人教版初中数学七年级数学上册第一单元《有理数》检测卷(有答案解析)(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.13-的倒数的绝对值( ) A .-3 B .13- C .3 D .13 2.下列运算正确的有( ) ①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭
; ④()3
0.10.0001-=-;⑤22433-=- A .1个
B .2个
C .3个
D .4个 3.如果a =14-
,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112
4.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( ) A .0.15×105 B .15×103 C .1.5×104 D .1.5×105 5.下列有理数的大小比较正确的是( )
A .1123<
B .1123->-
C .1123->-
D .1123-->-+ 6.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( )
A .(-3.4)3<(-3.4)4<(-3.4)5
B .(-3.4)5<(-3.4)4<(-3.4)3
C .(-3.4)5<(-3.4)3<(-3.4)4
D .(-3.4)3<(-3.4)5<(-3.4)4
7.若a ,b 互为相反数,则下面四个等式中一定成立的是( )
A .a+b=0
B .a+b=1
C .|a|+|b|=0
D .|a|+b=0 8.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc
+++的所有可能的值为(
A .0
B .1或- 1
C .2或- 2
D .0或- 2 9.若|a |=1,|b |=4,且ab <0,则a +b 的值为( ) A .3±
B .3-
C .3
D .5± 10.计算-3-1的结果是( )
A .2
B .-2
C .4
D .-4
11.若1<x <2,则
|2||1|||21x x x x x x ---+--的值是( ) A .﹣3
B .﹣1
C .2
D .1 12.在数3,﹣
13,0,﹣3中,与﹣3的差为0的数是( ) A .3 B .﹣13 C .0 D .﹣3
二、填空题
13.计算1-2×(32+
12)的结果是 _____. 14.(1)-23与25
的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.
(3)-
13
的绝对值比2的相反数大_____. 15.给下面的计算过程标明运算依据:
(+16)+(-22)+(+34)+(-78)
=(+16)+(+34)+(-22)+(-78)①
=[(+16)+(+34)]+[(-22)+(-78)]②
=(+50)+(-100)③
=-50.④ ①______________;②______________;③______________;④______________. 16.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________. 17.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.
18.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则
200720082009()()()a a b cd b
++-=___________. 19.若2(1)20a b -+-=,则2015()a b -= _______________.
20.计算:(-0.25)-134⎛
⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭
=___. 三、解答题
21.计算:
(1)117483612⎛⎫-+-⨯ ⎪⎝⎭
; (2)20213281(2)(3)3---÷⨯-. 22.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)
(1)小李跑步时间最长的一天比最短的一天多跑几分钟?
(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 23.如图,在数轴上有三个点,,A B C ,回答下列问题:
(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.
24.计算
(1)1140336177⎛
⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭
(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦
25.计算:
(1)()213433⎛⎫---
+-+ ⎪⎝⎭; (2)()()202011232
---+-+. 26.计算:
(1)5721()()129336--÷- (2)22115()(3)(12)23
-+÷-⨯---⨯
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】 首先求1
3
-的倒数,然后根据绝对值的含义直接求解即可.
【详解】 13
-的倒数为-3,-3绝对值是3, 故答案为:C .
【点睛】
本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.
2.A
解析:A
【分析】
根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.
【详解】
()151530--=-,故①错误;
11111511211223412121255
⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 22
17492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;
22433
-=-,故⑤正确; 故选A .
【点睛】
本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.
3.A
解析:A
【分析】
逐一求出三个数的绝对值,代入原式即可求解.
【详解】
1144a =-=,22b =-=,332244
c =-= ∴原式=
13122442
+-=- 故答案为A .
【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.
4.C
解析:C
【分析】
科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.
【详解】
15000用科学记数法表示是1.5×104.
故选C.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.B
解析:B
【分析】
根据有理数大小的比较方法逐项判断即得答案.
【详解】
解:A、11
23
>,故本选项大小比较错误,不符合题意;
B、因为
11
22
-=,
11
33
-=,
11
23
>,所以
11
23
->-,故本选项大小比较正确,符合
题意;
C、因为
11
22
-=,
11
33
-=,
11
23
>,所以
11
23
-<-,故本选项大小比较错误,不符合
题意;
D、因为
11
22
--=-,
11
33
-+=-,
11
23
-<-,所以
11
23
--<-+,故本选项大小比
较错误,不符合题意.
故选:B.
【点睛】
本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.
6.C
解析:C
【解析】
(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-
3.4)3>(-3.4)5;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.
7.A
解析:A
【解析】
a,b互为相反数0
a b
⇔+=,易选B.
8.A
解析:A
【分析】
根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.
【详解】
解:∵a、b、c为非零有理数,且a+b+c=0
∴a、b、c只能为两正一负或一正两负.
①当a、b、c为两正一负时,设a、b为正,c为负,
原式=1+1+(-1)+(-1)=0,
②当a、b、c为一正两负时,设a为正,b、c为负
原式1+(-1)+(-1)+1=0,
综上,a b c abc
a b c abc
+++的值为0,
故答案为:0.
【点睛】
此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.
9.A
解析:A
【分析】
通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值
【详解】
解:∵|a|=1,|b|=4,
∴a=±1,b=±4,
∵ab<0,
∴a+b=1-4=-3或a+b=-1+4=3,
故选A.
【点睛】
本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.
