最新九年级数学矩形练习题
九年级数学矩形的判定(基础)(含答案)
![九年级数学矩形的判定(基础)(含答案)](https://img.taocdn.com/s3/m/ee4d4efecfc789eb162dc827.png)
矩形的判定(基础)一、单选题(共10道,每道10分)1.下列识别图形不正确的是( )A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形答案:C解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:A,B选项都是正确的C选项是错误的D选项:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故对角线互相平分且相等的四边形是矩形;正确试题难度:三颗星知识点:略2.已知平行四边形ABCD,对角线交于点O,下列条件不一定能确定为矩形的是( )A.∠ABC=90°B.OA=OBC.AB=BCD.AC=BD答案:C解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:A选项:有一个角是直角的平行四边形叫做矩形;正确B选项:对角线相等的平行四边形是矩形;正确D选项:对角线相等的平行四边形是矩形;正确C选项:有一组邻边相等的平行四边形叫做菱形;错误试题难度:三颗星知识点:略3.如图所示,在平行四边形ABCD中,已知下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC.其中能说明平行四边形ABCD是矩形的有( )A.①④B.②④C.①②④D.①③④答案:A解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:①对角线相等的平行四边形是矩形;正确②有一组邻边相等的平行四边形叫做菱形;错误③由∠1=∠2只能得到AD∥BC;错误④有一个角是直角的平行四边形叫做矩形;正确故①④能说明平行四边形ABCD是矩形试题难度:三颗星知识点:略4.在等腰三角形ABC中,AB=AC,分别延长BA,CA到点D,E,使DA=AB,EA=CA,则四边形BCDE是( )A.菱形B.矩形C.正方形D.任意的平行四边形答案:B解题思路:1.解题要点:平行四边形的判定:对角线互相平分的四边形是平行四边形矩形的判定:对角线相等的平行四边形是矩形2.解题过程:如图,∵DA=AB,EA=AC∴CE与BD相互平分∴四边形BCDE是平行四边形∵AB=AC∴DA=AB=EA=AC∴CE=BD∴平行四边形BCDE是矩形试题难度:三颗星知识点:略5.如图,在平行四边形ABCD中,AC,BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是( )A.∠BAC=∠ACBB.∠BAC=∠ACDC.∠BAC=∠DACD.∠BAC=∠ABD答案:D解题思路:1.解题要点:矩形的判定:对角线相等的平行四边形是矩形2.解题过程:A选项:由∠BAC=∠ACB得到AB=BC;有一组邻边相等的平行四边形叫做菱形;错误B选项:由∠BAC=∠ACD只能得到AB∥CD;错误C选项:由∠BAC=∠DAC得到∠BAC=∠ACB,与A选项一致;错误D选项:由∠BAC=∠ABD得到AC=BD;对角线相等的平行四边形是矩形;正确故D选项能判断这个平行四边形是矩形试题难度:三颗星知识点:略6.如图,在四边形ABCD中,AC与BD相交于点O,AD∥BC,AC=BD,那么下列条件中不能判断四边形ABCD是矩形的是( )A.AD=BCB.AB=CDC.∠DAB=∠ABCD.∠DAB=∠DCB答案:B解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.平行四边形的判定:一组对边平行且相等的四边形是平行四边形两组对边分别平行的四边形叫做平行四边形2.解题过程:A选项:由AD∥BC,AD=BC得到平行四边形ABCD,由AC=BD得到平行四边形ABCD是矩形;正确B选项:不能判断四边形ABCD是矩形;错误C选项:由AD∥BC,∠DAB=∠ABC得到∠DAB=∠ABC=90°,由AC=BD,AB=AB得到△ABC≌△BAD,进而得到AD=BC,四边形ABCD是平行四边形,由AC=BD得到平行四边形ABCD是矩形;正确D选项:由AD∥BC,∠DAB=∠DCB得到∠ABC+∠DCB=180°,进而得到AB∥CD,四边形ABCD 是平行四边形,由AC=BD得到平行四边形ABCD是矩形;正确故B选项不能判断四边形ABCD是矩形试题难度:三颗星知识点:略7.如图,在□ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.OM=ACB.MB=MOC.BD⊥ACD.∠AMB=∠CND答案:A解题思路:1.解题要点:矩形的判定:对角线相等的平行四边形是矩形平行四边形的判定:对角线互相平分的四边形是平行四边形2.解题过程:在□ABCD中OA=OC,OB=OD∵BM=DN∴OM=ON∴四边形AMCN是平行四边形∴平行四边形AMCN只需满足AC=MN或者四个顶角中有直角即可判断四边形AMCN是矩形A选项OM=AC可得到AC=MN,可判断四边形AMCN是矩形试题难度:三颗星知识点:略8.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.连接AE,DC,AD,则下列说法不正确的是( )A.平移至点O为AC中点时,四边形AECD为矩形B.平移至点E为BC中点时,四边形AECD为矩形C.平移过程中,ED=ABD.平移过程中,AD∥CE且AD=CE答案:D解题思路:1.解题要点:平移的性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:A选项:由平移可知,DE=AC,∠OCE=∠OEC,则点O为AC中点时,DE与AC相互平分,四边形AECD为矩形;正确B选项:点E为BC中点时,AD=CE且AD∥CE,又DE=AC,四边形AECD为矩形;正确C选项:由平移可知,ED=AB;正确D选项:由平移可知,平移过程中,AD∥CE且AD=BE,当点E为BC中点时,才有AD∥CE 且AD=CE;错误试题难度:三颗星知识点:略9.如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,CE.若∠A=50°,则当∠BOD=_______时,四边形BECD是矩形.( )A.50°B.80°C.90°D.100°答案:D解题思路:在平行四边形ABCD中,AB∥CD∴∠CBE=∠BCD=∠A=50°∵点O是BC的中点∴OB=OC∵∠BOE=∠COD∴△BOE≌△COD(ASA)∴BE=CD∴四边形BECD是平行四边形若四边形BECD是矩形,则∠DBE=90°,OB=OD∴∠OBD=∠ODB=40°∴∠BOD=100°试题难度:三颗星知识点:略10.如图,DB∥AC,且DB=AC,E是AC的中点,连接AD,BE.下列说法:①四边形AEBD 是平行四边形;②AB=BC时,四边形AEBD是矩形;③当∠C=90°时,四边形DBCE是矩形.正确说法的个数是( )A.0个B.1个C.2个D.3个答案:D解题思路:①∵DB∥AC,且,E是AC的中点∴DB=AE=CE∴四边形AEBD和四边形DBCE是平行四边形,①正确②∵四边形DBCE是平行四边形∴BC=DE∴当AB=BC时,AB=DE∴平行四边形AEBD是矩形,②正确③由①知,四边形DBCE是平行四边形∴当∠C=90°时,四边形DBCE是矩形,③正确故正确说法的个数是3个试题难度:三颗星知识点:略。
九年级数学矩形的判定练习题
![九年级数学矩形的判定练习题](https://img.taocdn.com/s3/m/61b558d828ea81c758f5783a.png)
M Q P CB A 矩形的判定练习题1.判定一个四边形是矩形,可以先判定它是__________,再判定这个四边形有一个__________或再判定这个四边形的两条对角线__________.2.下列说法错误的是( )A.有一个内角是直角的平行四边形是矩形B.矩形的四个角都是直角,并且对角线相等C.对角线相等的平行四边形是矩形D.有两个角是直角的四边形是矩形3.如图,过矩形ABCD 的顶点A 作对角线BD 的平行线交CD 的延长线于E ,则△AEC 是( )A.等边三角形B.等腰三角形C.不等边三角形D.等腰直角三角形4.如图,把两个大小完全相同的矩形拼成“L ”型图案,则∠FAC= ,∠FCA= 。
5.如图,矩形ABCD 中,AC 、BD 交于点0,点M 、N 、P 、Q 分别为OA 、OB 、OC 、OD 的中点,试判断四边形MNPQ 的形状,并证明。
6.如图,平行四边形ABCD 中,点M 为AD 的中点,BM=CM求证:四边形ABCD 是矩形.7.如图,平行四边形ABCD 中,AD=2AB ,点M 、N 分别为AD 、BC 的中点,连接BM 、AN 交于点P ,连接CM 、DN 交于点Q 。
求证:四边形PNQM 是矩形.8.如图,△ABC 中,D 为AB 上一点,且AD=BD=CD ,DE 、DF 分别平分∠ADC 、∠BDC 求证:四边形DECF 是矩形.E B C D A GF 4题图3题图9.已知:如图,BC是等腰△BED底边ED上的高,四边形ABEC是平行四边形.求证:四边形ABCD是矩形.10.如图,四边形ABCD中,BE=DF,AC、EF互相平分于点O,∠B=90°求证:四边形ABCD是矩形.11.如图,P为平行四边形ABCD外一点,且PA=PB,PC=PD求证:四边形ABCD是矩形.12.已知点E为平行四边形ABCD的边AB的中点,且ED=EC,求证:四边形ABCD为矩形。
2022-2023学年北师大版九年级数学上册《1-2矩形的性质与判定》同步练习题(附答案)
![2022-2023学年北师大版九年级数学上册《1-2矩形的性质与判定》同步练习题(附答案)](https://img.taocdn.com/s3/m/6d585b1c03020740be1e650e52ea551810a6c9c6.png)
2022-2023学年北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题(附答案)一.选择题1.已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④2.下列说法正确的是()A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度3.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形4.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.5.如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°6.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4C.4.5D.5二.填空题7.如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.8.我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线分别为6cm和8cm的菱形,它的中点四边形的对角线长是.9.如图,矩形OABC的边OC在y轴上,边OA在x轴上,C点坐标为(0,3),点D是线段OA上的一个动点,连接CD,以CD为边作矩形CDEF,使边EF过点B.连接OF,当点D与点A重合时,所作矩形CDEF的面积为12.在点D的运动过程中,当线段OF 有最大值时,则点F的坐标为.10.如图,矩形ABCD,AB=1,BC=2,点A在x轴正半轴上,点D在y轴正半轴上.当点A在x轴上运动时,点D也随之在y轴上运动,在这个运动过程中,点C到原点O的最大距离为.11.如图,在矩形ABCD中,E为AD的中点,连接CE,过点E作CE的垂线交AB于点F,交CD的延长线于点G,连接CF.已知AF=,CF=5,则EF=.12.如图,矩形ABCD中,AB=3,对角线AC,BD交于点O,DH⊥AC,垂足为点H,若∠ADH=2∠CDH,则AD的长为.13.如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N 运动过程中,则以下结论正确的是.(写出所有正确结论的序号)①点M、N的运动速度不相等;②存在某一时刻使S△AMN=S△MON;③S△AMN逐渐减小;④MN2=BM2+DN2.三.解答题14.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.15.如图,已知在△ABC中,AB=AC,AD是BC边上的中线,E,G分别是AC,DC的中点,F为DE延长线上的点,∠FCA=∠CEG.(1)求证:AD∥CF;(2)求证:四边形ADCF是矩形.16.如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.17.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.18.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.19.如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.20.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.21.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.参考答案一.选择题1.解:A.AB=BC,邻边相等的平行四边形是菱形,故A不符合题意;B.AC=BD,对角线相等的平行四边形是矩形,故B符合题意;C.AC⊥BD,对角线互相垂直的平行四边形是菱形,故C不符合题意;D.AC平分∠BAD,对角线平分其每一组对角的平行四边形是菱形,故D不符合题意.故选:B.2.解:A.有两边和一角分别相等的两个三角形全等;不正确;B.有一组对边平行,且对角线相等的四边形是矩形;不正确;C.如果一个角的补角等于它本身,那么这个角等于45°;不正确;D.点到直线的距离就是该点到该直线的垂线段的长度;正确;故选:D.3.解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.4.解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.5.解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,由折叠的性质得:∠BA'E=∠A=90°,∠A'BE=∠ABE,∴∠A'BE=∠ABE=(90°﹣∠DBC)=(90°﹣24°)=33°,∴∠A'EB=90°﹣∠A'BE=90°﹣33°=57°.故选:C.6.解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选:D.二.填空题7.解:连接AD,∵∠BAC=90°,且BA=3,AC=4,∴BC==5,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.8.解:∵顺次连接对角线互相垂直的四边形的各边中点所得的图形是矩形.理由如下:∵E、F、G、H分别为各边中点∴EF∥GH∥AC,EF=GH=AC,∴四边形EFGH是平行四边形,∵DB⊥AC,∴EF⊥EH,∴四边形EFGH是矩形,∵EH=BD=3cm,EF=AC=4cm,∴HF==5cm.故答案为:5cm.9.解:当点D与点A重合时,如图:∵S矩形CDEF=2S△CBD=12,S矩形OABC=2S△CBD,∴S矩形OABC=12,∵C点坐标为(0,3),∴OC=3,∴OA=4,∵∠CFB=90°,C、B均为定点,∴F可以看作是在以BC为直径的圆上,取BC的中点M,则MF=BC=2,OM==,∴OF的最大值=OM+BC=+2,即O、M、F三点共线,设点F的横坐标为2x,则纵坐标为3x,∴(2x)2+(3x)2=(+2)2,解得:x=(负值舍去)∴2x=+2,3x=+3∴点F坐标(,+3)故答案为:(,+3)10.解:如图,取AD的中点H,连接CH,OH,∵矩形ABCD,AB=1,BC=2,∴CD=AB=1,AD=BC=2,∵点H是AD的中点,∴AH=DH=1,∴CH===,∵∠AOD=90°,点H是AD的中点,∴OH=AD=1,在△OCH中,CO<OH+CH,当点H在OC上时,CO=OH+CH,∴CO的最大值为OH+CH=+1,故答案为:+1.11.解:∵点E是AD中点,∴AE=DE,在△AEF和△DEG中,,∴△AEF≌△DEG(ASA),∴EF=EG,AF=DG=,∵CE⊥EF,∴CF=CG=5,∵∠G=∠G,∠EDG=∠CEG=90°,∴EG2=DG•CG=,∴EG==EF,故答案为.12.解:∵四边形ABCD是矩形,∴CD=AB=3,∠ADC=90°,∵∠ADH=2∠CDH,∴∠CDH=30°,∠ADH=60°,∵DH⊥AC,∴∠DHA=90°,∴∠DAC=90°﹣60°=30°,∴AD=CD=3,故答案为:3.13.