参数为地指数分布,其概率密度为(2)设随机变量X服从正态分布,其概率密度为于是:Ὅ 例4解一工厂生产地某种设备地寿命X (以年计)服从参数为1/4地指数分布,工厂规定:出售地设备若在售出一年之内损坏可予以调换.若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元.求厂方出售一台设备净盈利地数学期望.因为服从参数为地指数分布,故分布函数为使用一年不损坏地概率为则一台设备在一年内损坏地概率为设表示出售一台设备地净盈利,则其分布律为:故(元)01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差在实际问题,常常需要求出随机变量函数地数学期望。
概率论与数理统计 第4章 随机变量的数字特征
解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15
第三章 随机变量的数字特征
第三章 随机变量(向量)的数字特征
§3.1 随机变量的数学期望 §3.2 随机变量的方差 §3.3 协方差与相关系数
为了完整的描述随机变量的统计特性,自然应该知道 其分布函数,因为随机变量的分布函数可以反映随机变量 取值的规律。但是在实际问题中,一方面随机变量的分布 或分布函数并不都是容易求得的,另一方面,往往也不需 要知道随机变量的详尽的概率分布,而仅需要知道其某些
四、随机变量函数的数学期望 1. 一元随机变量函数的情况 设Y g( X )是随机变量 X的函数, (1)离散型
如果随机变量X 的概率函数为 P{ X xk } pk k 1, 2, 则有E (Y ) E[ g ( X )] g ( xk ) pk
k 1
(2)连续型
x2
1 n
Pk
n
… xi … 1 n
… xn … 1 n
E ( X ) x1 1 x2 1 ... xn 1 1 xi n n n n
i 1
2.两点分布 由数学期望的定义
E( X ) p
X pi
0
1
q
p
3. 二项分布 若随机变量 X ~ B(n, p) ,其概率函数为
xR
( x )2 2 2
1 E ( X ) xf ( x)dx xe 2 t2 (x ) 1 令t ( t )e 2 dt 2 t2 1 e 2 dt 2
dx
解:由上面的公式
1 1 2 E (W ) kv f (v)dv kv dv ka a 3 0
2 2 a
例3.6 设X与Y相互独立,它们的概率密度函数分别为
《概率论与数理统计》课件 第七章 随机变量的数字特征
i 1,2, , 如果 xi pi , 则称 i 1 E( X ) xi pi 为随机变量X的数学期望; i 1
或称为该分布的数学期望,简称期望或均值.
(2)设连续随机变量X的密度函数为p( x),
如果
+
x p( x)dx ,
则称
-
E( X ) xp( x)dx 为随机变量X的数学期望.
5
例2.求二项分布B(n, p)的数学期望.
P(X
k)
n!
k!n
k !
pk
(1
p)nk ,k
1, 2,
, n.
n
解:EX kP{ X k}
k0
n
k
k0
n!
k!n
k !
pk
(1
p)nk
n
np
k 1
k
n 1! 1!n
pk1
k!
(1
p)nk
np[ p (1 p)]n1 np.
特别地,若X服从0 1分布,则EX p.
6
例3. 求泊松分布P( )的数学期望.
注:P( X k) k e , k 1, 2, .
k!
解:EX k k e e
k1
e
k1
k0 k !
k1 k 1 !
k1 k 1 !
ee
e x 1 x 1 x2 1 xn [这里,x ]
当 a 450时,平均收益EY 最大.
