2020-2021初三数学反比例函数的专项培优易错试卷练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初三数学反比例函数的专项培优易错试卷练习题及答案
一、反比例函数
1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣
x+10,交于C,D两点,并且OC=3BD.
(1)求出双曲线的解析式;
(2)连结CD,求四边形OCDB的面积.
【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,
∴∠AMO=∠CEO=∠DFB=90°,
∵直线OA:y=x和直线AB:y=﹣x+10,
∴∠AOB=∠ABO=45°,
∴△CEO∽△DEB
∴= =3,
设D(10﹣m,m),其中m>0,
∴C(3m,3m),
∵点C、D在双曲线上,
∴9m2=m(10﹣m),
解得:m=1或m=0(舍去)
∴C(3,3),
∴k=9,
∴双曲线y= (x>0)
(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,
∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB
= ×3×3+ ×(1+3)×6+ ×1×1=17,
∴四边形OCDB的面积是17
【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x
和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.
2.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.
【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,
∵点D的坐标为(,2),
∴DO=AD=3,
∴A点坐标为:(,5),
∴k=5 ;
(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,
∴D′点的纵坐标为2,设点D′(x,2)
∴2= ,解得x= ,
∴FF′=OF′﹣OF= ﹣ = ,
∴菱形ABCD平移的距离为,
同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,
菱形ABCD平移的距离为,
综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.
3.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.
例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.
(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;
(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;
(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.
【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:
正方形ABCD的边长为.
(II)当点A在x轴负半轴、点B在y轴正半轴上时:
设正方形边长为a,易得3a= ,
解得a= ,此时正方形的边长为.
∴所求“伴侣正方形”的边长为或
(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,
易证△ADE≌△BAO≌△CBF.
∵点D的坐标为(2,m),m<2,
∴DE=OA=BF=m,
∴OB=AE=CF=2﹣m.
∴OF=BF+OB=2,
∴点C的坐标为(2﹣m,2).
∴2m=2(2﹣m),解得m=1.
∴反比例函数的解析式为y=
(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合
a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶
点为(4,1),对应的函数解析式是y=﹣ x2+ ;
b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,
c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在
d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶
点C为(﹣1,3),对应的函数的解析式是y= x2+ ;
e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D
的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;
f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;
故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+
【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.
(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.
(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.
4.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y= (k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3,
).
(1)求反比例函数的表达式和m的值;
(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式.
【答案】(1)解:∵反比例函数y= (k≠0)在第一象限内的图象经过点E(3,),∴k=3× =2,
∴反比例函数的表达式为y= .
又∵点D(m,2)在反比例函数y= 的图象上,
∴2m=2,解得:m=1
(2)解:设OG=x,则CG=OC﹣OG=2﹣x,∵点D(1,2),
∴CD=1.
在Rt△CDG中,∠DCG=90°,CG=2﹣x,CD=1,DG=OG=x,
∴CD2+CG2=DG2,即1+(2﹣x)2=x2,
解得:x= ,
∴点G(0,).
过点F作FH⊥CB于点H,如图所示.
由折叠的特性可知:∠GDF=∠GOF=90°,OG=DG,OF=DF.
∵∠CGD+∠CDG=90°,∠CDG+∠HDF=90°,
∴∠CGD=∠HDF,
∵∠DCG=∠FHD=90°,
∴△GCD∽△DHF,
∴=2,
∴DF=2GD= ,
∴点F的坐标为(,0).
设折痕FG所在直线的函数关系式为y=ax+b,
∴有,解得:.
∴折痕FG所在直线的函数关系式为y=﹣x+
【解析】【分析】(1)由点E的坐标利用反比例函数图象上点的坐标特征即可求出k值,再由点B在反比例函数图象上,代入即可求出m值;(2)设OG=x,利用勾股定理即可得出关于x的一元二次方程,解方程即可求出x值,从而得出点G的坐标.再过点F作FH⊥CB于点H,由此可得出△GCD∽△DHF,根据相似三角形的性质即可求出线段DF的长度,从而得出点F的坐标,结合点G、F的坐标利用待定系数法即可求出结论.