解:如图,当M与B点重合时,此时NO⊥BD,∵在矩形ABCD中,AD=AB,∴∠ADB=∠DAC=30°,∴∠AOD=180°﹣30°﹣30°=120°,∴∠NAO=∠AOD﹣∠NOD=120°﹣90°=30°,∴∠DAO=∠NOA=30°,∴AN=ON=DN,∵AN+DN=AD,∴AN=AD,当M点运动到M'位置时,此时OM'⊥AB,N点运动到了N',∵AC和BD是矩形ABCD的对角线,∴M点运动的距离是MM'=AB,N点运动的距离是NN'===AD,又∵AD=AB,∴NN'=×AB=AB=MM',∴N点的运动速度是M点的,故①正确,当M在M'位置时,∵∠OM'A=90°,∠N'AB=90°,∠M'ON'=90°,∴四边形AM'ON'是矩形,∴此时S△AMN=S△MON,故②正确,令AB=1,则AD=,设BM=x,则N点运动的距离为x,∴AN=AD+x=+x,∴S△AMN=AM•AN=(AB﹣BM)•AN=(1﹣x)(+x)=﹣x2,∵0≤x≤1,在x的取值范围内函数﹣x2的图象随x增加而减小,∴S△AMN逐渐减小,故③正确,∵MN2=(AB﹣BM)2+(AD﹣DN)2=AB2﹣2AB•BM+BM2+AD2﹣2AD•DN+DN2=(AB2﹣2AB•BM+3AB2﹣2•DN)+BM2+DN2=(4AB2﹣2AB•BM﹣2AB•DN)+BM2+DN2,∵AN=AD+BM=AB+BM,∴DN=AD﹣AN=AB﹣(AB+BM)=AB﹣BM,∵2AB•DN=2AB×(AB﹣BM)=4AB2﹣2AB•BM,∴MN2=(4AB2﹣2AB•BM﹣2AB•DN)+BM2+DN2=BM2+DN2,故④正确,方法二判定④:如图2,延长MO交CD于M',∵∠MOB=∠M'OD,OB=OD,∠DBA=∠BDC,∴△OMB≌△OM'D(ASA),∴BM=DM',OM=OM',连接NM',∵NO⊥MM',则MN=NM',∵NM'2=DN2+DM'2,∴MN2=BM2+DN2,故④正确,故答案为:①②③④.三.解答题14.解:(1)∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF==3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.15.证明:(1)∵E,G分别是AC,DC的中点,∴EG是△ACD的中位线,∴EG∥AD,∵∠FCA=∠CEG,∴EG∥CF,∴AD∥CF;(2)由(1)得:AD∥CF,∴∠DAE=∠FCE,∠ADE=∠CFE,∵E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF,∴四边形ADCF是平行四边形,又∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADC=90°,∴平行四边形ADCF是矩形.16.证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE(AAS),∴AB=CF.∵AB∥CF,∴四边形ABFC是平行四边形,∵AD=BC,AD=AF,∴BC=AF,∴四边形ABFC是矩形.17.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.18.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.19.证明:(1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形OCFD是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴四边形OCFD是矩形.20.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EDO=∠FBO,∵O为BD的中点,∴OB=OD,又∵EF⊥BD,∴∠EOD=∠FOB=90°,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA);(2)解:∵由(1)可得,ED∥BF,ED=BF,∴四边形BFDE是平行四边形,∵EF⊥BD,∴四边形BFDE是菱形,根据AB=6,AD=8,设AE=x,可得BE=ED=8﹣x,在Rt△ABE中,根据勾股定理可得:BE2=AB2+AE2,即(8﹣x)2=x2+62,解得:,∴,∴四边形BFDE的周长=.21.解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.。
中考数学热身 矩形、菱形、正方形(含解析)-人教版初中九年级全册数学试题
![中考数学热身 矩形、菱形、正方形(含解析)-人教版初中九年级全册数学试题](https://img.taocdn.com/s3/m/b2ae1ad958fb770bf68a55d8.png)
矩形、菱形、正方形一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为cm.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是cm.3.正方形的一条对角线长为2,则它的面积为.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.矩形、菱形、正方形参考答案与试题解析一、填空题1.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm,则这个矩形的一条较长边为2cm.【考点】矩形的性质.【分析】根据矩形的性质推出OA=OB,证出等边△OAB,求出BA,根据勾股定理求出BC即可得到答案.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=AC=2(cm),∵四边形ABCD是矩形,∴AB=CD=2cm,∠ABC=90°,在△ABC中,由勾股定理得:BC===2(cm),∴AD=BC=2(cm).故答案是:2.【点评】本题主要考查对矩形的性质,等边三角形的性质和判定,勾股定理等知识点的理解和掌握,能求出AB的长是解此题的关键.2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是8 cm.【考点】勾股定理;菱形的性质.【专题】压轴题.【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是3.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.【解答】解:在菱形ABCD中,AB=5,AC=6,因为对角线互相垂直平分,所以∠AOB=90°,AO=3,在RT△AOB中,BO==4,∴BD=2BO=8.【点评】注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.3.正方形的一条对角线长为2,则它的面积为 2 .【考点】正方形的性质.【专题】计算题.【分析】根据正方形的性质利用勾股定理可求得其边长,从而就不难求得其面积.【解答】解:由题意得,正方形的边长为,故面积为2.故答案为2.【点评】主要考查到正方形的性质和面积的求法.要注意:正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.4.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24 cm2.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.二、选择题5.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【考点】菱形的判定;矩形的判定;正方形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.6.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,对折前后角相等.【解答】解:根据题意得:∠2=∠3,∵∠1+∠2+∠3=180°,∴∠2=(180°﹣50°)÷2=65°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣65°=115°.故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形【考点】剪纸问题.【专题】操作型.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由于EF的位置是不确定的,只能得到所求的四边形的一组对边平行,所以是梯形.故选A.【点评】本题主要考查学生的动手能力及空间想象能力.三、解答题9.如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.【考点】菱形的性质.【分析】根据菱形的对角线可以求得菱形ABCD的面积,根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:菱形的对角线BD,AC的长分别是6和8,则菱形的面积为×6×8=24,菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为20,答:菱形的周长为20,面积为24.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.10.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.【考点】正方形的判定;三角形中位线定理;平行四边形的判定.【专题】证明题.【分析】通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF ⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.【解答】证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.【点评】主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.11.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.【考点】菱形的性质.【专题】计算题.【分析】首先连接BD,根据菱形的四条边都相等,可得AB=BC=CD=AD;又由BE⊥AD,AE=ED,可得AB=AD=BD,所以∠A=60°,可得∠ADC=120°,即可得∠EBF的度数.【解答】解:连接BD,∵BE⊥AD,AE=ED,∴AB=BD,∵四边形ABCD是菱形,∴AB=BC=CD=AD,AD∥BC,AB∥CD,∴AB=AD=BD,∴∠A=60°,∴∠ADC=120°,∵BE⊥AD,BF⊥CD,∴∠BED=∠BFD=90°,∴∠EBF=60°.【点评】此题考查了菱形的性质:菱形的四条边都相等.还考查了线段垂直平分线的性质.此题比较简单,解题要细心.12.如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.【考点】矩形的性质;全等三角形的判定与性质.【专题】探究型.【分析】由全等三角形的判定定理直接可证△ADE≌△FCD,即证AD=CF.【解答】解:(1)AD=CF.(2分)(2)证明:∵四边形ABCD是矩形,∴CD∥AE,AB=CD,∴∠AED=∠FDC,∵DE=AB,∴DE=AB=CD.又∵CF⊥DE,∴∠CFD=∠A=90°.(4分)∴△ADE≌△FCD(AAS).(5分)∴AD=CF.(6分)【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.13.已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.【考点】全等三角形的判定与性质;正方形的判定.【专题】几何综合题.【分析】先利用HL判定Rt△BDF≌Rt△CDE,从而得到∠B=∠C,即△ABC是等腰三角形;由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.【解答】(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,又∵,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.∴△ABC是等腰三角形;(2)解:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.【点评】此题主要考查学生对全等三角形的判定和性质及正方形的判定方法的掌握情况.判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.14.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【考点】矩形的判定.【专题】几何综合题.【分析】(1)根据平行线性质和角平分线性质,以及由平行线所夹的内错角相等易证.(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证.【解答】(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO.(2)解:当点O运动到AC的中点时,四边形AECF是矩形.理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=×180°=90°.即∠ECF=90°,∴四边形AECF是矩形.【点评】本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.。
【数学九年级上】北师大版 矩形性质与判定 课后练习题
![【数学九年级上】北师大版 矩形性质与判定 课后练习题](https://img.taocdn.com/s3/m/fad894c50b4e767f5bcfce6c.png)
△ANM,若 AN 平分∠MAB,则折痕 AM 的长为(
)
A.3
B.2 3
C.3 2
D.6
7. 如图,在▱ABCD 中,E,F 分别是 AB,CD 的中点,连接 AC,AF,CE,当 CA=CB 时,
判断四边形 AECF 是(
)
A.平行四边形
B.矩形
C的顶点 A,C 分别在直线 a,b 上,且 a∥b,∠1=60°,则∠2 的度
7 12 13 14
A. B. C. D.
55
5
5
5.如图,BD 是矩形 ABCD 的一条对角线,点 E,F 分别是 BD,DC 的中点.若 AB=8,BC=6,则 AE+EF 的值为( ) A.6 B.7 C.8 D.9
6.如图,已知四边形 ABCD,E,F,G,H 分别是四边的中点,若使四边形 EFGH 是矩形.则需要再满足的条件是( ) A.AC=BD B.BC∥AD C.AB=BC D.AC⊥BD
A.60°
B.75°
C.72°
D.90°
9.矩形 ABCD 与 CEFG 如图放置,点 B,C,E 共线,点 C,D,G 共线,连接 AF,取 AF 的中点 H,连接 GH.若 BC=EF=2,CD=CE=1,则 GH= ()
3
A.1
B.
C.
D.
10. 如图,在矩形 ABCD 中,O 为 AC 中点,过点 O 的直线分别与 AB,CD 交
AD,AC 于点 E,O,连接 CE,则 CE 的长为(
)
A.3 B.3.5 C.2.5 D.2.8
3.如图,在矩形 ABCD 中,AE 平分∠BAD,且 BE∶EC=2∶3,若 CE=6,则
CD 的长为(
北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案
![北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案](https://img.taocdn.com/s3/m/1f37156c0a4c2e3f5727a5e9856a561252d321d2.png)
北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案一、选择题1.如图,在矩形ABCD中,两条对角线AC、BD相交于点O,若OB=5.则AC=()A.10 B.8 C.5√3D.52.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则AB的长度为()A.1 B.√2C.√3D.23.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC 的度数是()A.18°B.36°C.45°D.72°4.如图,在矩形ABCD中E,F分别是AD,CD的中点,连接BE,BF,且G,H分别是BE,BF的中点,已知BD=20,则GH的长为( )A.4B.5C.8D.105.如图∠BAC=90°,AB=6,AC=8,P为边BC上一动点(点P不与点B,C重合),PE⊥AB于点E,PF⊥AC 于点F,则EF的最小值为()A.4 B.4.8C.5.2D.66.如图,在矩形纸片ABCD中AB=10,AD=6点E为AD边上一点,将△ABE沿BE翻折,点A恰好落在CD边上点F处,则AE长为()A.83B.72C.103D.1347.如右图,A,B为5×5的正方形网格中的两个格点,称四个顶点都是格点的矩形为格点矩形,则在此图中以A,B为顶点的格点矩形共可以画出()A.1个B.2个C.3个D.4个8.如图,在矩形ABCD中,AB=10,BC=6,点M是AB边的中点,点N是AD边上任意一点,将线段MN绕点M顺时针旋转90°,点N旋转到点N',则△MBN'周长的最小值为()A.15 B.5+5√5C.10+5√2D.18二、填空题9.在矩形ABCD中AB=2,对角线AC与BD相交于点 O,若∠BAO=60°,则边BC的长为.10.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°若AB=3cm,则AC=cm.11.如图所示的长方形纸条ABCD,将纸片沿MN折叠,MB与DN交于点K,若∠1=70°,则∠KNC=°12.如图,在矩形ABCD中AB=2AD=6,点P为AB边上一点,且AP≤3,连接DP,将ΔADP沿DP折叠,点A落在点M处,连接CM,BM,当ΔBCM为等腰三角形时,BP的长为.13.如图,在矩形ABCD中AB=8,BC=12,E为BC上一点,CE=4,M为BC的中点.动点P,Q从E出发,分别向点B,C运动,且PE=2QE.若PD和AQ交于点F,连接MF,则MF的最小值为.三、解答题14.如图,折叠长方形纸片ABCD的一边,使点D落在BC边的D′处AB=6cm,BC=10cm求CE的长.15.如图,在矩形ABCD中,点E在BC边上,点F在CD边上,且AB=4,BE=3,EF=6,AF=√61求三角形AEF的面积.16.如图,在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,且AE=CG,BF=DH,连接EG、FH.(1)求证:△AEH≌△CGF;(2)若EG=FH,∠AHE=35°,求∠DHG的度数.17.如图,四边形ABCD中∠DAB=45°,AB=8,AD=3√2,E为AB中点,且CD⊥DE,连接CE.(1)求DE的长度;(2)若∠BEC=∠ADE,求BC的长度.18.已知:如图,四边形ABCD的对角线AC,BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点。