28
第二节 方差与标准差
29
引例
比较随机变量X、Y 的期望
X3 4 5 Y1 4 7 P 0.1 0.8 0.1 P 0.4 0.2 0.4
01 2 3 4 5 67
(精品)概率论课件:随机变量的数字特征
数学期望 方差 协方差、相关系数 其它数字特征
1
问题的提出:
在一些实际问题中,我们需要了解随机变 量的分布函数外,更关心的是随机变量的 某些特征。
2
例: 在评定某地区粮食产量的水平时,最关心的是平 均产量; 在检查一批棉花的质量时,既需要注意纤维的平 均长度,又需要注意纤维长度与平均长度的偏离 程度; 考察杭州市区居民的家庭收入情况,我们既知家 庭的年平均收入,又要研究贫富之间的差异程度。
k 1
k 1
的值为X的数学期望,记为E(X),即
E( X ) xk pk k 1
6
定义:设连续型随机变量X的概率密度
函数为f(x),若积分
+
x
f (x)dx ,
则称积分
+
xf (x)dx
的值为X的数学期望,
记为E(X),即
+
E( X ) xf (x)dx
数学期望简称期望,又称均值。
7
n
n
E(c0 ci X i ) c0 ci E( X i )
i 1
i 1
31
4.设X,Y是相互独立随机变量, 则有 E(XY)=E(X) E(Y),
推广到任意有限个相互独立随机变量之积:
n
n
E( i 1
X
i
)
i 1
E(
X
i
),
其中Xi,i 1,..., n相互独立.
32
证明:
1. C是常数,P(X C) 1, E(X ) E(C) 1C C
33
4. E(XY )
xyf (x, y)dxdy
xyfX (x) fY ( y)dxdy
概率论与数理统计 第4章
dx 令t
t2 2
x
,得
E( X )
1 2
( t )e
dt
1-91
31
1 E( X ) x e 2
( x )2 2 2
dx 令t
t2 2
x
,得
E( X )
1 2
( t )e
t2 2
得
从而
的概率密度为:
1-91
21
故所求数学期望分别为
1-91
22
三.数学期望的性质
性质1: 设 C 为常数,则 性质2: 设 C 为常数,X 为随机变量, 则有 性质3: 设 X , Y 为任意两个随机变量, 则有 为 n 个随机变量,
推论1 设
为常数,则
1-91
23
性质4 设X 和Y 是相互独立的随机变量,则有
证: 因为 X 和 Y 相互独立,所以 于是
推广:
1-91 24
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值 解 引入随机变量
显然有
1-91
25
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值
1-91
18
例5. 设某公共汽车站于每小时的10分, 50分发车, 乘客在每小时内任一时刻到达车站是随机的。求 乘客到达车站等车时间的数学期望。
解: 设T 为乘客到达车站的时刻, 则
其概率密度为
设Y 为乘客等车时间,则
1-91
19
已知
1-91
概率论与数理统计(经管类)复习要点 第4章 随机变量的数字特征
第四章 随机变量的数字特征1. 把刻画随机变量某些方面特征的数值称为随机变量的数字特征,如期望、方差、协方差、相关系数等。
2. 随机变量的期望反映了随机变量取值的集中位置。
离散型随机变量的期望设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…若级数∑ix i p i 绝对收敛(即级数∑i丨x i 丨p i 收敛),则定义X 的数学期望(简称均值或期望)为E (X )=∑ix i p i注:当X 的可能取值为有限多个x 1,x 2,…,x n 时,E (X )=∑=ni 1x i p i 当X 的可能取值为可列多个x 1,x 2,…,x n ,…时,E (X )=∑∞=1i x i p i三种重要离散型随机变量的数学期望:3. 