江苏省无锡市2019-2020学年中考数学模拟试题(1)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省无锡市2019-2020学年中考数学模拟试题(1)
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双
1
3
3
6
2
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5
B .24.5,24
C .24,24
D .23.5,24
2.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )
A .5sin α
B .
5
sin α
C .5cosα
D .
5
cos α
3.实数a ,b 在数轴上对应的点的位置如图所示,则正确的结论是( )
A .a+b <0
B .a >|﹣2|
C .b >π
D .
0a
b
< 4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012
B .8×1013
C .8×1014
D .0.8×1013
5.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )
A .15
B .17
C .19
D .24
6.已知3a ﹣2b=1,则代数式5﹣6a+4b 的值是( ) A .4 B .3 C .﹣1 D .﹣3
7.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )
A .9分
B .8分
C .7分
D .6分
8.如果a ﹣b=5,那么代数式(22a b ab
+﹣2)•ab a b -的值是( )
A.﹣1
5
B.
1
5
C.﹣5 D.5
9.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()
A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟
10.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()
班级平均数中位数众数方差
八(1)班94 93 94 12
八(2)班95 95.5 93 8.4
A.八(2)班的总分高于八(1)班
B.八(2)班的成绩比八(1)班稳定
C.两个班的最高分在八(2)班
D.八(2)班的成绩集中在中上游
11.下列因式分解正确的是()
A.x2+9=(x+3)2B.a2+2a+4=(a+2)2
C.a3-4a2=a2(a-4)D.1-4x2=(1+4x)(1-4x)
12.下列调查中,最适合采用全面调查(普查)的是()
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的调查
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将△OAB缩小得到△OA′B′,若△OAB与△OA′B′的相似比为2:1,则点B(3,﹣2)的对应点B′的坐标为_____.
14.若332y x x =-+-+,则y x = .
15.计算:
.
16.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,
6
7
AB BC =,EF=4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm
17.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为 .
18.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知反比例函数1k
y x
=
和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.
求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与
x 轴相交于点C ,求∠ACO 的度数.结合图象直接写出:当1y >2y >0时,x 的取值范围.
20.(6分)如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).
(1)求点B ,C 的坐标;
(2)判断△CDB 的形状并说明理由;
(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.
21.(6分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下
如图(1)∠DAB=90°,求证:a 2+b 2=c 2
证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF=b-a S 四边形ADCB =211
22ADC ABC S S b ab +=-+V V S 四边形ADCB =211
()22
ADB BCD S S c a b a +=+-V V ∴
221111
()2222
b ab
c a b a +=+-化简得:a 2+b 2=c 2 请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:
a 2+
b 2=
c 2 22.(8分)先化简,再求值:22111m m m ⎛⎫
⋅- ⎪-⎝⎭
,其中m =2. 23.(8分)为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦•爱国情•成才志”中华经典诗文诵读比赛.九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:在A 、B 两个不透明的箱子分别放入黄色
和白色两种除颜色外均相同的球,其中A箱中放置3个黄球和2个白球;B箱中放置1个黄球,3个白球,丽丽从A箱中摸一个球,张强从B箱摸一个球进行试验,若两人摸出的两球都是黄色,则丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止.根据以上规则回答下列问题:
(1)求一次性摸出一个黄球和一个白球的概率;
(2)判断该游戏是否公平?并说明理由.
24.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).
25.(10分)如图,己知AB是的直径,C为圆上一点,D是的中点,于H,垂足为H,连交弦于E,交于F,联结.
(1)求证:.
(2)若,求的长.
26.(12分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p 与x之间符合一次函数关系,部分数据如表:
天数(x) 1 3 6 10
每件成本p(元)7.5 8.5 10 12
任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:
y=
() () 220110
401015
x x x
x x
⎧+≤<
⎪
⎨
≤≤
⎪⎩
,且为整数
,且为整数
,
设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x 的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?
27.(12分)先化简,再求值:
1
3 a-
﹣
2
1
9
-
a
÷
1
26
-
a
,其中a=1.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.A
【解析】
【分析】根据众数和中位数的定义进行求解即可得.