北师大版2022年九年级数学上册第一章 1.2矩形的性质与判定 同步练习题
![北师大版2022年九年级数学上册第一章 1.2矩形的性质与判定 同步练习题](https://img.taocdn.com/s3/m/785bcc0d856a561253d36f65.png)
九年级数学上册第一章 1.2矩形的性质与判定同步练习题第1课时矩形的性质1.如图,四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DAE=(B)A.10° B.20° C.30° D.45°2.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠COD=60°,AB=3,则AC的长是(A)A.6 B.8 C.10 D.123.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,则△ABE的周长等于(C)A.4.83 B.4 2C.22+2 D.32+24.如图,在矩形ABCD中,O是两对角线的交点,AE⊥BD,垂足为E.若OD=2OE,AE=3,则DE的长为(B)A.2 3 B.3 C.4 D.3+15.如图,在矩形ABCD中,EG垂直平分BD于点G.若AB=4,BC=3,则线段EG的长度是(B)A.32B.158C.52D .3 6.如图,点O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若OM =3,BC =10,则OB 的长为34.7.如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 至F ,使CF =12BC.若EF =13,则线段AB 的长为26.8.如图,在矩形ABCD 中,AB =3,BC =4,AC 为对角线,∠DAC 的平分线AE 交DC 于点E ,则CE 的长为53.9.如图,在矩形ABCD 中,AB =3,AD =4,P 为AD 上一动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为125.10.如图,在矩形ABCD 中,AB =4,BC =6,将△ABE 沿着AE 折叠至△AB′E.若BE =CE ,连接B′C,则B′C 的长为185.11.如图,在矩形ABCD 中,AD =AE ,DF ⊥AE 于点F.求证:AB =DF.证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B =90°. ∴∠AEB =∠DAF. ∵DF ⊥AE ,∴∠AFD =∠B=90°.在△ABE 和△DFA 中,⎩⎪⎨⎪⎧∠AEB=∠DAF,∠B =∠AFD,AE =DA ,∴△ABE ≌△DFA(AAS). ∴AB =DF.12.如图,BE ,CF 是锐角△ABC 的两条高,M ,N 分别是BC ,EF 的中点.若EF =6,BC =24.(1)求证:∠ABE=∠ACF;(2)判断EF 与MN 的位置关系,并证明你的结论; (3)求MN 的长.解:(1)证明:∵BE,CF 是△ABC 的两条高, ∴∠ABE +∠A=90°,∠ACF +∠A=90°. ∴∠ABE =∠ACF. (2)MN 垂直平分EF. 证明:连接EM ,FM ,∵BE ,CF 是△ABC 的两条高,M 是BC 的中点, ∴EM =FM =12BC.∵N 是EF 的中点,∴MN ⊥EF. ∴MN 垂直平分EF. (3)∵EF=6,BC =24,∴EM =12BC =12×24=12,EN =12EF =12×6=3.在Rt △EMN 中,MN =EM 2-EN 2=122-32=315.13.如图,在矩形ABCD 中,AB =3,BC =4.M ,N 在对角线AC 上,且AM =CN ,E ,F 分别是AD ,BC 的中点.(1)求证:△ABM≌△CDN;(2)若G 是对角线AC 上的点,∠EGF =90°,求AG 的长.解:(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,AB ∥CD.∴∠MAB =∠NCD. 在△ABM 和△CDN 中, ⎩⎪⎨⎪⎧AB =CD ,∠MAB =∠NCD,AM =CN ,∴△ABM ≌△CDN(SAS). (2)连接EF ,交AC 于点O.在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EOA=∠FOC,∠EAO =∠FCO,AE =CF ,∴△AEO ≌△CFO(AAS).∴EO =FO ,AO =CO.∴O 为EF ,AC 的中点. ∵∠EGF =90°,∴OG =12EF =12AB =32.在Rt △ABC 中,AC =AB 2+BC 2=5, ∴OA =52.∴AG =OA -OG =1或AG =OA +OG =4. ∴AG 的长为1或4.14.如图,在矩形ABCD 中,∠BAC =30°,对角线AC ,BD 交于点O ,∠BCD 的平分线CE 分别交AB ,BD 于点E ,H ,连接OE.(1)求∠BOE 的度数;(2)若BC =1,求△BCH 的面积; (3)求S △CHO ∶S △BHE .解:(1)∵四边形ABCD 是矩形, ∴AB ∥CD ,AO =CO =BO =DO. ∴∠DCE =∠BEC.∵CE 平分∠BCD,∴∠BCE =∠DCE=45°. ∴∠BCE =∠BEC=45°.∴BE =BC.∵∠BAC =30°,AO =BO =CO ,∴∠OBA =30°. ∴∠BOC =60°. ∴△BOC 是等边三角形. ∴BC =BO =BE.∴∠BOE =180°-30°2=75°.(2)过点H 作HF⊥BC 于点F.∵△BOC 是等边三角形,∴∠FBH =60°. ∴BH =2BF ,FH =3BF.∵∠BCE =45°,∴CF =FH =3BF. ∴BC =3BF +BF =1.∴BF=3-12. ∴FH =3-32.∴S △BCH =12BC·FH=3-34.(3)过点C 作CN⊥BO 于点N , ∵BC =3BF +BF =BO =BE , ∴OH =OB -BH =3BF -BF. ∵∠CBN =60°,CN ⊥BO , ∴CN =32BC =3+32BF. ∵S △CHO ∶S △BHE =(12OH·CN)∶(12BE·BF),∴S △CHO ∶S △BHE =3-32.第2课时 矩形的判定1.已知▱ABCD ,下列条件中,不能判定这个平行四边形为矩形的是(B) A .∠A =∠B B .∠A =∠C C .AC =BD D .AB ⊥BC2.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是(D)A .四边形AEDF 是平行四边形B .若∠BAC=90°,则四边形AEDF 是矩形C .若AD =EF ,则四边形AEDF 是矩形 D .若AD 平分∠BAC,则四边形AEDF 是矩形3.如图,在▱ABCD 中,M ,N 是BD 上两点,BM =DN ,连接AM ,MC ,CN ,NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是(A)A .OM =12AC B .MB =MOC .BD ⊥AC D .∠AMB =∠CND4.如图,在▱ABCD 中,在不添加任何辅助线的情况下,请添加一个条件∠A =90°,使平行四边形ABCD 是矩形.5.如图,已知MN∥PQ,EF与MN,PQ分别交于A,C两点,过A,C两点作两组内错角的平分线,交于点B,D,则四边形ABCD是矩形.6.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,有下列四个条件:①AB=BE;②DE⊥DC;③∠ADB=90°;④CE⊥DE.如果添加其中一个条件就能使四边形DBCE成为矩形,那么正确的条件是①③④(填序号).7.如图,在△ABC中,D是AB边的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.当△ABC满足AC=BC(答案不唯一)时(请添加一条件),四边形BDCF 为矩形.8.如图,在▱ABCD中,AB=6,BC=10,对角线AC⊥AB,点E,F分别是边BC,AD上的点,且BE=DF.当BE的长度为3.6时,四边形AECF是矩形.9.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B,C,D为顶点的四边形是矩形,则点D的坐标为(5,3)或(-3,2)或(3,1).410.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,∠BAC≠60°,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC时,四边形AEFD是菱形;④当∠BAC=90°时,四边形AEFD 是矩形.其中正确的结论是①②③.(填序号)11.已知:如图,▱ABCD 的两条对角线相交于点O ,BE ⊥AC ,CF ⊥BD ,垂足分别为E ,F ,且BE =CF.求证:▱ABCD 是矩形.证明:∵BE⊥AC,CF ⊥BD , ∴∠OEB =∠OFC=90°. 在△BEO 和△CFO 中, ⎩⎪⎨⎪⎧∠OEB=∠OFC,∠BOE =∠COF,BE =CF ,∴△BEO ≌△CFO(AAS). ∴OB =OC.∵四边形ABCD 是平行四边形, ∴OB =12BD ,OC =12AC.∴BD =AC. ∴▱ABCD 是矩形.12.如图,已知AB∥DE,AB =DE ,AC =FD ,∠CEF =90°.求证: (1)△ABF≌△DEC; (2)四边形BCEF 是矩形.证明:(1)∵AB∥DE, ∴∠A =∠D. ∵AC =FD , ∴AC -CF =DF -CF , 即AF =CD.在△ABF 和△DEC 中, ⎩⎪⎨⎪⎧AF =DC ,∠A =∠D,AB =DE ,∴△ABF ≌△DEC(SAS). (2)∵△ABF≌△DEC, ∴EC =BF ,∠ECD =∠BFA. ∴∠ECF =∠BFC.∴EC∥BF. ∴四边形BCEF 是平行四边形. ∵∠CEF =90°, ∴四边形BCEF 是矩形.13.如图,在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,以BD 为边作等边△BDE.求证:AB =EF ,且四边形AEBF 是矩形.证明:∵在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,∴∠AFB =90°,AF =BD ,∠CBD =30°. ∵△BDE 是等边三角形, ∴BE =BD ,∠DBE =60°.∴AF =BD =BE ,∠EBF =∠AFB=90°. ∴AF ∥BE. 又∵AF=BE ,∴四边形AEBF 是平行四边形. 在△ABF 和△EFB 中, ⎩⎪⎨⎪⎧AF =EB ,∠AFB =∠EBF,BF =FB ,∴△ABF ≌△EFB(SAS). ∴AB =EF.∴四边形AEBF 是矩形.14.如图,在▱ABCD 中,BC =12 cm ,∠ABC =60°,AC ⊥AB ,O 是AC ,BD 的交点,点E ,F 分别从点O 同时出发,沿射线OA 和OC 方向移动,速度都是1 cm/s.(1)求证:在整个运动过程中,四边形BEDF 始终是平行四边形;(2)设点E 和点F 同时运动的时间为t s ,当t 为何值时,四边形BEDF 是矩形?解:(1)证明:∵四边形ABCD 是平行四边形, ∴OB =OD.由题意,得OE =OF ,∴四边形BEDF 始终是平行四边形.(2)在Rt △ABC 中,∵∠BAC =90°,∠ABC =60°,BC =12, ∴∠ACB =30°,AB =12BC =6,AC =3AB =6 3.∴OA =OC =3 3.∴BO =AB 2+AO 2=62+(33)2=37. ∵当EF =BD 时,四边形BEDF 是矩形, ∴OE =OB ,即t =37.∴当t =37时,四边形BEDF 是矩形.第3课时 矩形的性质与判定的运用1.下列关于矩形的说法,正确的是(C) A .对角线相等的四边形是矩形 B .对角线互相平分的四边形是矩形 C .矩形的对角线相等且互相平分 D .矩形的对角线互相垂直且平分2.如图,已知在四边形ABCD 中,AB =DC ,AD =BC ,连接AC ,BD 交于点O.若AO =BO ,AD =3,AB =2,则四边形ABCD 的面积为(C)A .4B .5C .6D .73.如图,在矩形COED 中,点D 的坐标是(1,3),则CE 的长是10.4.如图,在四边形ABCD中,已知对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.5.如图,在菱形ABCD中,AC,BD交于点O,AC=6,BD=8.若DE∥AC,CE∥BD,则OE 的长为5.6.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于点E,MF⊥AC于点F,点N为EF的中点,则MN的最小值为2.4.7.如图,在矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处.若A′恰好在矩形的对称轴上,则AE的长为1或33.8.如图,在矩形ABCD中,AB=4 cm,AD=12 cm,点P从点A出发,向点D以每秒1 cm 的速度运动,Q从点C出发,以每秒4 cm的速度在B,C两点之间做往返运动,两点同时出发,点P到达点D为止(同时点Q也停止),这段时间内,当运动时间为2.4_s或4_s或7.2_s 时,P,Q,C,D四点组成矩形.9.如图,在▱ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.解:(1)证明:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2.∴∠ABC=90°.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF ∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.解:(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC.∵CF∥AE,∴四边形AECF 是平行四边形. ∵AE ⊥BC ,∴四边形AECF 是矩形. (2)∵四边形ABCD 是菱形, ∴AD =AB =BC =CD =5. ∵AE =4,∠AEB =90°, ∴EB =AB 2-AE 2=3. ∴EC =EB +BC =8. ∴AC =AE 2+EC 2=4 5. ∵在Rt △AEC 中,AO =CO , ∴OE =12AC =2 5.11.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,∠A =∠ADC ,E ,F 分别为AD ,CD 的中点,连接BE ,BF ,延长BE 交CD 的延长线于点M.(1)求证:四边形ABCD 为矩形;(2)若MD =6,BC =12,求BF 的长度.(结果可保留根号)解:(1)证明:∵在四边形ABCD 中,AB ∥CD ,AB =CD , ∴四边形ABCD 是平行四边形. ∴∠A +∠ADC=180°. ∵∠A =∠ADC,∴∠A =90°. ∴四边形ABCD 是矩形. (2)∵AB∥CD,∴∠ABE =∠M. ∵E 为AD 的中点,∴AE =DE.在△ABE 和△DME 中, ⎩⎪⎨⎪⎧∠AEB=∠DEM ,∠ABE =∠M,AE =DE ,∴△ABE ≌△DME(AAS). ∴AB =DM =CD =6. ∵F 为CD 的中点, ∴CF =12CD =3.∵四边形ABCD 是矩形, ∴∠C =90°.在Rt △BCF 中,BF =BC 2+CF 2=122+32=317.12.如图,在▱ABCD 中,E 是AD 上一点,连接BE ,F 为BE 的中点,且AF =BF. (1)求证:四边形ABCD 为矩形;(2)过点F 作FG⊥BE,交BC 于点G.若BE =BC ,S △BFG =5,CD =4,求CG 的长度.解:(1)证明:∵F 为BE 的中点,AF =BF ,∴AF =BF =EF. ∴∠BAF =∠ABF,∠FAE =∠AEF.在△ABE 中,∠BAF +∠ABF+∠FAE+∠AEF=180°, ∴∠BAF +∠FAE=90°,即∠BAE =90°. 又∵四边形ABCD 为平行四边形, ∴四边形ABCD 为矩形.(2)连接EG ,过点E 作EH⊥BC,垂足为H ,∵F 为BE 的中点,FG ⊥BE ,∴BG =GE. ∵S △BFG =5,CD =EH =4, ∴S △BGE =12BG·EH=10.∴BG =GE =5.在Rt △EGH 中,GH =GE 2-EH 2=3. ∴BH =5+3=8.在Rt △BEH 中,BE =BH 2+EH 2=4 5. ∴CG =BC -BG =BE -BG =45-5.13.已知:如图,在▱ABCD 中,AB >AD ,∠ADC 的平分线交AB 于点E ,作AF⊥BC 于点F ,交DE 于点G ,延长BC 至H 使CH =BF ,连接DH.(1)补全图形,并证明四边形AFHD 是矩形;(2)当AE =AF 时,猜想线段AB ,AG ,BF 之间的数量关系,并证明.解:(1)补全图形如图所示. 证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵CH =BF ,∴FH =BC.∴AD=FH. ∴四边形AFHD 是平行四边形. ∵AF ⊥BC ,∴四边形AFHD 是矩形. (2)猜想:AB =BF +AG.证明:延长FH 至M ,使HM =AG ,连接DM.∵AB ∥CD ,∴∠AED =∠EDC. ∵DE 平分∠ADC,∴∠ADE =∠EDC. ∴∠AED =∠ADE.∴AE=AD. ∵AE =AF ,∴AF =AD. ∵AF =DH ,∴AD =DH. 又∵∠GAD=∠DHM=90°, ∴△DAG ≌△DHM(SAS). ∴∠ADE =∠HDM,∠AGD =∠M. ∴∠EDC =∠HDM.∴∠GDH=∠CDM. ∵AF ∥DH ,∴∠AGD =∠GDH. ∴∠CDM =∠M.∴CD=CM =CH +HM. ∵AB =CD ,CH =BF ,HM =AG , ∴AB =BF +AG.1、在最软入的时候,你会想起谁。