离散型随机变量函数的数学期望 设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…令Y =g (X ),若级数∑∞=1k g (x k )p k 绝对收敛,则随机变量Y 的数学期望为E (Y )= E[g (X )] =∑∞=1k g (x k )p k4. 连续型随机变量的期望三种重要连续型随机变量的数学期望:5. 连续型随机变量函数的数学期望2017.4单解:6. 二维随机变量的期望二维随机变量函数的期望7. 期望的性质(1)常数的期望等于这个常数,即E (C )=C ,其中C 为常数证明 常数C 作为随机变量,它只可能取一个值C ,即P {X =C }=1,所以E (C )=C ⋅1=C(2)常数与随机变量X 乘积的期望等于该常数与随机变量X 的期望的乘积,即E (C X )=C ⋅E (X ) (3)随机变量和的期望等于随机变量期望之和,即E (X +Y )= E (X )+ E (Y ) 推广:E (C 1X +C 2Y )= C 1E (X )+ C 2E (Y ),其中C 1,C 2为常数 一般地,设X 1,X 2,…,X n ,为n 个随机变量,则有E (∑=ni iX 1)=∑=ni iX E 1)(E (∑=ni ii X C 1)=∑=ni iiX E C 1)( 其中C i(i=1,2,…)为常数(4)两个相互独立的随机变量乘积的期望等于期望的乘积,即若X ,Y 是相互独立的随机变量,则E (XY )= E (X )E (Y )由数学归纳法可证得:当X1,X2,…,X n相互独立时有E(X1,X2,…,X n)= E(X1)E(X2)…E(X n)2018.4单解:指数分布的期望值为 1,故E(X)= E(Y)=21,所以E(X Y)= E(X)E(Y)=412018.4计解:(1)平均收益率E(X)=1%×0.1+2%×0.2+3%×0.1+4%×0.3+5%×0.2+6%×0.1=3.6%(2)预期利润10×3.6%=0.36万元2017.10单解:E(-3X +2)=-3 E(X)+2=-3×51+2=572017.4填解:E(X+Y)= E(X)+ E(Y)=20×0.1+2=48. 方差反映了随机变量偏离中心——期望的平均偏离程度。
第五章随机变量的数字特征与极限定理
2021/2/19
20
❖ 5.1.3 随机变量函数的数学期望
❖ 关于一维随机变量函数的数学期望,有下面的定理 ❖ 定理5.1 设Y=g(X),g(x)是连续函数. ❖ (ⅰ)若X是离散型随机变量,分布列为P(X=xk)=pk,
k=1,2,…,且
k 1
❖ 绝对收敛,即
| xk | pk
k1
❖ 则称该级数为离散型随机变量X的数学期望或均值, 记为EX或E(X),即
EX xk pk k1
2021/2/19
3
❖当
| xk | pk
k 1
❖ 发散时,则称X的数学期望不存在.
❖ 定义中的绝对收敛条件是为了保证式
xk pk
k 1
❖ 不受求和的次序的改变而影响其和的值.
❖ 这个结果是可以预料的,因为X在[a,b]上服从均匀 分布,它取值的平均值当然应该是[a,b]的中点.
2021/2/19
14
❖ 例5 (指数分布) 设连续型随机变量X的概率密度为
ex,
f(x) 0,
❖ 其中λ是正常数,求EX.
x0, x0.
2021/2/19
15
❖ 解 EX
xf ( x ) dx
2021/2/19
12
❖ 常用的连续型随机变量的数学期望 ❖ 例4 (均匀分布)设连续型随机变量X的概率密度为
f
(x)
1 ba
,
a x b,
0,
其 他.
(a b)
❖ 求EX.
2021/2/19
13
❖ 解
EX xf ( x ) dx
bx
随机变量数字特征教学中的几点思考
随机变量数字特征教学中的几点思考随机变量是概率论与数理统计中一个重要的概念,它描述了在随机试验中可能出现的各种结果。
在随机变量的教学过程中,数字特征是一个重要的内容,它帮助我们更好地理解和描述随机变量的性质。
在教学过程中,我们需要思考一些问题:如何理解随机变量的数字特征?数字特征的意义是什么?如何引导学生更好地掌握随机变量的数字特征?本文将对这些问题进行讨论。
我们需要理解随机变量的数字特征是什么。
