人教版七年级初一数学下学期第八章 二元一次方程组单元达标测试提优卷试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级初一数学下学期第八章 二元一次方程组单元达标测试提优卷试
卷
一、选择题
1.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )
A .20g
B .25g
C .15g
D .30g
2.已知方程组27
28x y x y +=⎧⎨+=⎩
,则5510x y -+的值是( )
A .5
B .-5
C .15
D .25
3.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .3000
8%11%300010%
x y x y +=⎧⎨
+=⨯⎩
B .3000
8%11%3000(110%)x y x y +=⎧⎨
+=+⎩
C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩
D .3000
8%11%10%x y x y +=⎧⎨+=⎩
4.阅读理解:a ,b ,c ,d 是实数,我们把符号
a b c d
称为22⨯阶行列式,并且规
定:
a b a d b c c d
=⨯-⨯,例如,
32
3(2)2(1)62412
=⨯--⨯-=-+=---.二元一
次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为x
y D x D
D y D
⎧=⎪⎪
⎨
⎪=
⎪⎩
,其中1122a D a b b =
,1122x b a D c b =,11
22
y a c D a c =.问题:对于用上面的方法解二元一次方程
组3137x y x y -=⎧⎨+=⎩
时,下面的说法错误..的是( ). A .311013
D -=
=
B .10x D =
C .方程组的解为1
2x y =⎧⎨=⎩
D .20y D =-
5.如果方程组223x y x y +=⎧⎨-=⎩的解为5
x y =⎧⎨=⎩
,那么“口”和“△”所表示的数分别是( )
A .14,4
B .11,1
C .9,-1
D .6,-4
6.若实数x ,y 满足()2
29310-++++=x y x y ,则2y x 等于( ) A .1
B .-16
C .16
D .-1
7.已知方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩的解是9.30.2a b =⎧⎨=⎩,则方程组
2(2)3(1)13
3(2)5(1)30x y x y +--=⎧⎨
++-=⎩
的解是( ). A . 6.3
2.2x y =⎧⎨
=⎩
B .8.3
1.2x y =⎧⎨
=⎩
C .9.3
0.2x y =⎧⎨
=⎩
D .10.3
2.2x y =⎧⎨
=⎩
8.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x 和分成的组数y ,可列方程组为( ) A .73
85
y x y x =-⎧⎨
=+⎩
B .73
85y x y x
=+⎧⎨
+=⎩
C .7385x y
x y
+=⎧⎨
-=⎩
D .73
85
y x y x =+⎧⎨
=+⎩
9.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱( ) A .128元 B .130元 C .150 元 D .160元 10.若二元一次方程3x ﹣y =﹣7,x+3y =1,y =kx+9有公共解,则k 的取值为( )
A .3
B .﹣3
C .﹣4
D .4
二、填空题
11.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.
12.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A 、B 、C 类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A 类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B 类组
合含有40件棉衣,40件防寒服;一个C 类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件.
13.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 14.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下: 购票人数 1~50 51~100 100以上 门票价格
13元/人
11元/人
9元/人
如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.
15.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A 型、B 型、C 型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C 型产品的销量占总销量的
3
7
,且三种型号的总利润率为35%.第二个季度,公司决定对A 型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B 、C 产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______. 16.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.
17.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若
()()()
()222
2
123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.
18.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.
19.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中
摆摊增加的营业额占总增加的营业额的
2
5
,则摆摊的营业额将达到7月份总营业额的7
20
,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.
20.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.
三、解答题
21.[阅读材料]
善于思考的小明在解方程组253(1)
4115(2)x y x y +=⎧⎨+=⎩
时,采用了一种“整体代换”的解法:
解:将方程(2)变形:4105x y y ++=,
即()2255(3)x y y ++=,
把方程(1)代入(3)得:235y ⨯+=, 所以1y =-,
将1y =-代入(1)得4x =, 所以原方程组的解为4
1
x y =⎧⎨=-⎩.