中考数学真题《矩形菱形正方形》专项测试卷(附答案)
![中考数学真题《矩形菱形正方形》专项测试卷(附答案)](https://img.taocdn.com/s3/m/3a7bcbd1ed3a87c24028915f804d2b160b4e869a.png)
中考数学真题《矩形菱形正方形》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(39题)一 、单选题1.(2023·湖南·统考中考真题)如图,菱形ABCD 中 连接AC BD , 若120∠=︒,则2∠的度数为( )A .20︒B .60︒C .70︒D .80︒2.(2023·湖南常德·统考中考真题)如图1 在正方形ABCD 中 对角线AC BD 、相交于点O E F 分别为AO DO 上的一点 且EF AD ∥ 连接,AF DE .若15FAC ∠=︒,则AED ∠的度数为( )A .80︒B .90︒C .105︒D .115︒3.(2023·湖南常德·统考中考真题)下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形4.(2023·浙江·统考中考真题)如图,在菱形ABCD 中 160AB DAB =∠=︒,,则AC 的长为( )A .12 B .1 C 3D 35.(2023·上海·统考中考真题)在四边形ABCD 中 ,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是( )A .AB CD B .AD BC = C .A B ∠=∠D .A D ∠=∠6.(2023·浙江宁波·统考中考真题)如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE 连结,AE AD 设AED △ ABE ACD 的面积分别为12,,S S S 若要求出12S S S --的值 只需知道( )A .ABE 的面积B .ACD 的面积C .ABC 的面积D .矩形BCDE 的面积7.(2023·湖南·统考中考真题)如图所示 在矩形ABCD 中 AB AD > AC 与BD 相交于点O 下列说法正确的是( )A .点O 为矩形ABCD 的对称中心B .点O 为线段AB 的对称中心C .直线BD 为矩形ABCD 的对称轴 D .直线AC 为线段BD 的对称轴8.(2023·四川宜宾·统考中考真题)如图,边长为6的正方形ABCD 中 M 为对角线BD 上的一点 连接AM 并延长交CD 于点P .若PM PC =,则AM 的长为( )A .()331B .()3332C .)631D .()6332 9.(2023·四川乐山·统考中考真题)如图,菱形ABCD 的对角线AC 与BD 相交于点O E 为边BC 的中点 连结OE .若68AC BD ==,,则OE =( )A .2B .52C .3D .410.(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折 使边AB 与DC BC 与AD 分别重合 展开后得到四边形EFGH .若2AB = 4BC =,则四边形EFGH 的面积为( )A .2B .4C .5D .611.(2023·浙江绍兴·统考中考真题)如图,在矩形ABCD 中 O 为对角线BD 的中点 60ABD ∠=︒.动点E 在线段OB 上 动点F 在线段OD 上 点,E F 同时从点O 出发 分别向终点,B D 运动 且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E 点F 关于,BC CD 的对称点为12,F F .在整个过程中 四边形1212E E F F 形状的变化依次是( )A .菱形→平行四边形→矩形→平行四边形→菱形B .菱形→正方形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→菱形→平行四边形D .平行四边形→菱形→正方形→平行四边形→菱形12.(2023·重庆·统考中考真题)如图,在正方形ABCD 中 O 为对角线AC 的中点 E 为正方形内一点 连接BE BE BA = 连接CE 并延长 与ABE ∠的平分线交于点F 连接OF 若2AB =,则OF 的长度为( )A .2B 3C .1D 2二 解答题13.(2023·湖南怀化·统考中考真题)如图,矩形ABCD 中 过对角线BD 的中点O 作BD 的垂线EF分别交AD BC 于点E F .(1)证明:BOF DOE ≌△△(2)连接BE DF 证明:四边形EBFD 是菱形.14.(2023·湖北随州·统考中考真题)如图,矩形ABCD 的对角线AC BD 相交于点O ,DE AC CE BD .(1)求证:四边形OCED 是菱形(2)若32BC DC ==, 求四边形OCED 的面积.15.(2023·湖南永州·统考中考真题)如图,已知四边形ABCD 是平行四边形其对角线相交于点O 3,8,5OA BD AB ===.(1)AOB 是直角三角形吗?请说明理由(2)求证:四边形ABCD 是菱形.16.(2023·新疆·统考中考真题)如图,AD 和BC 相交于点O 90ABO DCO ∠=∠=︒ OB OC =.点E F 分别是AO DO 的中点.(1)求证:OE OF =(2)当30A ∠=︒时 求证:四边形BECF 是矩形.17.(2023·云南·统考中考真题)如图,平行四边形ABCD 中 AE CF 、分别是BAD BCD ∠∠、的平分线且E F 、分别在边BC AD 、上 AE AF =.(1)求证:四边形AECF 是菱形(2)若60ABC ∠=︒ ABE 的面积等于3 求平行线AB 与DC 间的距离.18.(2023·四川遂宁·统考中考真题)如图,四边形ABCD 中 AD BC ∥ 点O 为对角线BD 的中点 过点O 的直线l 分别与AD BC 所在的直线相交于点E F .(点E 不与点D 重合)(1)求证:DOE BOF ≌(2)当直线l BD ⊥时 连接BE DF 试判断四边形EBFD 的形状 并说明理由.19.(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD 中 AE BC ⊥于点E AF CD ⊥于点F连接EF(1)求证:AE AF =(2)若=60B ∠︒ 求AEF ∠的度数.20.(2023·湖北鄂州·统考中考真题)如图,点E 是矩形ABCD 的边BC 上的一点 且AE AD =.(1)尺规作图(请用2B 铅笔):作DAE ∠的平分线AF 交BC 的延长线于点F 连接DF .(保留作图痕迹 不写作法)(2)试判断四边形AEFD 的形状 并说明理由.21.(2023·吉林长春·统考中考真题)将两个完全相同的含有30︒角的直角三角板在同一平面内按如图所示位置摆放.点A E B D 依次在同一直线上 连结AF CD .(1)求证:四边形AFDC 是平行四边形(2)己知6cm BC 当四边形AFDC 是菱形时.AD 的长为__________cm .22.(2023·湖南张家界·统考中考真题)如图,已知点A D C B 在同一条直线上 且AD BC = AE BF ==.CE DF(1)求证:AE BF∥=时求证:四边形DECF是菱形.(2)若DF FC23.(2023·湖南郴州·统考中考真题)如图,四边形ABCD是平行四边形.(1)尺规作图作对角线AC的垂直平分线MN(保留作图痕迹)(2)若直线MN分别交AD BC于E F两点求证:四边形AFCE是菱形AC BD交于点O分别以点,B C为圆心24.(2023·湖北十堰·统考中考真题)如图,ABCD的对角线,11,22AC BD 长为半径画弧 两弧交于点P 连接,BP CP .(1)试判断四边形BPCO 的形状 并说明理由(2)请说明当ABCD 的对角线满足什么条件时 四边形BPCO 是正方形?25.(2023·四川内江·统考中考真题)如图,在ABC 中 D 是BC 的中点 E 是AD 的中点 过点A 作AF BC ∥交CE 的延长线于点F .(1)求证:AF BD =(2)连接BF 若AB AC = 求证:四边形ADBF 是矩形.26.(2023·湖南岳阳·统考中考真题)如图,点M 在ABCD 的边AD 上 BM CM = 请从以下三个选项中①12∠=∠ ①AM DM = ①34∠∠= 选择一个合适的选项作为已知条件 使ABCD 为矩形.(1)你添加的条件是_________(填序号)(2)添加条件后 请证明ABCD 为矩形.27.(2023·四川乐山·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ 点D 为AB 边上任意一点(不与点A B 重合) 过点D 作DE BC ∥ DF AC ∥ 分别交AC BC 于点E F 连接EF .(1)求证:四边形ECFD 是矩形(2)若24CF CE ==, 求点C 到EF 的距离.28.(2023·浙江台州·统考中考真题)如图,四边形ABCD 中 AD BC ∥ A C ∠=∠ BD 为对角线.(1)证明:四边形ABCD 是平行四边形.(2)已知AD AB > 请用无刻度的直尺和圆规作菱形BEDF 顶点E F 分别在边BC AD 上(保留作图痕迹 不要求写作法).三 填空题29.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在四边形ABCD 中 AD BC = AC BD ⊥于点O .请添加一个条件:______ 使四边形ABCD 成为菱形.30.(2023·辽宁大连·统考中考真题)如图,在菱形ABCD 中 AC BD 、为菱形的对角线60,10DBC BD ︒∠== 点F 为BC 中点,则EF 的长为_______________.31.(2023·福建·统考中考真题)如图,在菱形ABCD 中 1060AB B ︒=∠=,,则AC 的长为___________.32.(2023·浙江绍兴·统考中考真题)如图,在菱形ABCD 中 40DAB ∠=︒ 连接AC 以点A 为圆心 AC 长为半径作弧 交直线AD 于点E 连接CE ,则AEC ∠的度数是________.33.(2023·甘肃武威·统考中考真题)如图,菱形ABCD 中 60DAB ∠=︒ BE AB ⊥ DF CD ⊥ 垂足分别为B D 若6cm AB =,则EF =________cm .34.(2023·山东聊城·统考中考真题)如图,在ABCD 中 BC 的垂直平分线EO 交AD 于点E 交BC 于点O 连接BE CE 过点C 作CF BE ∥ 交EO 的延长线于点F 连接BF .若8AD = 5CE =,则四边形BFCE 的面积为______..35.(2023·湖北十堰·统考中考真题)如图,在菱形ABCD 中 点E F G H 分别是AB BC CD AD 上的点 且BE BF CG AH === 若菱形的面积等于24 8BD =,则EF GH +=___________________.36.(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一 最早是由三国时期数学家刘徽创建.“将一个几何图形 任意切成多块小图形 几何图形的总面积保持不变 等于所分割成的小图形的面积之和”是该原理的重要内容之一 如图,在矩形ABCD 中 5AB = 12AD = 对角线AC 与BD 交于点O 点E 为BC 边上的一个动点 EF AC ⊥ EG BD ⊥ 垂足分别为点F G ,则EF EG +=___________.37.(2023·山东滨州·统考中考真题)如图,矩形ABCD 的对角线,AC BD 相交于点O 点,E F 分别是线段,OB OA 上的点.若,5,1,3AE BF AB AF BE ====,则BF 的长为___________.38.(2023·山东枣庄·统考中考真题)如图,在正方形ABCD 中 对角线AC 与BD 相交于点O E 为BC 上一点 7CE = F 为DE 的中点 若CEF △的周长为32,则OF 的长为___________.39.(2023·浙江台州·统考中考真题)如图,矩形ABCD 中 4AB = 6AD =.在边AD 上取一点E 使BE BC = 过点C 作CF BE ⊥ 垂足为点F ,则BF 的长为________.参考答案一 单选题1.(2023·湖南·统考中考真题)如图,菱形ABCD 中 连接AC BD , 若120∠=︒,则2∠的度数为( )A .20︒B .60︒C .70︒D .80︒【答案】C 【分析】根据菱形的性质可得,BD AC AB CD ⊥∥,则1,290ACD ACD ∠=∠∠+∠=︒ 进而即可求解.【详解】解:①四边形ABCD 是菱形①,BD AC AB CD ⊥∥①1,290ACD ACD ∠=∠∠+∠=︒①120∠=︒①2902070∠=︒-︒=︒,故选:C .【点睛】本题考查了菱形的性质 熟练掌握是菱形的性质解题的关键.2.(2023·湖南常德·统考中考真题)如图1 在正方形ABCD 中 对角线AC BD 、相交于点O E F 分别为AO DO 上的一点 且EF AD ∥ 连接,AF DE .若15FAC ∠=︒,则AED ∠的度数为( )A .80︒B .90︒C .105︒D .115︒【答案】C 【分析】首先根据正方形的性质得到45OAD ODA ∠=∠=︒ AO DO = 然后结合EF AD ∥得到OE OF = 然后证明出()SAS AOF DOE △≌△ 最后利用三角形内角和定理求解即可.【详解】①四边形ABCD 是正方形①45OAD ODA ∠=∠=︒ AO DO =①EF AD ∥①45OEF OAD ∠=∠=︒ 45OFE ODA ∠=∠=︒①OEF OFE ∠=∠①OE OF =又①90AOF DOE ∠=∠=︒ AO DO =①()SAS AOF DOE △≌△①15ODE FAC ∠=∠=︒①30ADE ODA ODE ∠=∠-∠=︒①180105AED OAD ADE ∠=︒-∠-∠=︒故选:C .【点睛】此题考查了正方形的性质 全等三角形的性质和判定 等腰直角三角形三角形的性质等知识 解题的关键是熟练掌握以上知识点.3.(2023·湖南常德·统考中考真题)下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形【答案】A【分析】根据正方形 平行四边形 矩形 菱形的各自性质和构成条件进行判断即可.【详解】A 正方形的对角线相等且互相垂直平分 描述正确B 对角互补的四边形不一定是平行四边形 只是内接于圆 描述错误C 矩形的对角线不一定垂直 但相等 描述错误D 一组邻边相等的平行四边形才构成菱形 描述错误.故选:A .【点睛】本题考查平行四边形 矩形 菱形 正方形的性质和判定 解题的关键是熟悉掌握各类特殊四边形的判定和性质.4.(2023·浙江·统考中考真题)如图,在菱形ABCD 中 160AB DAB =∠=︒,,则AC 的长为( )A .12B .1C 3D 3【答案】D 【分析】连接BD 与AC 交于O .先证明ABD △是等边三角形 由AC BD ⊥ 得到1302OAB BAD ∠=∠=︒ 90AOB ∠=︒ 即可得到1122OB AB == 利用勾股定理求出AO 的长度 即可求得AC 的长度.【详解】解:连接BD 与AC 交于O .