【苏教版】最新的高中数学课下能力提升二分类计数原理与分步计数原理的应用苏教版选修2_25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课下能力提升(二) 分类计数原理与分步计数原理的应用
一、填空题
1.用1,2,3,4可组成________个三位数.
2.若在登录某网站时弹出一个4位的验证码:XXXX(如2a8t),第一位和第三位分别为0到9这10个数字中的一个,第二位和第四位分别为a到z这26个英文字母中的一个,则这样的验证码共有________个.
3.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是________.4.某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为________.
5. 如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有________种.
二、解答题
6.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.
(1)选其中一人为学生会主席,有多少种不同的选法?
(2)若每年级选1人为校学生会常委成员,有多少种不同的选法?
(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?
7.用0,1,…,9这十个数字,可以组成多少个
(1)三位整数?
(2)无重复数字的三位整数?
(3)小于500的无重复数字的三位整数?
8.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻(有公共边)的盒子中,求不同的放法有多少种.
答案
1.解析:组成三位数这件事可分为三步完成:第一步,确定百位,共有4种选择方法;第二步,确定十位,共有4种选择方法;第三步,确定个位,共有4种选择方法,由分步计数原理可知,可组成4×4×4=64个三位数.
答案:64
2.解析:要完成这件事可分四步:第一步,确定验证码的第一位,共有10种方法;第二步,确定验证码的第二位,共有26种方法;第三步,确定验证码的第三位,共有10种方法;第四步,确定验证码的第四位,共有26种方法.由分步计数原理可得,这样的验证码共有10×26×10×26=67 600个.
答案:67 600
3.解析:当x=2时,x≠y,点的个数为1×7=7;当x≠2时,x=y,点的个数为7×1=7,则共有14个点.
答案:14
4.解析:每封电子邮件都有3种不同的发法,由分步计数原理可得,共有35=243种不同的发送方法.
答案:243
5.解析:从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,故不同涂法有6×5×4×(1+3)=480(种).
答案:480
6.解:(1)分三类:第一类,从高一年级选一人,有5种选择;第二类,从高二年级选一人,有6种选择;第三类,从高三年级选一人,有4种选择.由分类计数原理,共有5+6+4=15种选法.
(2)分三步完成:第一步,从高一年级选一人,有5种选择;第二步,从高二年级选一人,有6种选择;第三步,从高三年级选一人,有4种选择.由分步计数原理,共有5×6×4=120种选法.
(3)分三类:高一、高二各一人,共有5×6=30种选法;高一、高三各一人,共有5×4=20种选法;高二、高三各一人,共有6×4=24种选法;由分类计数原理,共有30+20+24=74种选法.
7.解:由于0不可在最高位,因此应对它进行单独考虑.
(1)百位的数字有9种选择,十位和个位的数字都各有10种选择,由分步计数原理知,适合题意的三位数共有9×10×10=900 个.
(2)由于数字不可重复,可知百位的数字有9种选择,十位的数字也有9种选择,但个位数字仅有8种选择,由分步计数原理知,适合题意的三位数共有9×9×8=648个.
(3)百位只有4种选择,十位可有9种选择,个位数字有8种选择,由分步计数原理知,适合题意的三位数共有4×9×8=288个.
8.解:根据A球所在位置分三类:
(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步计数原理得,有3×2×1=6种不同的放法;
(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步计数原理得,有3×2×1=6种不同的放法;
(3)若A球放在4号盒子内,则B球可以放在2号、3号、5号盒子中的任何一个,余下的三个盒子放球C,D,E,有6种不同的放法,根据分步计数原理得,有3×3×2×1=18
种不同的放法.
综上所述,由分类计数原理得不同的放法共有6+6+18=30种.。