在概率论与数理统计中,随机变量的数字特征通常包括均值、方差、标准差等。
均值描述了随机变量的平均取值,是对随机变量整体性质的描述;方差和标准差描述了随机变量取值的离散程度,是对随机变量分布形状的描述。
通过对随机变量的数字特征进行分析,我们可以更好地了解随机变量的分布特性,为实际问题的分析与应用提供了重要的依据。
我们需要思考如何引导学生更好地掌握随机变量的数字特征。
在教学过程中,我们可以通过具体的例子和应用来引导学生理解随机变量的数字特征,例如通过投掷硬币、抛掷骰子等形象生动的例子来介绍均值、方差和标准差的概念,引导学生通过计算数字特征来对随机变量进行初步分析。
我们还可以通过实际问题的分析和应用来引导学生理解数字特征的意义,例如通过随机变量的数字特征来对实际问题进行分析,如一些与概率和统计有关的实际问题,如生活中的一些抽样问题,生物学中的一些与数量变异有关的问题,工程中的一些与质量控制有关的问题,经济学中的一些与风险评估有关的问题等等。
通过这些方式,可以帮助学生更好地掌握随机变量的数字特征,提高他们的学习兴趣和学习效果。
随机变量的数字特征在教学中具有重要的意义,它帮助我们更好地理解和描述随机变量的性质,同时也为实际问题的分析与应用提供了重要的依据。
在教学过程中,我们需要引导学生更好地掌握随机变量的数字特征,通过具体的例子和实际应用来帮助他们理解数字特征的概念和意义,提高他们的学习兴趣和学习效果。
希望通过我们的努力,能够更好地帮助学生掌握随机变量的数字特征,为他们今后的学习和工作奠定良好的基础。
随机变量数字特征教学中的几点思考
随机变量数字特征教学中的几点思考随机变量是概率论中的重要概念,它描述了随机试验的结果可以用数值来表示。
在随机变量的教学中,有几点值得思考和关注。
首先是随机变量的定义和表示。
随机变量的定义是把样本空间与实数集相联系,它将每一个样本点映射到一个实数。
在教学中,可以通过生活中的例子来解释随机变量的概念,比如掷骰子的结果可以用1到6的数字表示。
需要引入随机变量的表示方法,包括离散型随机变量和连续型随机变量。
其次是随机变量的数字特征,包括期望、方差和标准差等。
期望是随机变量的平均值,表示了随机变量的集中趋势。
在教学中,可以通过一个简单的例子来解释期望的概念,比如求一个骰子的期望。
方差和标准差则反映了随机变量的离散程度,它们的计算方法可以通过教学演示来展示。
随机变量的数字特征还包括分布函数和概率密度函数。
离散型随机变量的分布函数是一个非递减的、右连续的、取值范围在0到1之间的函数。
连续型随机变量的概率密度函数是一个非负的、积分为1的函数。
在教学中,可以通过画图的方式来演示分布函数和概率密度函数的概念和性质。
随机变量的数字特征还包括矩和偏度等。
矩是随机变量的数字特征的一种扩展,它可以描述随机变量分布的更多信息。
偏度则度量了随机变量分布的不对称性,正偏表示分布右尾较长,负偏表示分布左尾较长。
应该强调随机变量的应用。
随机变量是概率论和数理统计的基础,应用广泛,包括金融、物理、生物等领域。
在教学中,可以通过实际应用的例子来展示随机变量的重要性和实用性,激发学生的学习兴趣。
随机变量的数字特征是概率论中的重要内容,对于教学来说是必不可少的。
教师应该通过生动的例子和清晰的讲解,帮助学生理解随机变量的概念和表示方法,掌握随机变量的数字特征,培养学生的应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以: E (V ) =
∫
−∞
4 ⎛ x⎞ 4 11 1547 π ⋅ ⎜ ⎟ ⋅ f ( x ) dx = (π ⋅ x 3 ) dx = π. 3 ∫ 10 3 ⎝2⎠ 3⋅ 2 8
3. 解: E ( Z ) =
1 1 1 E ( X ) + E (Y ) = . 3 2 3
2 2
COV ( X , Y ) = D( X ) D(Y ) ⋅ ρ XY = −6 所以
故 E (Y ) = 100 ⋅ e
+ (100 − 300)(1 − e 4 ) = 300 ⋅ e
−
−
− 200 = 33.64 (元) 。
3
谢土生编
2010-12