①四边形ABCD 是菱形①AB CD ∥ AB AD = AC BD ⊥ 12AO OC AC ==①60DAB ∠=︒ 且AB AD =①ABD △是等边三角形①AC BD ⊥ ①1302OAB BAD ∠=∠=︒ 90AOB ∠=︒ ①1122OB AB == ①2222111322AO AB OB ⎛⎫-= ⎪⎭=-⎝ ①23AC AO ==故选:D .【点睛】此题主要考查了菱形的性质 勾股定理 等边三角形的判定和性质 30︒角所对直角边等于斜边的一半 关键是熟练掌握菱形的性质.5.(2023·上海·统考中考真题)在四边形ABCD 中 ,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是( )A .AB CD B .AD BC = C .A B ∠=∠D .A D ∠=∠【答案】C【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A :AB CD ,AD BC AB CD =∥∴ABCD 为平行四边形而非矩形故A 不符合题意B :AD BC = ,AD BC AB CD =∥∴ABCD 为平行四边形而非矩形故B 不符合题意C :AD BC ∥180A B ∴∠+∠=︒A B ∠=∠∴90A B ∠=∠=︒AB CD =∴ABCD 为矩形故C 符合题意D :AD BC ∥180A B ∴∠+∠=︒A D ∠=∠180D B ∴∠+∠=︒∴ABCD 不是平行四边形也不是矩形故D 不符合题意故选:C .【点睛】本题主要考查平行线的性质 平行四边形的判定和性质及矩形的判定等知识 熟练掌握以上知识并灵活运用是解题的关键.6.(2023·浙江宁波·统考中考真题)如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE 连结,AE AD 设AED △ ABE ACD 的面积分别为12,,S S S 若要求出12S S S --的值 只需知道( )A .ABE 的面积B .ACD 的面积C .ABC 的面积D .矩形BCDE 的面积【答案】C【分析】过点A 作FG BC ∥ 交EB 的延长线于点F DC 的延长线于点G 易得:,,FG BC AF BE AG CD =⊥⊥ 利用矩形的性质和三角形的面积公式 可得1212BCDES S S +=矩形 再根据1212ABC ABC BCDE BCDE S S S S S S S -=+-=+矩形矩形 得到12ABC S S S S -=- 即可得出结论.【详解】解:过点A 作FG BC ∥ 交EB 的延长线于点F DC 的延长线于点G①矩形BCDE①,,BC BE BC CD BE CD ⊥⊥=①,FG BE FG CD ⊥⊥①四边形BFGC 为矩形①,,FG BC AF BE AG CD =⊥⊥①1211,22S BE AF S CD AG =⋅=⋅①()12111222BCDE BE AF AG BE B S C S S =+=⋅=+矩形又1212ABC ABC BCDE BCDE S S S S S S S -=+-=+矩形矩形①121122ABC ABC BCDE BCDE S S S S S S S =+---=矩形矩形 ①只需要知道ABC 的面积即可求出12S S S --的值故选C .【点睛】本题考查矩形的性质 求三角形的面积.解题的关键是得到1212BCDES S S +=矩形 7.(2023·湖南·统考中考真题)如图所示 在矩形ABCD 中 AB AD > AC 与BD 相交于点O 下列说法正确的是( )A .点O 为矩形ABCD 的对称中心B .点O 为线段AB 的对称中心C .直线BD 为矩形ABCD 的对称轴D .直线AC 为线段BD 的对称轴【答案】A 【分析】由矩形ABCD 是中心对称图形 对称中心是对角线的交点 线段AB 的对称中心是线段AB 的中点 矩形ABCD 是轴对称图形 对称轴是过一组对边中点的直线 从而可得答案.【详解】解:矩形ABCD 是中心对称图形 对称中心是对角线的交点 故A 符合题意线段AB 的对称中心是线段AB 的中点 故B 不符合题意矩形ABCD 是轴对称图形 对称轴是过一组对边中点的直线故C D 不符合题意故选A【点睛】本题考查的是轴对称图形与中心对称图形的含义 矩形的性质 熟记矩形既是中心对称图形也是轴对称图形是解本题的关键.8.(2023·四川宜宾·统考中考真题)如图,边长为6的正方形ABCD 中 M 为对角线BD 上的一点 连接AM 并延长交CD 于点P .若PM PC =,则AM 的长为( )A .()331B .()3332C .)631D .()6332 【答案】C【分析】先根据正方形的性质 三角形全等的判定证出ADM CDM ≅ 根据全等三角形的性质可得DAM DCM ∠=∠ 再根据等腰三角形的性质可得CMP DCM ∠=∠ 从而可得30DAM ∠=︒ 然后利用勾股定理 含30度角的直角三角形的性质求解即可得. 【详解】解:四边形ABCD 是边长为6的正方形6,90,45AD CD ADC ADM CDM ∴==∠=︒∠=∠=︒在ADM △和CDM 中 45DM DM ADM CDM AD CD =⎧⎪∠=∠=︒⎨⎪=⎩()SAS ADM CDM ∴≅DAM DCM ∴∠=∠PM PC =CMP DCM ∴∠=∠22APD CMP DCM DCM DAM ∴∠=∠+∠=∠=∠又18090APD DAM ADC ∠+∠=︒-∠=︒30DAM ∴∠=︒设PD x =,则22AP PD x == 6PM PC CD PD x ==-=-2236AD AP PD x ∴=-= 解得3x =663PM x ∴=-=- 243AP x ==(()43623631AM AP PM ∴=-=-= 故选:C .【点睛】本题考查了正方形的性质 勾股定理 含30度角的直角三角形的性质 等腰三角形的性质等知识点 熟练掌握正方形的性质是解题关键.9.(2023·四川乐山·统考中考真题)如图,菱形ABCD 的对角线AC 与BD 相交于点O E 为边BC 的中点 连结OE .若68AC BD ==,,则OE =( )A .2B .52C .3D .4【答案】B 【分析】先由菱形的性质得AC BD ⊥ 116322OC AC ==⨯= 118422OB BD ==⨯= 再由勾股定理求出5BC = 然后由直角 三角形斜边的中线等于斜边的一半求解.【详解】解:①菱形ABCD①AC BD ⊥ 116322OC AC ==⨯= 118422OB BD === ①由勾股定理 得225BC OB OC =+=①E 为边BC 的中点 ①1155222OE BC ==⨯= 故选:B .【点睛】本考查菱形的性质 勾股定理 直角三角形的性质 熟练掌握菱形的性质 直角三角形的性质是解题的关键.10.(2023·甘肃武威·统考中考真题)如图,将矩形ABCD 对折 使边AB 与DC BC 与AD 分别重合 展开后得到四边形EFGH .若2AB = 4BC =,则四边形EFGH 的面积为( )A .2B .4C .5D .6【答案】B 【分析】由题意可得四边形EFGH 是菱形 2FH AB == 4GE BC == 由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:①将矩形ABCD 对折 使边AB 与DC BC 与AD 分别重合 展开后得到四边形EFGH①EF GH ⊥ EF 与GH 互相平分①四边形EFGH 是菱形①2FH AB == 4GE BC ==①菱形EFGH 的面积为1124422FH GE ⋅=⨯⨯=. 故选:B【点睛】此题考查了矩形的折叠 菱形的判定和性质等知识 熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.11.(2023·浙江绍兴·统考中考真题)如图,在矩形ABCD 中 O 为对角线BD 的中点 60ABD ∠=︒.动点E 在线段OB 上 动点F 在线段OD 上 点,E F 同时从点O 出发 分别向终点,B D 运动 且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E 点F 关于,BC CD 的对称点为12,F F .在整个过程中 四边形1212E E F F 形状的变化依次是( )A .菱形→平行四边形→矩形→平行四边形→菱形B .菱形→正方形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→菱形→平行四边形D .平行四边形→菱形→正方形→平行四边形→菱形【答案】A【分析】根据题意 分别证明四边形1212E E F F 是菱形 平行四边形 矩形 即可求解.【详解】①四边形ABCD 是矩形①AB CD ∥ 90BAD ABC ∠=∠=︒①60BDC ABD ∠=∠=︒ 906030ADB CBD ∠=∠=︒-︒=︒①OE OF = OB OD =①DF EB =①对称①21DF DF BF BF ==, 21,BE BE DE DE ==①1221E F E F =①对称①260F DC CDF ∠=∠=︒ 130EDA E DA ∠=∠=︒①160E DB ∠=︒同理160F BD ∠=︒①11DE BF ∥①1221E F E F ∥①四边形1212E E F F 是平行四边形如图所示当,,E F O 三点重合时 DO BO =①1212DE DF AE AE ===即1212E E E F =①四边形1212E E F F 是菱形如图所示 当,E F 分别为,OD OB 的中点时设4DB =,则21DF DF == 13DE DE ==在Rt △ABD 中 2,23AB AD ==连接AE AO①602ABO BO AB ∠=︒==,①ABO 是等边三角形①E 为OB 中点①AE OB ⊥ 1BE = ①22213AE - 根据对称性可得13AE AE =①2221112,9,3AD DE AE ===①22211AD AE DE =+①1DE A 是直角三角形 且190E ∠=︒①四边形1212E E F F 是矩形当,F E 分别与,D B 重合时 11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形①在整个过程中 四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形 故选:A .【点睛】本题考查了菱形的性质与判定 平行四边形的性质与判定 矩形的性质与判定 勾股定理与勾股定理的逆定理 轴对称的性质 含30度角的直角三角形的性质 熟练掌握以上知识是解题的关键. 12.(2023·重庆·统考中考真题)如图,在正方形ABCD 中 O 为对角线AC 的中点 E 为正方形内一点 连接BE BE BA = 连接CE 并延长 与ABE ∠的平分线交于点F 连接OF 若2AB =,则OF 的长度为( )A .2B 3C .1D 2【答案】D 【分析】连接AF 根据正方形ABCD 得到AB BC BE == 90ABC ∠=︒ 根据角平分线的性质和等腰三角形的性质 求得45BFE ∠=︒ 再证明ABF EBF ≌ 求得90AFC ∠=︒ 最后根据直角三角形斜边上的中点等于斜边的一半 即可求出OF 的长度.【详解】解:如图,连接AF四边形ABCD 是正方形AB BE BC ∴== 90ABC ∠=︒ 222AC ==BEC BCE ∴∠=∠1802EBC BEC ∴∠=︒-∠290ABE ABC EBC BEC ∴∠=∠-∠=∠-︒ BF 平分ABE ∠1452ABF EBF ABE BEC ∴∠=∠=∠=∠-︒45BFE BEC EBF ∴∠=∠-∠=︒在BAF △与BEF △,AB EB ABF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩()SAS BAF BEF ∴△≌△45BFE BFA ∴∠=∠=︒90AFC BAF BFE ∴∠=∠+∠=︒O 为对角线AC 的中点122OF AC ∴= 故选:D .【点睛】本题考查了等腰三角形的判定和性质 三角形内角和定理 正方形的性质 直角三角形特征 作出正确的辅助线 求得45BFE ∠=︒是解题的关键.二 解答题13.(2023·湖南怀化·统考中考真题)如图,矩形ABCD 中 过对角线BD 的中点O 作BD 的垂线EF 分别交AD BC 于点E F .(1)证明:BOF DOE ≌△△(2)连接BE DF 证明:四边形EBFD 是菱形.【答案】(1)见解析 (2)见解析【分析】(1)根据矩形的性质得出AD BC ∥,则12,34∠=∠∠=∠ 根据O 是BD 的中点 可得BO DO = 即可证明()AAS BOF DOE ≌△△(2)根据BOF DOE ≌△△可得ED BF = 进而可得四边形EBFD 是平行四边形 根据对角线互相垂直的四边形是菱形 即可得证.【详解】(1)证明:如图所示①四边形ABCD 是矩形①AD BC ∥①12,34∠=∠∠=∠①O 是BD 的中点①BO DO =在BOF 与DOE 中1234BO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BOF DOE ≌△△(2)①BOF DOE ≌△△①ED BF =又①ED BF ∥①四边形EBFD 是平行四边形①EF BD ⊥①四边形EBFD 是菱形.【点睛】本题考查了矩形的性质 全等三角形的性质与判定 菱形的判定 熟练掌握特殊四边形的性质与判定是解题的关键.14.(2023·湖北随州·统考中考真题)如图,矩形ABCD 的对角线AC BD 相交于点O ,DE AC CE BD .(1)求证:四边形OCED 是菱形(2)若32BC DC ==, 求四边形OCED 的面积.【答案】(1)见解析 (2)3【分析】(1)先根据矩形的性质求得OC OD = 然后根据有一组邻边相等的平行四边形是菱形分析推理 (2)根据矩形的性质求得OCD 的面积 然后结合菱形的性质求解.【详解】(1)解:①DE AC CE BD ∥,∥ ①四边形OCED 是平行四边形又①矩形ABCD 中 OC OD =①平行四边形OCED 是菱形(2)解:矩形ABCD 的面积为326BC DC ⋅=⨯=①OCD 的面积为13642⨯= ①菱形OCED 的面积为3232⨯=. 【点睛】本题考查矩形的性质 菱形的判定 属于中考基础题 掌握矩形的性质和菱形的判定方法 正确推理论证是解题关键.15.(2023·湖南永州·统考中考真题)如图,已知四边形ABCD 是平行四边形 其对角线相交于点O 3,8,5OA BD AB ===.(1)AOB 是直角三角形吗?请说明理由(2)求证:四边形ABCD 是菱形.【答案】(1)AOB 是直角三角形 理由见解析.(2)见解析【分析】(1)根据平行四边形对角线互相平分可得142BO BD == 再根据勾股定理的逆定理 即可得出结论(2)根据对角线互相垂直的平行四边形是菱形 即可求证.【详解】(1)解:AOB 是直角三角形 理由如下:①四边形ABCD 是平行四边形 ①142BO BD ==①222222345OA OB AB +=+==①AOB 是直角三角形.(2)证明:由(1)可得:AOB 是直角三角形①90AOB ∠=︒即AC BD ⊥①四边形ABCD 是平行四边形①四边形ABCD 是菱形.【点睛】本题主要考查了平行四边形的性质 勾股定理的逆定理 菱形的判定 解题的关键是掌握平行四边形对角线互相平分 对角线互相垂直的平行四边形是菱形.16.(2023·新疆·统考中考真题)如图,AD 和BC 相交于点O 90ABO DCO ∠=∠=︒ OB OC =.点E F 分别是AO DO 的中点.(1)求证:OE OF =(2)当30A ∠=︒时 求证:四边形BECF 是矩形.【答案】(1)见解析 (2)见解析【分析】(1)直接证明()ASA AOB DOC ≌△△ 得出OA OD = 根据E F 分别是AO DO 的中点 即可得证(2)证明四边形BECF 是平行四边形 进而根据30A ∠=︒ 推导出BOE △是等边三角形 进而可得BC EF = 即可证明四边形BECF 是矩形.【详解】(1)证明:在AOB 与DOC △中90ABO DCO OB OCAOB DOC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩①()ASA AOB DOC ≌△△①OA OD =又①E F 分别是AO DO 的中点①OE OF =(2)①OB OC OF OE ==,①四边形BECF 是平行四边形 22BC OB EF OE ==,①E 为AO 的中点 90∠=︒ABO①EB EO EA ==①30A ∠=︒①60BOE ∠=︒①BOE △是等边三角形①OB OE =①BC EF =①四边形BECF 是矩形.【点睛】本题考查了全等三角形的性质与判定 等边三角形的性质与判定 矩形判定 熟练掌握以上知识是解题的关键.17.(2023·云南·统考中考真题)如图,平行四边形ABCD 中 AE CF 、分别是BAD BCD ∠∠、的平分线 且E F 、分别在边BC AD 、上 AE AF =.(1)求证:四边形AECF 是菱形(2)若60ABC ∠=︒ ABE 的面积等于3 求平行线AB 与DC 间的距离.