[解决问题]
(1)模仿小明的“整体代换”法解方程组325
9419x y x y -=⎧⎨
-=⎩
,
(2)已知x ,y 满足方程组2222
321250425
x xy y x xy y ⎧-+=⎨++=⎩,求22
4x y +的值. 22.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:
(1)小王家今年3月份用水20吨,要交水费___________元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.
(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.
(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.
23.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?
24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:
(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?
(2)请你帮个体商贩张杰设计共有多少种租车方案?
25.计划拨款9万元从厂家购进50台电视机
.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
()1若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;
()2若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元
.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;
()3若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.
26.甲、乙两人共同解方程组
515
42
ax y
x by
+=
⎧
⎨
-=-
⎩
①
②
.解题时由于甲看错了方程①中的a,得
到方程组的解为
3
1
x
y
=-
⎧
⎨
=-
⎩
;乙看错了方程②中的b,得到方程组的
5
4
x
y
=
⎧
⎨
=
⎩
,试计算
a2017+(
1
10
-b)2018的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
设每块巧克力的质量为x克,每块果冻的质量为y克,根据每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,列出方程组即可解答
【详解】
设每块巧克力的质量为x克,每块果冻的质量为y克,
由题意得
32
50
x y
x y
=
+=
⎧
⎨
⎩
,
解得
20
30
x
y
=
=
⎧
⎨
⎩
,
即一块巧克力的质量是20g.
故选A.
【点睛】
此题考查二元一次方程组的应用,列出方程组是解题关键2.A
解析:A
【分析】
将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】
解:
27
28 x y
x y
+=
⎧
⎨
+=
⎩
①
②
①-②,得:x-y=-1,
∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.
故选A.
【点睛】
本题考查了用加减法解二元一次方程组.
3.A
解析:A
【分析】
根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初
中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答
【详解】
设这所学校现初中在校生x人,小学在校生y人,
则
3000
8%11%300010% x y
x y
+=
⎧
⎨
+=⨯
⎩
故选A
【点睛】
此题考查二元一次方程组的应用,解题关键在于列出方程4.D
解析:D
【分析】
分别根据行列式的定义计算可得结论.
【详解】
A、
31
13
D
-
==3×3-(-1)×1=10,计算正确,不符合题意;
B、D x=1×3-(-1)×7=10,计算正确,不符合题意;
C、方程组的解:x=1020
1
1010
y
==
,=2,计算正确,不符合题意.
D、D y=3×7-1×1=20,计算错误,符合题意;
故选:D.
【点睛】
此题考查二元一次方程组的解,理解题意,直接运用公式计算是解题的关键.5.B
解析:B
【分析】
把
5
x
y
=
⎧
⎨
=
⎩
x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.
【详解】
把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,
把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,
故选B.
【点睛】
本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.
6.C
解析:C
【分析】
首先根据绝对值和偶次方的非负性求出x ,y 的值,然后代入2y x 中计算即可. 【详解】
解:∵()2
29310-++++=x y x y ,
∴290310x y x y -+=⎧⎨++=⎩
,
解得:4
1
x y =-=⎧⎨
⎩, 所以,22
(4)16y
x =-=, 故选:C . 【点睛】
本题主要考查了非负数的性质,即偶次方和绝对值的性质,熟练掌握相关性质是解答此题的关键.
7.A
解析:A 【分析】
根据二元一次方程组的解可得a -1,b +1的值,然后对比得到x+2,y -1的值,求解即可. 【详解】 ∵方程组2(1)3(1)13
3(1)5(1)30a b a b --+=⎧⎨
-++=⎩
∴9.30.2a b =⎧⎨
=⎩
∴18.3
1 1.2a b -=⎧⎨
+=⎩
∴对比两方程组可知:12a x -=+;11b y +=- ∴=3x a -,=2y b + ∴x =6.3,y =2.2 故选:A . 【点睛】
本题考查了二元一次方程组的知识;求解的关键是掌握二元一次方程组的性质,从而完成求解.
8.A
解析:A 【解析】
分析:根据题意确定等量关系为:若每组7人,则余3人;若每组8人,则少5人,列方程组求解即可.