15. 解: E ( X ) =
10 + 20 = 15 = E (Y ) 2
记Z
,则 = “每周获利”
1000Y Y≤X ⎧ Z =⎨ Y >X ⎩1000Y + 500(Y − X )
22. 解:设装 n 袋水泥,第 k 袋水泥重量为 X k ,则依题意有:
n
X k ~ N (50 , 2.52 ) ,
⎛ 10 − np ⎞ ⎟ = Φ (1.28) , ⇒ ⇒ 1− Φ⎜ ⎜ np(1 − p ) ⎟ ⎝ ⎠
13. 解: 记 X k =“第 k 个电器元件的寿命” , 则 E ( X k ) = θ , D ( X k ) = θ 2 , θ = 100 。
16 16
所求为 P(
∑X
k =1
k
> 1920) = 1 − P (∑ X k ≤ 1920 )
所以, E (Y ) = 1500(1 − e
−0. 1
P(Y = 2500) = e −0 .2 − e −0 .3
) + 2000( e −0. 1 − e −0 .2 ) + 2500( e −0. 2 − e −0 .3 ) + 3000 ⋅ e −0. 3
= 1500 + 500( e−0 . 1 + e −0 .2 + e −0. 3 ) = 2732.15 。
4
谢土生编
2010-12
18. 解:依题意有所求为: P( X − Y < 0) , 因为 X ~ N (22.40, 所以
0.032 ) , Y ~ N ( 22.5, 0.04 2 )
X − Y ~ N ( − 0.1, 0.052 ) , X − Y − ( −0.1) 0 − ( −0.1) < ) = Φ( 2) = 0.9772 。 0.05 0.05
3
⎧1 第i个部件需要调整 ⎩0 第i个部件不需要调整 (i = 1, 2 , 3)
则 X =
∑X
i =1
3
i
, E ( X i ) = P( Ai ) ,
E ( X ) = ∑ E ( X i ) = 0.1 + 0.2 + 0.3 = 0.6 。
i =1
21. 解:依题意得, X ~ f ( x ) = ⎨ x − 4
X Y 1 1 1 1 ⎛1 ⎞ ⎛ 1⎞ D( Z ) = ⎜ ⎟ D( X ) + ⎜ ⎟ D(Y ) + 2COV ( , ) = ⋅ 32 + ⋅ 4 2 + 2 ⋅ ⋅ ⋅ (−6) = 3 . 3 2 9 4 3 2 ⎝ 3⎠ ⎝ 2⎠
4. 解: 记 X = “100 个索赔户中属被盗索赔户的户数” ,则 X ~ b(100,0.2) 。所求概率为:
16. 解:记
,则 X ~ b(n, p). X = “一年内死亡的人数”
n = 10000
p = 0.006 np = 60
np (1 − p) = 7.7227
(1) 。保险公司没有利润的概率 = P ( X ⋅ 1000 > 12 ⋅ 10000) = 1 − P ( X ≤ 120)
= 1− P(
P(14 < X < 30) = P(
= Φ(
14 −100 ⋅ 0.2 X − 100 ⋅ 0.2 30 −100 ⋅ 0.2 < < ) 100 ⋅ 0.2 ⋅ 0.8 100 ⋅ 0.2 ⋅ 0.8 100 ⋅ 0.2 ⋅ 0.8
10 6 ) − Φ ( − ) = Φ (2.5) + Φ(1.5) − 1 = 0.9938 + 0.9332 −1 = 0.927 。 4 4
∴ E( X − Y ) = E( Z ) = ∫
+∞ +∞ ⎛ −z 2 ⎞ 1 z ϕ ( z ) dz = 2∫ ⎜ z e 2 ⎟ dz = 2 π . 0 ⎝ 2⋅π ⎠
−∞
2. 解: 球的体积 V =
4 ⎛X ⎞ π⋅⎜ ⎟ . 3 ⎝2⎠
+∞ 3
3
⎧1 10 < x < 11 X 的概率密度为: f ( x ) = ⎪ ⎨ (11 − 10) ⎪ 0 其他 ⎩
30 − np < np(1 − p)
X − np 50 − np < ) np(1 − p) np(1 − p)
= Φ(5.936) − Φ (1.3697 ) = 0.9999 − 0.9147 = 0.0852