【答案】(1)证明见解析 (2)3【分析】(1)先证AD BC ∥ 再证AE FC 从而四边形AECF 是平行四边形 又AE AF = 于是四边形AECF 是菱形(2)连接AC 先求得60BAE DAE ABC ∠∠∠===︒ 再证AC AB ⊥9030ACB ABC EAC ∠∠∠=︒-=︒= 3AB AC= 得3AB AC = 再证AE BE CE == 从而根据面积公式即可求得AC =43 【详解】(1)证明:①四边形ABCD 是平行四边形①AD BC ∥ BAD BCD ∠∠=①BEA DAE ∠∠=①AE CF 、分别是BAD BCD ∠∠、的平分线①BAE DAE ∠∠==12BAD ∠ BCF ∠=12BCD ∠①DAE BCF BEA ∠∠∠==①AE FC①四边形AECF 是平行四边形①AE AF =①四边形AECF 是菱形(2)解:连接AC①AD BC ∥ 60ABC ∠=︒①180120BAD ABC ∠∠=︒-=︒①60BAE DAE ABC ∠∠∠===︒①四边形AECF 是菱形①EAC ∠=1230DAE ∠=︒①90BAC BAE EAC ∠∠∠=+=︒①AC AB ⊥ 9030ACB ABC EAC ∠∠∠=︒-=︒=①AE CE = tan 30tan AB ACB AC ︒=∠=3AB AC= ①3AB AC = ①BAE ABC ∠∠=①AE BE CE ==①ABE 的面积等于43 ①211338322ABC S AC AB AC AC AC =⋅=== ①平行线AB 与DC 间的距离AC =43【点睛】本题考查了平行四边形的判定及性质 菱形的判定 角平分线的定义 等腰三角形的判定 三角函数的应用以及平行线间的距离 熟练掌握平行四边形的判定及性质 菱形的判定 角平分线的定义 等腰三角形的判定 三角函数的应用以及平行线间的距离等知识是解题的关键.18.(2023·四川遂宁·统考中考真题)如图,四边形ABCD 中 AD BC ∥ 点O 为对角线BD 的中点 过点O 的直线l 分别与AD BC 所在的直线相交于点E F .(点E 不与点D 重合)(1)求证:DOE BOF ≌(2)当直线l BD ⊥时 连接BE DF 试判断四边形EBFD 的形状 并说明理由.【答案】(1)见解析 (2)四边形EBFD 为菱形 理由见解析【分析】(1)根据AAS 证明DOE BOF ≌即可(2)连接EB FD 根据DOE BOF ≌ 得出ED BF = 根据ED BF ∥ 证明四边形EBFD 为平行四边形 根据EF BD ⊥ 证明四边形EBFD 为菱形即可.【详解】(1)证明:①点O 为对角线BD 的中点①BO DO =①AD BC ∥①ODE OBF ∠=∠ OED OFB ∠=∠在DOE 和BOF 中ODE OBF OED OFB BO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS DOE BOF ≌(2)解:四边形EBFD 为菱形 理由如下:连接EB FD 如图所示:根据解析(1)可知 DOE BOF ≌①ED BF =①ED BF ∥①四边形EBFD 为平行四边形①l BD ⊥ 即EF BD ⊥①四边形EBFD 为菱形.【点睛】本题主要考查了三角形全等的判定和性质 菱形的判定 平行线的性质 解题的关键是熟练掌握三角形全等的判定方法和菱形的判定方法.19.(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD 中 AE BC ⊥于点E AF CD ⊥于点F 连接EF(1)求证:AE AF =(2)若=60B ∠︒ 求AEF ∠的度数.【答案】(1)证明见解析 (2)60︒【分析】(1)根据菱形的性质的三角形全等即可证明AE AF =.(2)根据菱形的性质和已知条件可推出BAD ∠度数 再根据第一问的三角形全等和直角三角形的性质可求出BAE ∠和DAF ∠度数 从而求出EAF ∠度数 证明了等边三角形AEF 即可求出AEF ∠的度数.【详解】(1)证明:菱形ABCD,AB AD B D ∴=∠=∠又,AE BC AF CD ⊥⊥90AEB AFD ∴∠=∠=︒.在AEB △和AFD △中AEB AFD B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ABE ADF ∴≌.AE AF ∴=.(2)解:菱形ABCD180B BAD ∴∠+∠=︒=60B ∠︒120BAD ∴∠=︒.又90,60AEB B ∠=︒∠=︒30BAE =∴∠︒.由(1)知ABE ADF ≌30BAE DAF ∴∠=∠=︒.120303060EAF ∴∠=︒-︒-︒=︒. =AE AFAEF ∴等边三角形.60AEF ∴∠=︒.【点睛】本题考查了三角形全等 菱形的性质 等边三角形的性质 解题的关键在于熟练掌握全等的方法和菱形的性质.20.(2023·湖北鄂州·统考中考真题)如图,点E 是矩形ABCD 的边BC 上的一点 且AE AD =.(1)尺规作图(请用2B 铅笔):作DAE ∠的平分线AF 交BC 的延长线于点F 连接DF .(保留作图痕迹 不写作法)(2)试判断四边形AEFD 的形状 并说明理由.【答案】(1)见解析 (2)四边形AEFD 是菱形 理由见解析【分析】(1)根据题意结合尺规作角平分线的方法作图即可(2)根据矩形的性质和平行线的性质得出DAF AFE ∠=∠ 结合角平分线的定义可得EFA EAF ∠=∠,则AE EF = 然后根据平行四边形和菱形的判定定理得出结论.【详解】(1)解:如图所示:(2)四边形AEFD 是菱形理由:①矩形ABCD 中 AD BC ∥①DAF AFE ∠=∠①AF 平分DAE ∠①DAF EAF ∠=∠①EFA EAF ∠=∠①AE EF =①AE AD =①AD EF =①AD EF ∥①四边形AEFD 是平行四边形又①AE AD =①平行四边形AEFD 是菱形.【点睛】本题主要考查了尺规作角平分线 矩形的性质 平行线的性质 等腰三角形的判定 平行四边形的判定以及菱形的判定等知识 熟练掌握相关判定定理和性质定理是解题的关键.21.(2023·吉林长春·统考中考真题)将两个完全相同的含有30︒角的直角三角板在同一平面内按如图所示位置摆放.点A E B D 依次在同一直线上 连结AF CD .(1)求证:四边形AFDC 是平行四边形(2)己知6cm BC 当四边形AFDC 是菱形时.AD 的长为__________cm .【答案】(1)见解析 (2)18【分析】(1)由题意可知ACB DFE △≌△易得AC DF = 30CAB FDE ∠=∠=︒即AC DF ∥ 依据一组对边平行且相等的四边形是平行四边形可证明(2)如图,在Rt ACB △中 由30︒角所对的直角边等于斜边的一半和直角三角形锐角互余易得212cm AB BC == 60ABC ∠=︒ 由菱形得对角线平分对角得30CDA FDA ∠=∠=︒ 再由三角形外角和易证BCD CDA ∠=∠即可得6cm BC BD 最后由AD AB BD =+求解即可.【详解】(1)证明:由题意可知ACB DFE △≌△AC DF =∴ 30CAB FDE ∠=∠=︒AC DF ∥∴四边形AFDC 地平行四边形(2)如图,在Rt ACB △中 90ACB ∠=︒ 30CAB ∠=︒ 6cm BC212cm AB BC ∴== 60ABC ∠=︒四边形AFDC 是菱形AD ∴平分CDF ∠30CDA FDA ∴∠=∠=︒ABC CDA BCD ∠=∠+∠603030BCD ABC CDA ∴∠=∠-∠=︒-︒=︒BCD CDA ∴∠=∠6cm BC BD ∴==18cm AD AB BD ∴=+=故答案为:18.【点睛】本题考查了全等三角形的性质 平行四边形的判定 菱形的性质 30︒角所对的直角边等于斜边的一半和直角三角形锐角互余 三角形外角及等角对等边 解题的关键是熟练掌握相关知识综合求解. 22.(2023·湖南张家界·统考中考真题)如图,已知点A D C B 在同一条直线上 且AD BC = AE BF = CE DF =.。
中考数学试题分类汇总《矩形》练习题
![中考数学试题分类汇总《矩形》练习题](https://img.taocdn.com/s3/m/69e64b3acd7931b765ce0508763231126edb779b.png)
中考数学试题分类汇总《矩形》练习题(含答案)1.菱形的两个内角的度数比是1:3,一边上的高长是4,则菱形的面积是16.【分析】直接利用菱形的性质结合平行线的性质得出∠A=45°,进而求出菱形边长,即可得出答案.【解答】解:如图所示:过点D作DE⊥AB于点E,∵菱形的两个内角的度数比是1:3,∴3∠A=∠ADC,∠A+∠ADC=180°,∴∠A=45°,则∠ADE=45°,∴AE=ED=4,∴AD=4,∴菱形的面积是4×4=16.故答案为:16.2.如图,菱形ABCD的对角线相交于点O,AC=8,BD=6,点P为边AB上一点,且点P不与点A,B 重合.过点P作PE⊥AC于点E,PF⊥BD于点F,连接EF,则EF的最小值为()A.2B.2.4C.2.5D.3【分析】由菱形的性质可得AC⊥BD,BO=BD=3,OC=AC=4,由勾股定理可求BC的长,可证四边形OEPF是矩形,可得EF=OP,OP⊥BC时,OP有最小值,由面积法可求解.【解答】解:连接OP,如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AC⊥BD,BO=BD=3,OC=AC=4,∴BC=5,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=OB×OC=BC×OP,∴OP=2.4,∴EF的最小值为2.4,3.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=8,BD=6,则∠BAD的正弦值为()A.B.C.D.【分析】过B作BE⊥AD于E,由菱形的性质得AB=AD,OA=AC=4,OB=BD=3,AC⊥BD,再由勾股定理得AB=AD=5,然后由菱形面积求出BE的长,即可解决问题.【解答】解:如图,过B作BE⊥AD于E,∵四边形ABCD是菱形,且AC=8,BD=6,∴AB=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴∠AOD=90°,∴AB=AD===5,∵BE⊥AD,∴S菱形ABCD=AD•BE=AC•BD=×8×6=24,∴BE=,在Rt△ABE中,sin∠BAD===,4.如图,菱形ABCD中,DM⊥AB于点M,DN⊥BC于点N.求证:AM=CN.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∠A=∠C,∵DM⊥AB,DN⊥BC,∴∠DMA=∠DNC=90°,在△DAM和△DCN中,,∴△DAM≌△DCN(AAS),∴AM=CN.5.如图,在菱形ABCD中,∠ABC=70°,对角线AC、BD相交于点O,E为BC中点,则∠COE的度数为()A.70°B.65°C.55°D.35°【解答】解:在菱形ABCD中,AC⊥BD,∠ABC=70°,∴∠BOC=90°,∠COB=∠ABC=35°,∴∠OCB=90°﹣35°=55°,∵E为BC的中点,∴OE=CE,∴∠COE=∠OCB=55°.6.如图,在菱形ABCD中,对角线AC与BD相交于点O,在BC的延长线上取一点E,连接OE交CD于点F.已知AB=5,CE=1,则CF的长是()A.B.C.D.【解答】解:如图,作OG∥CD交BC于点G,∵四边形ABCD是菱形,且AB=5,∴BC=CD=AB=5,OB=OD,∴==1,∴BG=CG==,∴GO=CD=,∵CE=1,∴GE=CG+CE=+1=,∵CF∥GO,∴△ECF∽△EGO,∴=,∴CF===,∴CF的长为,7.如图,在矩形ABCD中,对角线AC的垂直平分线分别交BC、AD于点E、F,连接AE、CF.(1)求证:四边形AECF是菱形.(2)当AB=4,BC=8时,求线段EF的长.【解答】(1)证明:∵对角线AC的垂直平分线EF分别与AC、BC、AD交于点O、E、F,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠F AO=∠ECO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∵AF=CF,AE=CE,∴AE=EC=CF=AF,∴四边形AECF为菱形;(2)解:设AE=CE=x,则BE=8﹣x,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,即42+(8﹣x)2=x2,解得:x=5,即AE=5,∵AB=CD=4,BC=AD=8,∴AC=,∴OA=2,∴OE=,∴EF=2OE=2.7.如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.【分析】(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,勾股定理得到OB=5,OA=12,AD =13,再根据三角形面积公式即可求解.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,OA=OC,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.8.如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若BD=6,则四边形CODE 的周长是()A.10B.12C.18D.24【分析】由已知条件先证明四边形CODE是平行四边形,再由矩形的性质得出OC=OD=3,即可求出四边形CODE的周长.【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD=6,∴OC=OD=3,∴四边形CODE是菱形,∴DE=OC=OD=CE=3,∴四边形CODE的周长=4×3=12.9.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上一点,且CD=DE,连结BE,分别交AC,AD于点F、G,连结OG,则下列结论:①OG=AB;②由点A、B、D、E构成的四边形是菱形;③S四边形ODGF=S△ABF;④S△ACD=4S△BOG.其中正确的结论是()A.①②B.①②③C.①②④D.①②③④【分析】①由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ABD的中位线,得出OG=AB,①正确;②先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,得出四边形ABDE是菱形,②正确;④证OG是△ACD的中位线,得OG∥CD∥AB,OG=CD,则S△ACD =4S△AOG,再由S△AOG=S△BOG,则S△ACD=4S△BOG,④正确;③连接FD,由等边三角形的性质和角平分线的性质得F到△ABD三边的距离相等,则S△BDF=S△ABF=2S△BOF=2S△DOF=S四边形ODGF,则S四边形ODGF =S△ABF,③正确;即可得出结论.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ABD的中位线,∴OG=AB,故①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴平行四边形ABDE是菱形,故②正确;∵OA=OC,AG=DG,∴OG是△ACD的中位线,∴OG∥CD∥AB,OG=CD,∴S△ACD=4S△AOG,∵S△AOG=S△BOG,∴S△ACD=4S△BOG,故④正确;连接FD,如图:∵△ABD是等边三角形,AO平分∠BAD,BG平分∠ABD,∴F到△ABD三边的距离相等,∴S△BDF=S△ABF=2S△BOF=2S△DOF=S四边形ODGF,∴S四边形ODGF=S△ABF,故③正确;。
北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案
![北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案](https://img.taocdn.com/s3/m/4a5ed93b1fb91a37f111f18583d049649b660e25.png)
北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为()A.60°B.75°C.72° D2.关于矩形的性质、下面说法错误的是()A.矩形的四个角都是直角B.矩形的两组对边分别相等C.矩形的两组对边分别平行D.矩形的对角线互相垂直平分且相等3.在矩形ABCD中,以A为圆心,AD长为半径画弧,交AB于F点,以C为圆心,CD长为半径画弧,交AB于E点,若AD=2,CD=√5则EF=()A.1B.4−√5C.√5−2 D4.顺次连接矩形各边中点得到的四边形是()A.梯形B.矩形C.菱形D.正方形5.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD交BC边于点E,点F是AE的中点,连接OF,若∠BDC=2∠ADB,AB=1则FO的长度为()A.√32B.12C.√3−1 D6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=2,则四边形CODE的周长是()A.2.5B.3C.4D.57.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,下列结论中,不正确...的是()A.当AB⊥AD时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当AB=AC时,四边形ABCD是菱形8.依据所标数据,下列四边形不一定为矩形的是()A.B.C.D.二、填空题9.如图,要使平行四边形ABCD是矩形,则应添加的条件是(添加一个条件即可)10.如图,矩形ABCD中,点A坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是;11.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5且OE=2DE,则DE的长为.12.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm213.如图,在矩形ABCD中AD=4,AB=6作AE平分∠BAD,若连接BF,则BF的长度为。