详解:根据题意可得:73
85y x y x =-⎧⎨
=+⎩
. 故选:A.
点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是确定问题的等量关系.
9.C
解析:C 【解析】
设甲每件x 元,乙每件y 元,丙每件z 元,根据题意可列方程组:
①+②得: 4x +4y +4z =600
等号两边同除以4,得: x +y +z =150
所以购甲、乙、丙三种商品各一件共需150元钱. 故选C.
10.D
解析:D 【分析】
由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入y =kx+9中,即可求得k 的值. 【详解】
解:解方程组37
31x y x y -=-⎧⎨+=⎩得:
21x y =-⎧⎨=⎩
, 代入9y kx =+得:129k =-+,
解得:4k =. 故选:D . 【点睛】
本题考查了二元一次方程组,解决本题的关键是掌握解二元一次方程组的解法.
二、填空题
11.【分析】
设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于
解析:【分析】
设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、
绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可. 【详解】
设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,
2c .由题意得()()250210702510
5012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩
,
即25217251
942a b c b c ++=⎧⎨
+=⎩
,
其整数解为42372521231225a n b n c n =-⎧⎪
=-⎨⎪=-⎩
(其中n 为整数),
又∵a ,b ,c 均是正整数,易得n =1.
所以546a b c =⎧⎪
=⎨⎪=⎩
.
∴150a +60b +40c =150×5+60×4+40×6=1230. 故答案为:1230.
另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可. 【点睛】
本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数.
12.14600 【分析】
根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详
解析:14600 【分析】
根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详解】
解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,
60404011600
50507500x y z x ++=⎧⎨
+=⎩
,
28022130
x y z y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣
160y +40y +120y ﹣7800=14600,
故答案为:14600.
【点睛】
本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.
13.无数
【分析】
把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.
【详解】
解:方程3x+8y=27,
解得:,
∵当x 、y 是正整数时,9-x 是8的倍数,
∴x=1,y=
解析:13x y =⎧⎨=⎩
无数 【分析】
把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.
【详解】
解:方程3x+8y=27, 解得:3(98
)x y -=, ∵当x 、y 是正整数时,9-x 是8的倍数,
∴x=1,y=3;
∴二元一次方程3x+8y=27的正整数解只有1个,即13x y =⎧⎨=⎩
; ∵当x 、y 是整数时,9-x 是8的倍数,
∴x 可以有无数个值,如-7,-15,-23,……;
∴二元一次方程3x+8y=27的整数解有无数个.
故答案是:13x y =⎧⎨=⎩
;无数. 【点睛】
此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x 看做已知数求出y .
【分析】
根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数
解析:15
【分析】
根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.
【详解】
解:设人数较少的部门有x 人,人数较多的部门有y 人,
∵945不能被11和13整除且945÷9=105(人),
∴两个部门的人数之和为105(人),
∵1245不能被11和13整除,
∴1≤x ≤50,51≤y ≤100,
依题意,得:10513111245x y x y +=⎧⎨+=⎩
, 解得:4560x y =⎧⎨=⎩
, ∴15-=x y ,
故答案为:15.
【点睛】
本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.
15.34%
【分析】
由题意得出A 型、B 型、C 型三种型号产品利润率分别为20%,30%,45%,设A 型、B 型、C 型三种型号产品原来的成本为a ,A 产品原销量为x ,B 产品原销量为y ,C 产品原销量为z ,由题意
解析:34%
【分析】
由题意得出A 型、B 型、C 型三种型号产品利润率分别为20%,30%,45%,设A 型、B 型、C 型三种型号产品原来的成本为a ,A 产品原销量为x ,B 产品原销量为y ,C 产品原销
量为z ,由题意列出方程组,解得13x z y z
⎧=⎪⎨⎪=⎩;第二个季度A 产品成本为(1+25%)a =54a ,
B、C的成本仍为a,A产品销量为(1+20%)x=6
5
x,B产品销量为y,C产品销量为z,则第
二个季度的总利润率为:
56
20%30%45%
45
56
45
a x ay az
a x ay az
⨯⨯++
⨯++
=34%.