【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,
这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,
故选A.
【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.
2.D
【解析】
【分析】
利用所给的角的余弦值求解即可.
【详解】
∵BC=5米,∠CBA=∠α,∴AB=
BC
cosα
=
5
cosα
.
故选D.
【点睛】
本题主要考查学生对坡度、坡角的理解及运用. 3.D 【解析】 【分析】
根据数轴上点的位置,可得a ,b ,根据有理数的运算,可得答案. 【详解】
a =﹣2,2<
b <1.
A.a+b <0,故A 不符合题意;
B.a <|﹣2|,故B 不符合题意;
C.b <1<π,故C 不符合题意;
D.
a
b
<0,故D 符合题意; 故选D . 【点睛】
本题考查了实数与数轴,利用有理数的运算是解题关键. 4.B 【解析】
80万亿用科学记数法表示为8×1. 故选B .
点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 5.D 【解析】 【分析】
由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n 个图案有三角形4(n ﹣1)个(n >1时),由此得出规律解决问题. 【详解】
解:解:∵第①个图案有三角形1个, 第②图案有三角形1+3=4个, 第③个图案有三角形1+3+4=8个, …
∴第n 个图案有三角形4(n ﹣1)个(n >1时),
则第⑦个图中三角形的个数是4×(7﹣1)=24个,
故选D.
【点睛】
本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.6.B
【解析】
【分析】
先变形,再整体代入,即可求出答案.
【详解】
∵3a﹣2b=1,
∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,
故选:B.
【点睛】
本题考查了求代数式的值,能够整体代入是解此题的关键.
7.C
【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,
故答案为:C.
点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
8.D
【解析】
【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.
【详解】(
22
a b
ab
+
﹣2)•
ab
a b
-
=
222
·
a b ab ab
ab a b
+-
-
=()2
·
a b ab ab a b
-
-
=a-b,
当a-b=5时,原式=5,
故选D.
9.C
【解析】
【分析】
根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】
根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
得:
930.7 1640.8 2550.5
a b c
a b c
a b c
++=
⎧
⎪
++=
⎨
⎪++=
⎩
解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,
当t=−
1.5
-0.22
⨯
=3.75时,p取得最大值,
故选C.
【点睛】
本题考查了二次函数的应用,熟练掌握性质是解题的关键.
10.C
【解析】
【分析】
直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.
【详解】
A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;
C选项:两个班的最高分无法判断出现在哪个班,错误;
D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;
故选C.
【点睛】
考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.
11.C
【解析】
【分析】
试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)
故选C,考点:因式分解
【详解】
请在此输入详解!
12.D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.
【详解】
A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.(-3
2
,1)
【解析】
【分析】
根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k进行解答.
【详解】
解:∵以原点O为位似中心,相似比为:2:1,将△OAB缩小为△OA′B′,点B(3,−2)
则点B(3,−2)的对应点B′的坐标为:(-3
2
,1),
故答案为(-3
2
,1).
【点睛】
本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.
【解析】 试题分析:332y x x =-+-+有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=1.故答案为1.
考点:二次根式有意义的条件.
15.3+
【解析】
【分析】 本题涉及零指数幂、负指数幂、绝对值、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式=2×+2﹣
+1,
=2
+2﹣+1, =3+. 【点睛】
本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数、绝对值等考点的运算
16.503
【解析】
试题分析:根据
67
AB BC =,EF=4可得:AB=和BC 的长度,根据阴影部分的面积为542cm 可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503. 考点:菱形的性质.
17.1
【解析】
试题分析:先求出m 2﹣2m 的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解. 解:由m 2﹣2m ﹣1=0得m 2﹣2m=1,
所以,2m 2﹣4m+3=2(m 2﹣2m )+3=2×
1+3=1. 故答案为1.
考点:代数式求值.
