下花园区一中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下花园区一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4 C .3 D .2
2. 已知集合M={0,1,2},则下列关系式正确的是( ) A .{0}∈M B .{0}∉M C .0∈M D .0⊆M
3. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )
A .12
B .10
C .8
D .2
4. 一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )
A .i ≤5?
B .i ≤4?
C .i ≥4?
D .i ≥5?
5. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠,A
=,就称有序集对
(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么
“好集对” 一共有( )个
A .个
B .个
C .个
D .个 6. 二项式(1)(N )n x n *+?的展开式中3
x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.
7. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x
B x x R =≤∈,则集合U A
C B 为( )
A.]1,1[-
B.]1,0[
C.]1,0(
D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力. 8. 函数y=x 3﹣x 2﹣x 的单调递增区间为( )
A .
B .
C .
D .
9. 已知ω>0,0<φ<π,直线x=和x=
是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,则φ=
( )
A .
B .
C .
D .
10.用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1 B .7 C .﹣7 D .﹣5 11.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4﹣2,3S 2=a 3﹣2,则公比q=( ) A .3
B .4
C .5
D .6
12.已知向量
,,其中
.则“
”是“
”成立的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分又不必要条件
二、填空题
13.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论: ①函数y=[sinx]是奇函数;
②函数y=[sinx]是周期为2π的周期函数; ③函数y=[sinx]﹣cosx 不存在零点;
④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}. 其中正确的是 .(填上所有正确命题的编号)
14.已知椭圆+
=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,
且θ∈[
,
],则该椭圆离心率e 的取值范围为 .
15.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .
16.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32
x = 处的导数302f ⎛⎫
'<
⎪⎝⎭,则13f ⎛⎫
= ⎪⎝⎭
___________. 17.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .
18.已知x,y满足条件,则函数z=﹣2x+y的最大值是.
三、解答题
19.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.
(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;
(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.
20.已知函数上为增函数,且
θ∈(0,π),,m∈R.
(1)求θ的值;
(2)当m=0时,求函数f(x)的单调区间和极值;
(3)若在上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.
21.设f(x)=ax2﹣(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.
22.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:
(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185cm之间的概率;
(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.
23.已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,
(1)求集合A,B;
(2)求集合A∪B,A∩B.
24.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式
(2)当d>1时,记c n=,求数列{c n}的前n项和T n.
下花园区一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,
可得b=0,并且1+a=2a,解得a=1,
所以函数为:f(x)=x2+1,x∈[﹣2,2],
函数的最大值为:5.
故选:A.
【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.
2.【答案】C
【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;
对于C,0是集合中的一个元素,表述正确.
对于D,是元素与集合的关系,错用集合的关系,所以不正确.
故选C
【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用
3.【答案】B
【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.
4.【答案】B
【解析】解:模拟执行程序框图,可得
i=1,sum=0,s=0
满足条件,i=2,sum=1,s=
满足条件,i=3,sum=2,s=+
满足条件,i=4,sum=3,s=++
满足条件,i=5,sum=4,s=
+
+
+
=1﹣+﹣+﹣+﹣=.
由题意,此时不满足条件,退出循环,输出s 的,则判断框中应填入的条件是i ≤4. 故选:B .
【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
5. 【答案】B 【解析】
试题分析:因为{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当
{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,
{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.
考点:元素与集合的关系的判断.
【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]
6. 【答案】B
【解析】因为(1)(N )n x n *+?的展开式中3
x 项系数是3C n ,所以3
C 10n =,解得
5n =,故选A . 7. 【答案】C.
【解析】由题意得,[11]
A =-,,(,0]
B =-∞,∴(0,1]U A
C B =,故选C.
8. 【答案】A
【解析】解:∵y=x 3﹣x 2
﹣x ,
∴y ′=3x 2
﹣2x ﹣1,
令y ′≥0
即3x2﹣2x﹣1=(3x+1)(x﹣1)≥0
解得:x≤﹣或x≥1
故函数单调递增区间为,
故选:A.
【点评】本题主要考查导函数的正负和原函数的单调性的关系.属基础题.
9.【答案】A
【解析】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,
所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,
所以φ=.
故选A.
【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.
10.【答案】C
【解析】解:∵f(x)=x6﹣5x5+6x4+x2+0.3x+2
=(((((x﹣5)x+6)x+0)x+2)x+0.3)x+2,
∴v0=a6=1,
v1=v0x+a5=1×(﹣2)﹣5=﹣7,
故选C.
11.【答案】B
【解析】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,
两式相减得
3a3=a4﹣a3,
a4=4a3,
∴公比q=4.
故选:B.
12.【答案】A
【解析】【知识点】平面向量坐标运算
【试题解析】若,则成立;
反过来,若,则或
所以“”是“”成立的充分而不必要条件。
故答案为:A
二、填空题
13.【答案】②③④
【解析】解:①函数y=[sinx]是非奇非偶函数;
②函数y=[sinx]的周期与y=sinx的周期相同,故是周期为2π的周期函数;
③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx不存在零点;
④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.故答案为:②③④.
【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.
14.【答案】[,﹣1].
【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);
F(﹣c,0);
∵AF⊥BF,
∴=0,
即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,
故c2﹣a2cos2α﹣b2sin2α=0,
cos2α==2﹣,
故cosα=,
而|AF|=,
|AB|==2c,
而sinθ=
==,
∵θ∈[,],
∴sinθ∈[,],
∴≤≤,
∴≤+≤,
∴,
即,
解得,≤e≤﹣1;
故答案为:[,﹣1].