【详解】
解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,
设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,
由题意得:
20%ax30%ay45%az35%a(x y z)
3
(x y z)z
7
++=++
⎧
⎪
⎨
++=
⎪⎩
,
解得:
1
3
x z
y z
⎧
=
⎪
⎨
⎪=
⎩
,
第二个季度A产品的成本提高了25%,成本为:(1+25%)a=5
4
a,B、C的成本仍为a,
A产品销量为(1+20%)x=6
5
x,B产品销量为y,C产品销量为z,
∴第二个季度的总利润率为:
56
20%30%45%
45
56
45
a x ay az
a x ay az
⨯⨯++
⨯++
=
0.30.30.45
1.5
x y z
x y z
++
++
=
1
0.30.30.45
3
1
1.5
3
z z z
z z z
⨯++
⨯++
=34%,
故答案为:34%.
【点睛】
本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.
16.﹣7
【分析】
由表二结合表一即可得出关于a的一元一次方程,解之即可得出a值;由表三结合表一即可得出关于b的一元一次方程,解之即可得出b值;在表三中设42为第x 行y列,则75为第(x+1)行(y+2
解析:﹣7
【分析】
由表二结合表一即可得出关于a的一元一次方程,解之即可得出a值;由表三结合表一即
可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.
【详解】
表二截取的是其中的一列:上下两个数字的差相等,
∴a-15=15-12,解得:a=18;
表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;
表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,
则有()()421275xy x y ⎧⎨++⎩
==, 解得:143x y ⎧⎨⎩== 或3228
x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.
∴a+b ﹣m=18+35-60=-7.
故答案为:-7
【点睛】
此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.
17.14或19
【解析】
【分析】
由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即
解析:14或19
【解析】
【分析】
由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.
【详解】
解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222
123222281n a a a a ++++++⋯++=,
∴9x+4y=81
∴
4
9
9
y
x=-,
∵x,y均为正整数,∴y是9的倍数,
∴
5
9
x
y
=
⎧
⎨
=
⎩
,
1
18
x
y
=
⎧
⎨
=
⎩
,
∴这列数的个数n=x+y为14或19,
故答案为:14或19.
【点睛】
本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方
程然后求整数解即可.
18.48
【分析】
设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可. 【详解】
设选信息技术的有x人,选
解析:48
【分析】
设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的
有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可.
【详解】
设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的
有a(x+8)人,
根据题意得:
()()()
()()
185
8824
a x x y
a x y x x
⎧++=+
⎪
⎨
++--+=
⎪⎩
①
②
,
②可变形为:(a-1)(x+8)=24+x-y③,①+③,得2a(x+8)=24+6x+4y,
即a=1232
8
x y
x
++
+
;
①-③,得x+3y=20.∵x、y都是正整数,
∴
17
1
x
y
=
⎧
⎨
=
⎩
或
14
2
x
y
=
⎧
⎨
=
⎩
或
11
3
x
y
=
⎧
⎨
=
⎩
或
8
4
x
y
=
⎧
⎨
=
⎩
或
5
5
x
y
=
⎧
⎨
=
⎩
或
2
6
x
y
=
⎧
⎨
=
⎩
当
17
1
x
y
=
⎧
⎨
=
⎩
、
14
2
x
y
=
⎧
⎨
=
⎩
、
11
3
x
y
=
⎧
⎨
=
⎩
、
8
4
x
y
=
⎧
⎨
=
⎩
、
5
5
x
y
=
⎧
⎨
=
⎩
,
a=1232
8
x y
x
++
+
都不是整数,不合题意.
当
2
6
x
y
=
⎧
⎨
=
⎩
时,a=
1232
8
x y
x
++
+
=3.
∴选信息技术的有2人,选演讲与口才的有6人,选手工制作的有10人,选趣味数学的有30人,
由于每名学生都填了调査表,且只选了一个项目,
所以参加调查问卷的学生有2+6+10+30=48(人).
故答案为48
【点睛】
本题考查了二元一次方程的正整数解、二元一次方程组等知识点,题目难度较大,根据方程组得到二元一次方程,是解决本题的关键.