九年级数学矩形练习题(性质)(含答案)
![九年级数学矩形练习题(性质)(含答案)](https://img.taocdn.com/s3/m/be7dcf325727a5e9856a613a.png)
7题E D C B A 8题E D C B A pF E 9题D C B A F E 10题D C B A 矩形练习题1、矩形是特殊的平行四边形,它除了具有平行四边形的所有性质之外,还具有其自身特有的性质 ○1 ○2 2、 的四边形是矩形。
的平行四边形是矩形。
3、如图,O 为矩形ABCD 中AC 、BD 的交点,AE ⊥BD 于点E 。
○1若OE ∶OB=1∶2,AE= 3 cm ,则∠ABO 的度数为 BD 的长度为○2若AE 分∠DAB 为∠BAE ∶∠DAE=1∶5两部分,则∠OAE 的度数为 4、Rt △ABC 中,斜边AB 上的中线CD=5,∠A=30°,则斜边AB 上的高为5、矩形的一个内角平分线将矩形的一边分成3cm 和4cm 两部分,则该矩形的面积为6、矩形的两条对角线的夹角为60°,且矩形的短边长为4cm,则它的面积为7、如图,矩形ABCD 中,AB=2BC ,E 为CD 上一点,且AE=AB ,则∠EBC 的度数为8、如图,矩形ABCD 中,E 为AB 中点,∠CED=90°,若矩形的周长为36,则AB= S 矩形=9、如图,矩形ABCD 中,AP ⊥BD 于点P ,E 、F 分别为AB 、AD 的中点,若矩形的周长为18,则四边形AEPF 的周长为10、如图,矩形ABCD 中,E 为AB 中点,DF ⊥CE 于点E ,若AB=6,BC=4,则DF=11、如图,矩形ABCD 的长为4,宽为3,O 为对角线的交点,直线l 经过点O ,将矩形分为两部分,则S 阴影= 。
12、如图,矩形ABCD 中,AC 、BD 交于点O ,AB=4,BC=3,N 为CD 上一点, NE ⊥OD 于点E ,N F ⊥OC 于点F ,则NE+NF 的值为 。
13、如图,将长AD=10㎝,AB=8㎝的矩形沿AE 对折,D 点落在BC 边上的F 点,则DE= 。
14、如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为原面积的一半,则该平行四边形的一个最小内角的度数为 。
数学九年级上学期《矩形的性质与判定》同步练习
![数学九年级上学期《矩形的性质与判定》同步练习](https://img.taocdn.com/s3/m/a6e5012c182e453610661ed9ad51f01dc2815781.png)
北师大新版数学九年级上学期《1.2矩形的性质与判定》同步练习一.选择题(共10小题)1.如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°2.矩形具有而一般的平行四边形不一定具有的特征()A.对角相等B.对角线相等C.对角线互相平分D.对边相等3.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.4.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定5.如图,在矩形ABCD中,AD=30,AB=20,若点E、F三等分对角线AC,则△ABE的面积为()A.60 B.100 C.150D.2006.如图,利用四边形的不稳定性改变矩形ABCD的形状,得到▱A1BCD1,若▱A1BCD1的面积是矩形ABCD面积的一半,则∠ABA1的度数是()A.15°B.30°C.45°D.60°7.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=4cm,则矩形ABCD的面积为()A.12cm2B.4cm2C.8cm2D.6cm28.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=2,则AC的长是()A.4 B.6 C.8D.109.如图,矩形ABCD中,AB=4,BC=2,O为对角线AC的中点,点P、Q分别从A和B两点同时出发,在边AB和BC上匀速运动,并且同时到达终点B、C,连接PO、QO并延长分别与CD、DA交于点M、N.在整个运动过程中,图中阴影部分面积的大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小10.如图,矩形ABCD由3×4个小正方形组成,此图中不是正方形的矩形有()A.34个B.36个C.38个D.40个二.填空题(共6小题)11.如果▱ABCD成为一个矩形,需要添加一个条件,那么你添加的条件是.12.如图,在平行四边形中,∠B=60°,AB=4,AD=6,动点F从D出发,以1个单位每秒的速度从D向A运动,同时动点E以相同速度从点C出发,沿BC方向在BC的延长线上运动,设运动时间为t,连接DE、CF.探究:①当t=s,四边形DECF是菱形;②当t=s,四边形DECF是矩形.13.的平行四边形是矩形(填一个合适的条件).14.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为BC的中点,P为BC上一点,PF⊥AB于F,PE⊥AC于E,则DF与DE的关系为.15.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点(P不与B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是.16.如图,在矩形ABCD中,M为CD的中点,连接AM、BM,分别取AM、BM 的中点P、Q,以P、Q为顶点作第二个矩形PSRQ,使S、R在AB上.在矩形PSRQ中,重复以上的步骤继续画图….若AM⊥MB,矩形ABCD的周长为30.则(1)PQ=;(2)第n个矩形的边长分别是.三.解答题(共5小题)17.如图所示,在矩形ABCD中,对角线AC、BD相交于点O,CE∥DB,交AD的延长线于点E,试说明AC=CE.18.如图,在长方形ABCD中,点E,F分别在边AB和BC上,∠AEF的平分线与边AD交于点G,线段EG的反向延长线与∠EFB的平分线交于点H.(1)当∠BEF=50°(图1),试求∠H的度数.(2)当E,F在边AB和BC上任意移动时(不与点B重合)(图2),∠H的大小是否变化?若变化,请说明理由;若不变化,求出∠H的度数.19.如图:矩形ABCD中,AB=2,BC=5,E、G分别在AD、BC上,且DE=BG=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFGH是什么特殊四边形?并证明你的判断.20.已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,求证:DF=AB.21.如图,在矩形ABCD中,E是BC上的一点,且AE=AD,又DF⊥AE于点F(1)求证:CE=EF;(2)若EF=2,CD=4,求矩形ABCD的面积.参考答案与试题解析一.选择题1.A分析:依据矩形的性质以及三角形内角和定理,可得∠ABC=θ2+80°﹣θ1,∠BCD=θ3+130°﹣θ4,再根据矩形ABCD中,∠ABC+∠BCD=180°,即可得到(θ1+θ4)﹣(θ2+θ3)=30°.2.B分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.3.C分析:过点D作DG⊥BE,垂足为G,则GD=3,首先证明△AEB≌△GED,由全等三角形的性质可得到AE=EG,设AE=EG=x,则ED=4﹣x,在Rt△DEG中依据勾股定理列方程求解即可.4.C分析:首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,=S△AOP+S△DOP=OA•PE+OD•PF求得答案.△AOD的面积,然后由S△AOD5.B分析:先求出矩形的面积,根据矩形得到△ABC≌△CDA,即可求出△ABC的面积,根据等底等高的三角形的面积相等即可求出答案.6.D分析:过A1作A1H⊥BC于H,根据▱A1BCD1的面积是矩形ABCD面积的一半,求出A1H=A1B,根据含30度角的直角三角形性质求出∠A1BH=30°即可.7.B分析:根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB,进而利用勾股定理得出BC,利用矩形的面积公式解答即可.8.A分析:由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,在直角三角形ABC中,根据直角三角形的两个锐角互余可得∠ACB为30°,根据30°角所对的直角边等于斜边的半径,由AB的长可得出AC的长.9.C分析:根据矩形对角线将矩形分成了面积相等的四部分,找到三个分界处P与Q 点的位置及面积的变化,作对比,进行比较可得结论.10.D分析:解答此题要从矩形的两边长进行分类分析,在由3×4个小正方形组成矩形ABCD中,不是正方形的矩形的两边长存在以下几种情况:2、1;3、1;4、1;3、2;3、4;4、2.二.填空题11.∠A=90°分析:根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.12.①4;②2.分析:根据平行四边形的性质可得出DF∥CE,由点D、C的运动速度可得出DF=CE,从而得出四边形DECF为平行四边形.①利用菱形的判定定理可得出:当DF=CF时,平行四边形DECF为菱形.由CF=DF 结合∠ADC=60°可得出△CDF为等边三角形,进而可得出DF=4,此题得解;②利用矩形的判定定理可得出:当∠CFD=90°时,平行四边形DECF为矩形.通过解直角三角形可得出DF=2,此题得解.13.有一个角是直角(答案不唯一)分析:根据矩形的判定添上即可,答案不唯一:如①有一个角是直角,②对角线相等等.14.DF=DE且DF⊥DE分析:如图,连接AD.欲证明DF=DE,只要证明△ADF≌△CDE即可.15.≤AM<2分析:首先连接AP,由在Rt△ABC中,∠BAC=90°,PE⊥AB于E,PF⊥AC于F,可证得四边形AEPF是矩形,即可得AP=EF,即AP=2AM,然后由当AP⊥BC时,AP最小,可求得AM的最小值,又由AP<AC,即可求得AM的取值范围.16.10×,5×分析:(1)AM⊥MB,且M为CD的中点,AM=MB,可得∠DAM=∠DMA,可得AD=DM=CD,再根据矩形ABCD的周长为30,可求的CD的长,进而得出PQ.(2)由第一问求得:第一个矩形的长为:10,宽为5,根据三角形中位线定理,PQ=5,则宽为,由此以此类推可得第n个矩形的边长.三.解答题17.分析:由矩形的性质,可得AC=BD,欲求AC=CE,证BD=CE即可.可通过证四边形BDEC是平行四边形,从而得出BD=CE的结论.解答: 解:在矩形ABCD中,AC=BD,AD∥BC.又∵CE∥DB,∴四边形BDEC是平行四边形.∴BD=EC,∴AC=CE.18.分析:(1)根据三角形的内角和是180°,可求∠EFB=40°,所以∠EFH=20°,又由平角定义,可求∠AEF=130°,所以∠GEF=65°,又根据三角形的外角等于与它不相邻的两内角之和,可得∠H=45度.(2)运用(1)中的计算方法即可得到,∠H的大小不发生变化.解答: 解:(1)∵∠B=90°,∠BEF=50°,∴∠EFB=40°.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=65°,∠EFH=20°.∵∠GEF=∠H+∠EFH,∴∠H=65°﹣20°=45°.(2)不变化.∵∠B=90°,∴∠EFB=90°﹣∠BEF.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=∠AEF=(180°﹣∠BEF),∠EFH=∠EFB=(90°﹣∠BEF).∵∠GEF=∠H+∠EFH,∴∠H=∠GEF﹣∠EFH=(180°﹣∠BEF)﹣(90°﹣∠BEF)=45°.19.分析:(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBG和AECG,推出EH∥FG,EF∥HG,推出平行四边形EFGH,根据矩形的判定推出即可.解答:解:(1)△BEC是直角三角形:理由如下:∵四边形ABCD是矩形,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE===,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)四边形EFGH为矩形,理由如下:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵DE=BG,∴四边形DEBG是平行四边形,∴BE∥DG,∵AD=BC,AD∥BC,DE=BG,∴AE=CG,∴四边形AECG是平行四边形,∴AG∥CE,∴四边形EFGH是平行四边形,∵∠BEC=90°,∴平行四边形EFGH是矩形.20.分析:根据矩形性质得出∠B=∠DFA=90°,AD∥BC,求出∠DAF=∠AEB,△AFD≌△EBA,根据全等得出即可.解答:证明:∵四边形ABCD是矩形,DF⊥AE,∴∠B=∠DFA=90°,AD∥BC,∴∠DAF=∠AEB,在△AFD和△EBA中,∴△AFD≌△EBA(AAS),∴DF=AB.21.分析:(1)连接DE,利用矩形的性质,则可证得Rt△ABE≌Rt△DFA,进一步可证得Rt△DFE≌Rt△DCE,则可证得结论;(2)设BE=x,则AF=x,AE=x+2,在Rt△ABE中,利用勾股定理,可求得AE,则可求得BC的长,可求得矩形ABCD的面积.解答:证明:(1)如图,连接DE,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°.又∵AD=AE,∴Rt△ABE≌Rt△DFA.∴AB=CD=DF.又∵∠DFE=∠C=90°,DE=DE,∴Rt△DFE≌Rt△DCE.∴EC=EF;(2)∵EF=EC=2,CD=AB=4,∴设BE=x,则AF=x,AE=x+2.在Rt△ABE中,∵BE2+AB2=AE2,∴42+x2=(x+2)2.解这个方程得:x=3,∴BC=5.∴矩形ABCD的面积=5×4=20.北师大新版数学九年级上学期《1.3正方形的性质与判定》同步练习一.选择题(共10小题)1.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF=15°,③AC 垂直平分EF ,④S △CEF =2S △ABE ,其中正确的结论有( )A .1个B .2个C .3个D .4个2.正方形ABCD 中,点P ,Q 分别是边AB ,AD 上的点,连接PQ 、PC 、QC ,下列说法:①若∠PCQ=45°,则PB +QD=PQ ;②若AP=AQ=,∠PCQ=36°,则;③若△PQC 是正三角形,若PB=1,则AP=.其中正确的说法有( ) A .3个 B .2个 C .1个 D .0个3.如图,在正方形ABCD 的外侧作等边△ADE ,则∠AEB 的度数为( )A .10°B .12.5°C .15°D .20°4.下列说法错误的是( )A .平行四边形的内角和与外角和相等B .一组邻边相等的平行四边形是菱形C .对角线互相平分且相等的四边形是矩形D .四条边都相等的四边形是正方形5.在3×4的方格网的每个小方格中心都放有一枚围棋子,至少要去掉( )枚围棋子,才能使得剩下的棋子中任意四枚都不够成正方形的四个顶点.A .2B .3C .4D .5 6.下列命题正确的是( )A .一组对边相等,另一组对边平行的四边形一定是平行四边形B .对角线相等的四边形一定是矩形C .两条对角线互相垂直的四边形一定是菱形D .两条对角线相等且互相垂直平分的四边形一定是正方形7.直角梯形ABCD 中,∠A=∠D=90°,DC <AB ,AB=AD=12,E 是边AD 上的一点,恰好使CE=10,并且∠CBE=45°,则AE的长是()A.2或8 B.4或6 C.5 D.3或78.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等9.如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()A.四边形AEDF一定是平行四边形B.若AD平分∠A,则四边形AEDF是正方形C.若AD⊥BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形10.在△ABC中,AC=AB,D,E,F分别是AC,BC,AB的中点,则下列结论中一定正确的是()A.四边形DEBF是矩形B.四边形DCEF是正方形C.四边形ADEF是菱形D.△DEF是等边三角形二.填空题(共6小题)11.如图,以正方形ABCD的边AD为一边作等边三角形ADE,F是DE的中点,BE、AF相交于点G,连接DG,若正方形ABCD的面积为36,则BG=.12.如图,在△ABC中,点D、E、F分别在BC、AB、AC上,且DE∥AC,DF∥AB.(1)如果∠BAC=90°,那么四边形AEDF是形;(2)如果AD是△ABC的角平分线,那么四边形AEDF是形;(3)如果∠BAC=90°,AD是△ABC的角平分线,那么四边形AEDF是形.13.