18.1:4
∵两个相似三角形对应边上的高的比为1∶4,
∴这两个相似三角形的相似比是1:4
∵相似三角形的周长比等于相似比,
∴它们的周长比1:4,
故答案为:1:4.
【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(1)y1=2
x
;y2=x+1;(2)∠ACO=45°;(3)0<x<1.
【解析】
【分析】
(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;
(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;
(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.
【详解】
(1)∵△AOB的面积为1,并且点A在第一象限,
∴k=2,∴y
1=
2
x
;
∵点A的横坐标为1,
∴A(1,2).
把A(1,2)代入y2=ax+1得,a=1.
∴y2=x+1.
(2)令y2=0,0=x+1,
∴x=−1,
∴C(−1,0).
∴OC=1,BC=OB+OC=2.
∴AB=CB,
∴∠ACO=45°.
(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.
在第三象限,当y
1
>y2>0时,−1<x<0(舍去).
【点睛】
此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.
20. (Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)2
22t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】
【分析】
(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.
(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形.
(3)△COB 沿x 轴向右平移过程中,分两个阶段:
①当0<t≤
32时,如答图2所示,此时重叠部分为一个四边形; ②当32
<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】
解:(Ⅰ)∵点()1,0A -在抛物线()2
1y x c =--+上, ∴()2011c =---+,得4c =
∴抛物线解析式为:()214y x =--+,
令0x =,得3y =,∴()0,3C ;
令0y =,得1x =-或3x =,∴()3,0B .
(Ⅱ)CDB ∆为直角三角形.理由如下:
由抛物线解析式,得顶点D 的坐标为()1,4.
如答图1所示,过点D 作DM x ⊥轴于点M ,
则1OM =,4DM =,2BM OB OM =-=.
过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=.
在Rt OBC ∆
中,由勾股定理得:BC ==
在Rt CND ∆
中,由勾股定理得:CD ===
在Rt BMD ∆
中,由勾股定理得:BD =
=∵222BC CD BD +=,
∴CDB ∆为直角三角形.
(Ⅲ)设直线BC 的解析式为y kx b =+,
∵()()3,0,0,3B C ,
∴303k b b +=⎧⎨=⎩
, 解得1,3k b =-=,
∴3y x =-+,
直线QE 是直线BC 向右平移t 个单位得到,
∴直线QE 的解析式为:()33y x t x t =--+=-++;
设直线BD 的解析式为y mx n =+,
∵()()3,0,1,4B D ,
∴304m n m n +=⎧⎨+=⎩
,解得:2,6m n =-=, ∴26y x =-+.
连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫
⎪⎝⎭. 在COB ∆向右平移的过程中:
(1)当302
t <≤时,如答图2所示:
设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.
设QE 与BD 的交点为F ,则:263y x y x t
=-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩
, ∴()3,2F t t -. 111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=
⋅-⋅-⋅ ()221113333232222
t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:
设PQ 分别与BC BD 、交于点K 、点J .
∵CQ t =,
∴KQ t =,3PK PB t ==-.
直线BD 解析式为26y x =-+,令x t =,得62y t =-,
∴(),62J t t -.
1122
PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅
()()()21
1362322
t t t =---- 219322
t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩
. 21.见解析.
【解析】
【分析】
首先连结BD ,过点B 作DE 边上的高BF ,则BF=b-a ,表示出S 五边形ACBED ,两者相等,整理即可得证. 【详解】
证明:连结BD ,过点B 作DE 边上的高BF ,则BF=b-a ,
∵S 五边形ACBED =S △ACB +S △ABE +S △ADE =
12ab+12b 1+12
ab , 又∵S 五边形ACBED =S △ACB +S △ABD +S △BDE =12ab+12c 1+12
a (b-a ), ∴12ab+12
b 1+12ab=12ab+12
c 1+12a (b-a ), ∴a 1+b 1=c 1.
【点睛】
此题考查了勾股定理的证明,用两种方法表示出五边形ACBED 的面积是解本题的关键.
22.1m m
-+,原式23=-. 【解析】
【分析】
原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.