19.【分析】
先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.
【详解】
解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增
解析:1 8
【分析】
先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.
【详解】
解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总
增加的营业额为m,则7月份摆摊增加的营业额为2
5
m,设7月份外卖还需增加的营业额
为x.
∵7月份摆摊的营业额是总营业额的7
20
,且7月份的堂食、外卖营业额之比为8:5,
∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,
∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,
由题意可知:
3
38
5
55
2
27
5
k m x a
k x a
m k a
⎧
+-=
⎪
⎪
+=
⎨
⎪
⎪+=
⎩
,
解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩
, ∴512857208
a x a a a a ==++, 故答案为:
18
. 【点睛】 本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.
20.90
【分析】
首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁
解析:90
【分析】
首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁少植树的棵树.
【详解】
解:设道路一侧植树棵数为x 棵,则
78x
+=2+102610
x -⨯+, 解得x =180,
实际在植树时,设甲在左侧植树的时长为y ,则 ()18061010
y
-+﹣5=()18078678y -+++, 解得y =5, 则丁植树的时长为1805610
-⨯=15, 所以甲比丁少植树15×10﹣(15﹣5)×6=90(棵).
故答案为:90.
【点睛】
本题考查了二元一次方程的应用,解题的关键是直接求解两人植树棵树较困难时,可通过
计算两人的植树时间进行比较.
三、解答题
21.(1)原方程组的解为32
x y =⎧⎨=⎩;(2)22420x y += 【分析】
(1)根据题意,利用整体的思想进行解方程组,即可得到答案;
(2)根据题意,利用整体的思想进行解方程组,即可得到答案.
【详解】
解:()13259419x y x y -=⎧⎨-=⎩
①② 将方程②变形得:()332219x y y -+=③
把方程①代入③得:35219y ⨯+=,
所以2,y =
将2y =代入①得3x =,
所以原方程组的解为32x y =⎧⎨=⎩
; ()22222321250425x xy y x xy y ⎧-+=⎨++=⎩①②
, 把方程①变形,得到22
3(4)550x xy y xy ++-=③,
然后把②代入③,得325550xy ⨯-=,
∴5xy =,
∴22425520x y +=-=;
【点睛】
本题考查了方程组的“整体代入”的解法.整体代入法,就是变形组中的一个方程,使该方程左边变形为另一个方程的左边的倍数加一个未知数的形式,整体代入,求出一个未知数,再代入求出另一个未知数. 22.(155)a b +;23
a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.
【分析】
(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;
(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩
,可求解;
(3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;
(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.
【详解】
解:(1)小王家今年3月份用水20吨,要交消费为155a b +,
故答案为:(155)a b +;
(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩
, 解得:23a b =⎧⎨=⎩
; (3)在第(2)题的条件下,当正好25吨时,
可得费用15210360⨯+⨯=(元),
由交水费76.5元可知,小王家用水量超过25吨,
即:超过25吨的用水量(76.560)5 3.3=-÷=吨,
合计本月用水量 3.32528.3=+=吨
(4)设a 上调了x 元,b 上调了y 元,
根据题意得:1569.6x y +=,
52 3.2x y ∴+=,
,x y 为整数角线(没超过1元),
∴当0.6x =时,0.1y =元,
当0.4x =时,0.6y =元,
∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.
【点睛】
本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.
23.应购买小笔记本50本,大笔记本8本,钢笔4支
【解析】
【分析】
根据题意结合奖品的价格得出5x+7y+10z=346,y=2z ,再利用共花费346元,分别得出x ,y ,z 的取值范围,进而得出z 的取值范围,分别分析得出所有的可能.
【详解】
解:设购买小笔记本x 本,大笔记本y 本,钢笔z 支,
则有5x+7y+10z=346,y=2z .
易知0<x ≤69,0<y ≤49,0<z ≤34, ∴5x+14z+10z=346,5x+24z=346,即346245
z x -=
. ∵x ,y ,z 均为正整数,346-24z ≥0,即0<z ≤14。