【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.
π
15.【答案】
4
【解析】
考点:正弦定理.
【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒
角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出
现.
16.【答案】12
【解析】
考
点:三角函数图象与性质,函数导数与不等式.
【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫
'< ⎪⎝⎭
来验证.求出()f x 表达式后,就可以求出13f ⎛⎫ ⎪⎝⎭
.1
17.【答案】 (﹣3,21) .
【解析】解:∵数列{a n }是等差数列,
∴S 9=9a 1+36d=x (a 1+2d )+y (a 1+5d )=(x+y )a 1+(2x+5y )d , 由待定系数法可得
,解得x=3,y=6.
∵﹣3<3a 3<3,0<6a 6<18, ∴两式相加即得﹣3<S 9<21. ∴S 9的取值范围是(﹣3,21). 故答案为:(﹣3,21).
【点评】本题考查了等差数列的通项公式和前n 项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.
18.【答案】 4 .
【解析】解:由约束条件作出可行域如图,
化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(﹣2,0)时,
直线y=2x+z在y轴上的截距最大,即z最大,此时z=﹣2×(﹣2)+0=4.
故答案为:4.
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
三、解答题
19.【答案】
【解析】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.
又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,
∠EBM直线BE与平面ABB1A1所成的角.
设正方体的棱长为2,则EM=AD=2,BE=,
于是在Rt△BEM中,
即直线BE与平面ABB1A1所成的角的正弦值为.
(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,
事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,
因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,
因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E 共面,所以BG⊂平面A1BE
因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且
FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.
【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.
20.【答案】
【解析】解:(1)∵函数上为增函数,
∴g′(x)=﹣+≥0在,mx﹣≤0,﹣2lnx﹣<0,
∴在上不存在一个x0,使得f(x0)>g(x0)成立.
②当m>0时,F′(x)=m+﹣=,
∵x∈,∴2e﹣2x≥0,mx2+m>0,
∴F′(x)>0在恒成立.
故F(x)在上单调递增,
F(x)max=F(e)=me﹣﹣4,
只要me﹣﹣4>0,解得m>.
故m的取值范围是(,+∞)
【点评】本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
21.【答案】
【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,
即有(ax﹣1)(x﹣1)>0,
当a=0时,即有1﹣x>0,解得x<1;
当a<0时,即有(x﹣1)(x﹣)<0,
由1>可得<x<1;
当a=1时,(x﹣1)2>0,即有x∈R,x≠1;
当a>1时,1>,可得x>1或x<;
当0<a<1时,1<,可得x<1或x>.
综上可得,a=0时,解集为{x|x<1};
a<0时,解集为{x|<x<1};
a=1时,解集为{x|x∈R,x≠1};
a>1时,解集为{x|x>1或x<};
0<a<1时,解集为{x|x<1或x>}.
(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,
即为ax2﹣(a+1)x+1>0,
即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.
设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].
则g(﹣1)>0,且g(1)>0,
即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,
即(x﹣1)(x+2)<0,且x(x﹣1)>0,
解得﹣2<x<1,且x>1或x<0.
可得﹣2<x<0.
故x的取值范围是(﹣2,0).
22.【答案】
【解析】解:(Ⅰ)样本中男生人数为2+5+13+14+2+4=40,
由分层抽样比例为10%估计全校男生人数为=400;
(Ⅱ)∵样本中身高在170~185cm之间的学生有14+13+4+3+1=35人,
样本容量为70,
∴样本中学生身高在170~185cm之间的频率,
故可估计该校学生身高在170~180cm之间的概率p=0.5;
(Ⅲ)样本中身高在180~185cm之间的男生有4人,设其编号为①,②,③,④,
样本中身高在185~190cm之间的男生有2人,设其编号为⑤,⑥,
从上述6人中任取2人的树状图为:
∴从样本中身高在180~190cm之间的男生中任选2人得所有可能结果数为15,
求至少有1人身高在185~190cm之间的可能结果数为9,
∴所求概率p2=.
【点评】抽样过程中每个个体被抽到的可能性相同,这是解决一部分抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以知二求一.这是一个统计综合题,可以作为一个解答题出在文科的试卷中.
23.【答案】
【解析】解:(1)由x2﹣5x+6>0,即(x﹣2)(x﹣3)>0,
解得:x>3或x<2,即A={x|x>3或x<2},
由g(x)=,得到﹣1≥0,
当x>0时,整理得:4﹣x≥0,即x≤4;
当x<0时,整理得:4﹣x≤0,无解,
综上,不等式的解集为0<x≤4,即B={x|0<x≤4};
(2)∵A={x|x>3或x<2},B={x|0<x≤4},
∴A∪B=R,A∩B={x|0<x<2或3<x≤4}.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
24.【答案】
【解析】解:(1)设a1=a,由题意可得,
解得,或,
当时,a n =2n ﹣1,b n =2n ﹣1
;
当
时,a n =(2n+79),b n =9•
;
(2)当d >1时,由(1)知a n =2n ﹣1,b n =2n ﹣1
,
∴c n =
=,
∴T n =1+3•+5•+7•+9•+…+(2n ﹣1)•,
∴T n =1•+3•+5•+7•+…+(2n ﹣3)•
+(2n ﹣1)•,
∴T n =2++++
+…+
﹣(2n ﹣1)•
=3﹣
,
∴T n =6﹣.。