10. 解:记 X = “部件损坏的件数” ,则 X ~ b(100, 系统的可靠度 = P ( X ≤ 10) = P(
(2)。记 Y = “保险公司利润” ,则 Y = 18 ⋅ 10 − X ⋅ 1 − 40 = 140 − X 且 E (Y ) = E (140) − E ( X ) = 140 − np = 140− 100 = 40 。
7. 解: P( E ( X ) − 3σ < X < E ( X ) + 3σ ) = P ( X − E ( X ) < 3σ ) ≥ 1 −
24 ⎧ ⎪ ⎪ ⎩ 0
x≥ 2 x< 2
所以 E ( X ) =
∫
+∞
2
24 ⎞ x⋅⎛ ⎜ 4 ⎟ dx =3 ⎝x ⎠
E( X 2) = ∫
+∞
2
⎛ 24 ⎞ x 2 ⋅ ⎜ 4 ⎟dx =12 , ⎝x ⎠
D( X ) = E ( X 2 ) − E 2 ( X ) = 12 − 32 = 3
故 P( X − Y < 0) = P (
19. 解:记 X = “保险公司的收益” ,设顾客交 b 元,则
P( X = b) = 1− p, P( X = b − a) = p
依题意
E ( X ) = b (1 − p ) + (b − a ) p = 10% ⋅ a ,求得 b = a ( p + 10%)
⇒
(x 200 )− np ≥ 1.6 ⇒ x ≥ 1809600
np (1 − p )
0.05) 。
12. 解:设检查 n 个产品,查到的次品数为 X ,则 X ~ b( n, 且 P(10 < X ≤ n) ≥ 0.9 ⇒ 1 − P( X ≤ 10) = Φ (1.2 ) = Φ (1.28) np (1 − p ) np (1 − p ) np − 10 = 1.28 ⇒ n = 296 。 np(1 − p )
P(Y > 60000) = P(120000 −1000 ⋅ X ≥ 60000) = P( X ≤ 60)
= P(
X − np 60 − np 1 ≤ ) = Φ ( 0) = 2 np(1 − p ) np(1 − p )
1 ⎧ 1 −10 ⎪ e 17. 解:依题意有 X ~ f ( x ) = ⎨10 ⎪ ⎩ 0
X − np 120 − np 60 ≤ ) = 1 − Φ( ) = 0. 7.7227 np(1 − p) np(1 − p)
(2) 。记 Y
,则 Y = 12 ⋅ 10000 − X ⋅ 1000 = 120000 −1000 X = “保险公司利润”
。 E (Y ) = E (120000 ) −1000 ⋅ E( X ) = 120000 − 1000 ⋅ np = 60000 (元)
P( X = 6) =
P ( X = 7) =
5 16
E ( X ) = ∑ k ⋅ P( X = k ) = 4 ⋅
k =4
2 4 5 5 + 5 ⋅ + 6 ⋅ + 7 = 5.8125 。 16 16 16 16
1
谢土生编
2010-12
6. 解:记
,则 X ~ b(n, p). X = “一年内遭受交通事故的人数”
σ2 8 = (3σ )2 9
8. 解: P X − E ( X ) ≥ 5 ≤
(
)
σ 2 2.5 = = 0.1 52 25
9. 解:记
,则 X ~ b(120, 0.2) 。 n = 120 , p = 0.2. X = “被使用的终端个数”
所求的概率为: P(30 < X < 50) = P (
n = 10000 , p = 0.9.
(1) , P( X > 9030) = 1 − P ( X ≤ 9030) = 1 − P (
= 1 − Φ(
30 ) = 1 − Φ(1) = 1 − 0.84 = 0.16 。 30
2
谢土生编
2010-12
x − np X − np 200 (2) ,问题为求 x , 使 P( 200 X ≤ x ) ≥ 0.95 , ⇒ P( ≤ ) ≥ Φ (1.6) np (1 − p ) np(1 − p )
1 1 − 1 −t 1 e 4 dt = 1 − e 4 , 0 4 1