10.D
解析:D
【解析】
试题
-3-1=-3+(-1)=-(3+1)=-4.
故选D.
11.D
解析:D
【分析】
在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.
【详解】
解:12x <<,
20x ∴-<,10x ->,0x >,
∴原式1111=-++=,
故选:D .
【点睛】
本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.
12.D
解析:D
【分析】
与-3的差为0的数就是0+(-3),据此即可求解.
【详解】
解:根据题意得:0+(﹣3)=﹣3,
则与﹣3的差为0的数是﹣3,
故选:D .
【点睛】
本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.
二、填空题
13.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算
解析:-18
【分析】
先算乘方、再算括号、然后算乘法、最后算加减即可.
【详解】
解:1-2×(32+
12) =1-2×(9+
12) =1-2×19
2
=1-19
=-18.
故答案为-18.
【点睛】
本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 14.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到
答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:
1615 -5 123
【分析】 (1)先计算两个数的差,再计算相反数即可;
(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;
(3)由题意列出式子进行计算,即可得到答案.
【详解】
解:(1)根据题意,则
221616()()351515
---=--=; (2)∵|a +2|+|b -3|=0,
∴20a +=,30b -=,
∴2a =-,3b =,
∴235a b -=--=-;
(3)根据题意,则
111(2)22333
---=+=; 故答案为:
1615;5-;123
. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.
15.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a ;结合律(a+b )+c=a+(b+c )依此即可求解【详解】第①步交换了加
解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则
【分析】
根据有理数加法法则,相关运算律:交换律:a+b=b+a ;结合律(a+b )+c=a+(b+c ).依此即可求解.
【详解】
第①步,交换了加数的位置;
第②步,将符号相同的两个数结合在一起;
第③步,利用了有理数加法法则;
第④步,同样应用了有理数的加法法则.
故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.
【点睛】
考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.
16.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情
解析:2或-6
【分析】
分在-2的左边和右边两种情况讨论求解即可.
【详解】
解:如图,
在-2的左边时,-2-4=-6,
在-2右边时,-2+4=2,
所以,点对应的数是-6或2.
故答案为-6或2.
【点睛】
本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.
17.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数
解析:﹣48
【分析】
数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是1
4
cm,即 1cm表示 4个
单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.
【详解】
数轴左边 12 厘米处的点表示的有理数是﹣48.
故答案为﹣48.
【点睛】
本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.
18.2【分析】利用相反数倒数的性质确定出a+bcd的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运
解析:2
【分析】
利用相反数,倒数的性质确定出a+b,cd的值,代入原式计算即可求出值.
【详解】
解:根据题意得:a+b=0,cd=1,
1a b
=- 则原式=0+1-(-1)=2.
故答案为:2.
【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
19.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质
解析:-1
【分析】
直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.
【详解】
由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.
故答案为-1.
【点睛】
本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.
20.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-
75)+(325+275)=-775+
解析:-1.75
【分析】
根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.
【详解】
解:原式=-0.25+3.25+2.75-7.5
=(-0.25-7.5)+( 3.25+2.75)
=-7.75+6
=-1.75.
故答案为:-1.75.
【点睛】
本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.
三、解答题
21.(1)36-;(2)26.
【分析】
(1)利用乘法分配律进行简便运算即可;
(2)先算乘方,再算乘除,最后计算加减即可.
【详解】
解:(1)117483612⎛⎫-+-⨯ ⎪⎝
⎭ 1174848483612
=-⨯+⨯-⨯ 16828=-+-
36=-;
(2)20213281(2)(3)3
---÷⨯- 31(89)8
=---⨯⨯ 127=-+
26=.
【点睛】
本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.
22.(1)22分钟;(2)24千米.
【分析】
(1)时间差=标准差的最大值-标准差的最小值;
(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.
【详解】
(1)()14822--=(分钟).
故小李跑步时间最长的一天比最短的一天多跑22分钟.
(2)()30710812611143240⨯+-+-++-=(分钟),
0.124024⨯=(千米).
故这七天他共跑了24千米.
【点睛】
本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.
23.(1)1- (2)0.5 (3)3-或7-
【分析】
(1)根据移动的方向和距离结合数轴即可回答;
(2)根据题意可知点D 是线段AC 的中点;
(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.
【详解】
解:(1)点B 表示的数为-4+5=1,
∵-1<1<2,
∴三个点所表示的数最小的数是-1;
(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;
(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,
AB=|-1+4|=3
则点E 表示的数是-4-3=-7.
点E 在点B 的右侧时,即点E 在AB 上,
则点E 表示的数为-3.
【点睛】
本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.
24.(1)-6;(2)52
-
【分析】
(1)根据加法运算律计算即可;
(2)先算括号里面,再算括号外面的即可;
【详解】 (1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭
, ()114036317
7⎛⎫=-++-+ ⎪⎝⎭, 42=--,
=-6;
(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦
, 111923
=--⨯⨯, 312
=--, 52
=-. 【点睛】
本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.
25.(1)-6;(2)132
-
【分析】
(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;
(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.
【详解】
(1)解:原式=213433
-+-+ ()213433⎛⎫=--++ ⎪⎝⎭
71=-+
6=-;
(2)解:原式=11232
--+ =
142
- =132
-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.
26.(1)37;(2)50.
【分析】
(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;
(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.
【详解】
(1)原式=572(
)(36)152824371293
--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。

相关文档
最新文档