5.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数
的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=
.
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积;
(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.
【答案】(1)解:作AD⊥x轴于D,如图,
在Rt△OAD中,∵sin∠AOD= = ,
∴AD= OA=4,
∴OD= =3,
∴A(﹣3,4),
把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,
所以反比例函数解析式为y=﹣;
把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,
把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2
(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6
(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值
【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),
再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.
6.如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
【答案】(1)①当x=4时,
∴点B的坐标是(4,1)
当y=2时,由得得x=2
∴点A的坐标是(2,2)
设直线AB的函数表达式为
∴解得
∴直线AB的函数表达式为
②四边形ABCD为菱形,理由如下:如图,
由①得点B(4,1),点D(4,5)
∵点P为线段BD的中点
∴点P的坐标为(4,3)
当y=3时,由得,由得,
∴PA= ,PC=
∴PA=PC
而PB=PD
∴四边形ABCD为平行四边形
又∵BD⊥AC
∴四边形ABCD是菱形
(2)四边形ABCD能成为正方形
当四边形ABCD时正方形时,PA=PB=PC=PD(设为t,t≠0),当x=4时,
∴点B的坐标是(4,)
则点A的坐标是(4-t,)
∴,化简得t=
∴点D的纵坐标为
则点D的坐标为(4,)
所以,整理得m+n=32
【解析】【分析】(1)①分别求出点A,B的坐标,运用待定系数法即可求出直线AB的表达示;
②由特殊的四边形可知,对角线互相垂直的是菱形和正方形,则可猜测这个四边形是菱形或是正方形,先证明其为菱形先,则需要证明四边形ABCD是平行四边形,运用“对角线互相平分的四边形是平行四边形”的判定定理证明会更好些;再判断对角线是否相等,若不相等则不是正方形;(2)要使m,n有具体联系,根据A,B,C,D分别在两个函数图象,且
由正方形的性质,可用只含m的代数式表示出点D或点C的坐标代入y= ,即可得到只关于m和n的等式.
7.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A (﹣2,b),B两点.
(1)求一次函数的表达式;
(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.
【答案】(1)解:把A(﹣2,b)代入,
得b=﹣ =4,
所以A点坐标为(﹣2,4),
把A(﹣2,4)代入y=kx+5,
得﹣2k+5=4,解得k= ,
所以一次函数解析式为y= x+5;
(2)解:将直线AB向下平移m(m>0)个单位长度得直线解析式为y= x+5﹣m,
根据题意方程组只有一组解,
消去y得﹣ = x+5﹣m,
整理得 x2﹣(m﹣5)x+8=0,
△=(m﹣5)2﹣4× ×8=0,
解得m=9或m=1,
即m的值为1或9.
【解析】【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(-2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;
(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=,又与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式=0得到关于m的方程,最后解方程求出m的值.
8.理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:
思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接
AD.设AC=1,则BD=BA=2,BC= .tanD=tan15°= = = .
思路二利用科普书上的和(差)角正切公式:tan(α±β)= .假设
α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)= =
= .
思路三在顶角为30°的等腰三角形中,作腰上的高也可以…
思路四…
请解决下列问题(上述思路仅供参考).
(1)类比:求出tan75°的值;
(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;
(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.
【答案】(1)解:方法一:如图1,
在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC= .tan∠DAC=tan75°= = = = ;
方法二:tan75°=tan(45°+30°)= = = =
(2)解:如图2,
在Rt△ABC中,AB= = = ,sin∠BAC= ,即
∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB= ,∴DB=AB•tan∠DAB= •()= ,∴DC=DB﹣BC= = .
答:这座电视塔CD的高度为()米
(3)解:①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C 作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.