【详解】
原式()()21111m m m m m m m -⋅=-+-+, 当m =2时,原式23=-
. 【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
23. (1)1120
;(2)不公平,理由见解析. 【解析】
【分析】
(1)画树状图列出所有等可能结果数,找到摸出一个黄球和一个白球的结果数,根据概率公式可得答案;
(2)结合(1)种树状图根据概率公式计算出两人获胜的概率,比较大小即可判断.
【详解】
(1)画树状图如下:
由树状图可知共有20种等可能结果,其中一次性摸出一个黄球和一个白球的有11种结果,
∴一次性摸出一个黄球和一个白球的概率为
1120; (2)不公平,
由(1)种树状图可知,丽丽去的概率为
320,张强去的概率为620=310, ∵332010
≠, ∴该游戏不公平.
【点睛】
本题考查了列表法与树状图法,解题的关键是根据题意画出树状图.
24.(1)见解析;(2)75﹣
154
a. 【解析】
【分析】
(1)连接CD ,求出∠ADC=90°,根据切线长定理求出DE=EC ,即可求出答案;
(2)连接CD 、OD 、OE ,求出扇形DOC 的面积,分别求出△ODE 和△OCE 的面积,即可求出答案
【详解】
(1)证明:连接DC ,
∵BC是⊙O直径,
∴∠BDC=90°,
∴∠ADC=90°,
∵∠C=90°,BC为直径,
∴AC切⊙O于C,
∵过点D作⊙O的切线DE交AC于点E,
∴DE=CE,
∴∠EDC=∠ECD,
∵∠ACB=∠ADC=90°,
∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,
∴∠A=∠ADE;
(2)解:连接CD、OD、OE,
∵DE=10,DE=CE,
∴CE=10,
∵∠A=∠ADE,
∴AE=DE=10,
∴AC=20,
∵∠ACB=90°,AB=25,
∴由勾股定理得:BC===15,∴CO=OD=,
∵的长度是a,
∴扇形DOC的面积是×a×=a,
∴DE、EC和弧DC围成的部分的面积S=××10+×10﹣a=75﹣a.
【点睛】
本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.
25.(1)证明见解析;(2)
【解析】
【分析】
(1)由题意推出再结合,可得△BHE~△BCO.
(2)结合△BHE~△BCO ,推出带入数值即可.
【详解】
(1)证明:∵为圆的半径,是的中点,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
又∵,
∴∽.
(2)∵∽,
∴,
∵,, ∴得, 解得
, ∴
.
【点睛】 本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.
26.(1)W=216260(11020520
(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.
【解析】
【分析】
(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.
【详解】
(1)设p 与x 之间的函数关系式为p=kx+b ,则有
7.538.5k b k b +=⎧⎨+=⎩,解得,0.57
k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),
当1≤x <10时,
W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,
当10≤x≤15时,
W=[20﹣(0.5x+7)]×40=﹣20x+520,
即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩
,为整数),为整数); (2)当1≤x <10时,
W=﹣x 2+16x+260=﹣(x ﹣8)2+324,
∴当x=8时,W 取得最大值,此时W=324,
当10≤x≤15时,
W=﹣20x+520,
∴当x=10时,W 取得最大值,此时W=320,
∵324>320,
∴李师傅第8天创造的利润最大,最大利润是324元;
(3)当1≤x<10时,
令﹣x2+16x+260=299,得x1=3,x2=13,
当W>299时,3<x<13,
∵1≤x<10,
∴3<x<10,
当10≤x≤15时,
令W=﹣20x+520>299,得x<11.05,
∴10≤x≤11,
由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),
即李师傅共可获得160元奖金.
【点睛】
本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.
27.-1
【解析】
【分析】
原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.
【详解】
解:原式=
1
3
a-
﹣
1
(3)(3)
a a
+-
•2(a﹣3)
=
1
3
a-
﹣
2
3
a+
=
2
326
9
a a
a
+-+
-
=
2
9
9
a
a
-
-
,
当a=1时,原式=91
19
-
-
=﹣1.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.。