解方程组:,得:或,∴点A(4,1),点B(﹣2,
﹣2).对于,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣
(﹣1)=2,∴tan∠ACF= ,∴tan∠PCE=tan(∠ACP+∠ACF)=tan (45°+∠ACF)= = =3,即 =3.设点P的坐标为(a,b),则有:,
解得:或,∴点P的坐标为(﹣1,﹣4)或(,3);
②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.
由①可知∠ACP=45°,P(,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴.∵CH=3﹣(﹣1)=4,PH= ,OC=1,∴,∴GO=3,G(﹣3,0).设直线CG的解析式为,则有:,解得:,∴直线CG的解析式为
.联立:,消去y,得:,整理得:,∵△= ,∴方程没有实数根,∴点P 不存在.
综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P的坐标为(﹣1,﹣4)或
(,3).
【解析】【分析】tan∠DAC=tan75°,tan∠DAC用边的比值表示.在Rt△ABC中,由勾股定理求出AB,由三角函数得出∠BAC=30°,从而得到∠DAB=75°,在Rt△ABD中,可求出DB,DC=DB﹣BC.分两种情况讨论,设点P的坐标为(a,b),根据tan∠PCE和P在图像上列出含有a,b的方程组,求出a,b.利用已知证明△GOC∽△CHP,根据相似三角形的性质可求出G的坐标,设出直线CG的解析式,与反比例函数组成方程组消元,△<0 点P不存在.
9.在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(-2,4),B(-2,-2),C(4,-2),D(4,4).
(1)填空:正方形的面积为________;当双曲线(k≠0)与正方形ABCD有四个交点时,k的取值范围是________.
(2)已知抛物线L: (a>0)顶点P在边BC上,与边AB,DC分别相交于
点E,F,过点B的双曲线(k≠0)与边DC交于点N.
①点Q(m,-m2-2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别求运动过程中点Q在最高位置和最低位置时的坐标.
②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求的值.
③求证:抛物线L与直线的交点M始终位于轴下方.
【答案】(1)36;0<k<4或-8<k<0
(2)解:①由题意可知,,
当m=-1,最大=4,在运动过程中点Q在最高位置时的坐标为(-1,4)
当m<-1时,随m的增大而增大,当m=-2时,最小=3,
当m>-1时,随m的增大而减小,当m=4时,最小=-21,
3>-21,∴最小=-21,点Q在最低位置时的坐标(4,-21)
∴在运动过程中点Q在最高位置时的坐标为(-1,4),最低位置时的坐标为(4,-21)②将点B(-2,-2)代入双曲线得,∴k=4,∴反比例函数解析式为
N点横坐标x=4,代入得,∴N(4,1)
由顶点P(m,n)在边BC上,∴,BP= ,CP=
E点横坐标x=-2,F点横坐标x=4,分别代入抛物线可得
E ,
F ,
∴BE= ,CF= ,
∴,
又∵AE=NF,点F在点N下方,
∴
化简得,∴
③由题意得,M ,,
∵二次函数对称轴为m=1,,
∴当m=1时,取得最小值为,
当或4时,最大为,
当m=4时,抛物线L为,
E点横坐标为-2,代入抛物线得,∴E
F点横坐标为x=4,代入抛物线得,∴
∵E点在AB边上,且此时不与B重合,
∴,解得
∴,∴
当时,抛物线L为
同理可得E ,F
∵F在CD边上,且此时不与C重合
∴,解得,
∴,∴
综上,抛物线L与直线x=1的交点始终位于x轴的下方.
【解析】【解答】(1)解:由点A(-2,4),B(-2,-2)可知正方形的边长为6,
∴正方形面积为36;
当反比例函数在一、三象限时,若经过B(-2,-2)则,若经过D(4,4),则,根据图像特征,要有4个交点,则0<k<4;
当反比例函数在二、四象限时,若经过A(-2,4)则,若经过C(4,-2)则,根据图像特征,要有4个交点,则-8<k<0,
综上,k的取值范围是0<k<4或-8<k<0.
【分析】(1)由坐标求出正方形的边长,即可求出面积,讨论反比例函数在一、三象限和二、四象限时,利用数形结合求出k的范围;(2)①由题意可知,,
分,和分别讨论Q点符合条件的坐标;②将点B(-2,-2)代入双曲线,可求k=4和N(4,1),再表示出点 E 和 F ,可推出BE= ,CF= ,
,再根据AE=NF可推出
,进而可求的值;③由题意得,M ,
,当m=1时,最小为,当或4时,最大为,再分别讨论当m=4时,根据E点不与B点重合,列出不等式可得
,当时, F点不与C点重合列出不等式可得,即可得证.
10.【问题】
如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.
(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;
(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.
【答案】(1)解:∵∠ACB=90°,AC=BC
∴∠CAB=∠CBA=45°
∵CD∥AB
∴∠CBA=∠DCB=45°,且BD⊥CD
∴∠DCB=∠DBC=45°
∴DB=DC
即DB=DP
(2)解:∵DG⊥CD,∠DCB=45°
∴∠DCG=∠DGC=45°
∴DC=DG,∠DCP=∠DGB=135°,
∵∠BDP=∠CDG=90°
∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,
∴△CDP≌△GDB(ASA)
∴DB=DP
(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,
∵MH⊥MN,
∴∠AMH+∠NMB=90°
∵CD∥AB,∠CDB=90°
∴∠DBM=90°
∴∠NMB+∠MNB=90°
∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°
∴△AMH≌△BNQ(ASA)
∴AH=BQ
∵∠ACB=90°,AC=BC=4,
∴AB=4 ,AC-AH=BC-BQ
∴CH=CQ
∴∠CHQ=∠CQH=45°=∠CAB
∴HQ∥AB
∴∠HQM=∠QMB
∵∠ACB=∠HMQ=90°
∴点H,点M,点Q,点C四点共圆,
∴∠HCM=∠HQM
∴∠HCM=∠QMB,且∠A=∠CBA=45°
∴△ACM∽△BMQ
∴
∴
∴BQ= +2
∴AM=2 时,BQ有最大值为2.
【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;
(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,
根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.
11.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)
(1)求抛物线的解析式
(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点
①当点N在何处时,△CAN的周长最小?
②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.
【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3
(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.
设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);
②如图2,过点C作CG⊥ED于点G.
设NG=n,则NE=3﹣n.
∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE
,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m
的最小值为:;
如下图所示,当点N与点D重合时,m取得最大值.
过C作CG⊥ED于G.
∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.
∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.
∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.
故:m≤5.
【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.
12.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,且OC=OA
(1)求抛物线解析式;
(2)过直线AC上方的抛物线上一点M作y轴的平行线,与直线AC交于点N.已知M 点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S的值.
【答案】(1)解:由A(﹣3,0),且OC=OA可得C(0,3)
设抛物线解析式为y=a(x+3)(x﹣1),
将C(0,3)代入解析式得,﹣3a=3,解得a=﹣1,
∴抛物线解析式为y=﹣x2﹣2x+3.
(2)解:如图,
设直线AC解析式为y=kx+d
∵A(﹣3,0),C(0,3),
∴,
解得,
∴直线AC解析式为y=x+3,
设M(m,﹣m2﹣2m+3),则N(m,m+3),则MN=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m(﹣3<m<0),
S△ACM=S△AMN+S△CMN=MN×3=﹣m2﹣m,
MN=﹣m2﹣3m=﹣(m+ )2+ ,
∵a=﹣1<0,﹣3<m=﹣1.5<0,
∴m=﹣时,MN最大,此时S=.
【解析】【分析】(1)先求出点C坐标,再运用待定系数法求解即可;(2)先求出直线AC的解析式,用m表示点M,N的坐标,即可表示线段MN的长度;根据S△ACM=S△AMN+S△CMN即可用m表示S△ACM;运用二次函数分析MN最值即可;。