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为.14.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为.15.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为.16.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB+,若AC=CD,则边AD的长为.三.解答题(共4小题)17.在正方形ABCD中,CE⊥DF.(1)如图1,证明:BE=CF.(2)如图2,设正方形对角线交点为O,连接EO,FO猜想:OE与OF之间的关系.并说明理由.(3)在(2)中,若OE=,FC=1,求正方形的边长.18.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.19.如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,垂足为O,连接DE、DF.(1)判断四边形AEDF的形状,并证明;(2)直接写出△ABC满足什么条件时,四边形AEDF是正方形?20.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?参考答案一.选择题1.D.2.A.3.C.4.D.5.C.6.D.7.B.8.D.9.B.10.C.二.填空题11.3.12.矩形;菱形;正方形.13.914.10.15.2.16..三.解答题17.(1)证明:在正方形ABCD中,BC=CD,∠B=∠BCD=90°,∵CE⊥DF,∴∠CDF+∠DCE=90°,又∵∠BCE+∠DCE=90°,∴∠BCE=∠CDF,在△BCE和△CDF中,∴△BCE≌△CDF(ASA),∴BE=CF;(2)OE=OF;理由:∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,在△OEB和△OCF中,∴△OEB≌△OCF(SAS),∴OE=OF;(3)解:如图,连接EF,∵△OEB≌△OCF,∴∠EOB=∠FOC,OE=OF=∴∠EOF=∠EOB+∠BOF=∠COF+∠BOF=90°,∴EF==,又∵BE=CF=1∴BF==3∴BC=BF+FC=3+1=4;即正方形的边长是4.18.解:(1)∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠DBC=∠BCA=∠ACD=45°,∵CE平分∠DCA,∴∠ACE=∠DCE=∠ACD=22.5°,∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,∵∠DBC=45°,∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,∴BE=BC=,在Rt△ACD中,由勾股定理得:BD==2,∴DE=BD﹣BE=2﹣;(2)∵FE⊥CE,∴∠CEF=90°,∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,∵∠FBE=∠CDE=45°,BE=BC=CD,∴△FEB≌△ECD,∴BF=DE=2﹣;(3)延长GE交AB于F,由(2)知:DE=BF=2﹣,由(1)知:BE=BC=,∵四边形ABCD是正方形,∴AB∥DC,∴△DGE∽△BFE,解得:DG=3﹣4.19.解:(1)四边形AEDF是菱形,∵AD平分∠BAC,∴∠BAD=∠CAD,又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中∴△AEO≌△AFO(ASA),∴EO=FO,∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形;(2)当△ABC中∠BAC=90°时,四边形AEDF是正方形;∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).20.解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.数学九年级上册同步练习1.3 正方形的性质与判定学校:___________姓名:___________班级:___________一.选择题(共12小题)1.下列哪种四边形的两条对角线互相垂直平分且相等()A.矩形B.菱形C.平行四边形D.正方形2.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角形互相垂直平分3.如图,已知正方形ABCD的边长为1,连结AC、BD,CE平分∠ACD交BD于点E,则DE长()A.B.C.1 D.1﹣4.如图,四边形ABCD是边长为6的正方形,点E为边BC上的点,以DE为边向外作矩形DEFG,使EF过点A,若DE=9,那么DG的长为()A.3 B.3 C.4 D.45.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④8.如图,在菱形ABCD中,对角线AC、BD交于点O,添加下列一个条件,能使菱形ABCD成为正方形的是()A.BD=AB B.AC=AD C.∠ABC=90°D.OD=AC9.下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直且平分的四边形是菱形D.邻边相等的矩形是正方形10.如图,在给定的一张平行四边形纸片上按如下操作:连结AC,作AC的垂直平分线MN分别交AD、AC、BC于M、O、N,连结AN,CM,则四边形ANCM是( )A .矩形B .菱形C .正方形D .无法判断11.如图,AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高,得到下面四个结论:①OA=OD ;②AD ⊥EF ;③当∠BAC=90°时,四边形AEDF 是正方形;④AE 2+DF 2=AF 2+DE 2.其中正确的是( )A .②③B .②④C .②③④D .①③④12.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD 的对角线相交于点O ,过点O 作EF 垂直于BD 交AB ,CD 分别于点F ,E ,连接DF ,BE .请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF ;小何:四边形DFBE 是正方形;小夏:S 四边形AFED =S 四边形FBCE ;小雨:∠ACE=∠CAF .这四位同学写出的结论中不正确的是( )A .小青B .小何C .小夏D .小雨二.填空题(共6小题)13.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 .14.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是度.15.如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E,AB=2cm.则图中阴影部分面积为.16.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论::①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的序号).17.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.18.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为.三.解答题(共5小题)19.如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.20.已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.21.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.22.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.23.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.参考答案一.选择题(共12小题)1.D.2.B.3.A.4.C.5.D.6.B.7.C.8.C.9.B.10.B.11.C.12.B.二.填空题(共6小题)13.(﹣1,5).14.67.5.15..16.①②.17.3.18.9三.解答题(共5小题)19.证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.20.解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.21.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH,∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH,∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.22.解:(1)四边形BECF是菱形.∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠3=∠1,∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE,∵CF=AE,∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵∠A=45°,∠ACB=90°,∴∠1=45°,∴∠EBF=2∠A=90°,∴菱形BECF是正方形.23.(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD,∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.。
九年级数学矩形随堂练习题(含答案)
![九年级数学矩形随堂练习题(含答案)](https://img.taocdn.com/s3/m/1dd86467561252d380eb6e3a.png)
O F E D C B
A F E D C
B A 《矩形》随堂练习题
1.对角线 的四边形是矩形;对角线 的平行四边形是矩形。
2.要证明一个四边形为矩形,得先证明它是 ,再证明 或 即可;也可直接证明 。
3.如图,矩形ABCD 中,AC 、BD 交于点O ,点M 、N 、P 、Q 分别为OA 、OB 、OC 、OD 的中点,试判断四边形MNOP 的形状,并证明。
4.如图,四边形ABCD 中,BE=DF ,AC 、EF 互相平分于点O ,∠B=90°,
求证:四边形ABCD 是矩形。
5.如图,△ABC 中,D 为AB 上一点,且AD=BD=CD ,DE 、DF 分别平分∠ADC 、∠BDC , 求证:四边形DECF 是矩形。
《矩形》随堂练习题答案
1.互相平分且相等相等
2.平行四边形有一个角为90°对角线相等有三个角为90°
3.略证:∵矩形ABCD ∴OA=OB=OC=OD 又∵M、N、P、Q分别为各边中点∴OM=ON=OP=OQ ∴四边形MNOP为矩形。
4.略证:分别连接AF、CE ∵AC、EF互相平分∴四边形AECF为平行四边形∴CF∥AE且CF=AE 又∵DF=BE ∴四边形ABCD为平行四边形
又∵∠B=90°∴四边形ABCD是矩形
5.略证:∵AD=BD=CD DE、DF分别平分∠ADC、∠BDC
∴DF⊥AC DE⊥BC ∠ACB=90°∴四边形DECF是矩形。
中考数学总复习《矩形的性质》练习题及答案
![中考数学总复习《矩形的性质》练习题及答案](https://img.taocdn.com/s3/m/bc396451cbaedd3383c4bb4cf7ec4afe04a1b1a2.png)
中考数学总复习《矩形的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,动点A在抛物线y=﹣x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A作AC⊥l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤62.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分⊥BED,则S△ABES△CDE的值为()A.2−√32B.2√3−32C.2√3−33D.2−√333.如图,矩形ABCD中,AB=8,BC=6,对角线AC,BD交于点O,过点O作OG⊥AB于点G.延长AB至E,使BE= 14AB,连接OE交BC于点F,则BF的长为()A.45B.1C.32D.24.如图2,⊥MON=900,矩形ABCD的顶点A,B分别在OM、ON上,当B在边ON上运动时,A 随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1。
运动过程中,点D到点O 的最大距离为()A.√2+1B.√5C.√145D.5255.如图,在矩形ABCD中,对角线AC与BD相交于点O,AD=√3,AB=1,则⊥BOC的度数为()A.60°B.120°或60°C.120°D.30°或60°6.如图,矩形ABCD中,AB=8,BC=6.点E在边AB上,点F在边CD上,点G、H在对角线AC 上.若四边形EGFH是菱形,则AE的长是()A.2 √5B.3 √5C.92D.2547.四边形中,一定有内切圆的是()A.平行四边形B.菱形C.矩形D.以上答案都不对8.如图,在矩形ABCD,对角线AC与BD相交于点O,EO⊥AC于点O,交BC于点E,若ΔABE的周长为8,AB=3,则AD的长为()A.2B.5.5C.5D.49.若一个四边形的两条对角线相等,则称这个四边形为对角线四边形.下列图形不是对角线四边形的是()A.平行四边形B.矩形C.正方形D.等腰梯形10.在矩形ABCD中,AB=1,AD=,AF平分⊥DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED;正确的是().A.②③B.③④C.①②④D.②③④11.如图,在矩形ABCD中,AB=a(a <2),BC=2.以点D为圆心,CD的长为半径画弧,交AD 于点E,交BD于点F.下列哪条线段的长度是方程x2+2ax−4=0的一个根()A.线段AE的长B.线段BF的长C.线段BD的长D.线段DF的长12.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将⊥ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.125C.165D.185二、填空题13.如图,P为双曲线y= 1x上的一点,过P作x轴、y轴的垂线,分别交直线y=-2x+m于C,B两点,若直线y=-2x+m与y轴交于点A,与x轴相交于点D,则AC·BD的值为。
九年级数学上册《第一章 矩形的性质与判定》同步练习题及答案(北师大版)
![九年级数学上册《第一章 矩形的性质与判定》同步练习题及答案(北师大版)](https://img.taocdn.com/s3/m/5de7797b326c1eb91a37f111f18583d049640f9c.png)
九年级数学上册《第一章矩形的性质与判定》同步练习题及答案(北师大版)1.如图,点E为矩形ABCD内一点,且EA=EB.求证:∠ECD=∠EDC.2.如图,在矩形ABCD中,点M在CD上,AM=AB,BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=3,MN=1,求AB的长.3.如图,在矩形ABCD中,O是对角线AC的中点,过点O作EF⊥AC分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)若AB=8,BC=16,求CF的长.4.如图,在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,且FC=AE,连接AF、BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,FC=3,DF=5,求BF的长.5.如图,在平行四边形ABCD中,CE⊥AD于点E,延长DA至点F,使得EF=DA,连接BF,CF.(1)求证:四边形BCEF是矩形;(2)若AB=3,CF=4,DF=5,求EF的长.6.如图,在▱ABCD中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.7.已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.(1)求证:四边形ABCD是矩形;(2)若AB=4,AD=3,求四边形BCED的周长.8.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若∠BDE=15°,求∠DOE;(3)在(2)的条件下,若AB=2,求△BOE的面积.9.如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA=OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD=12,AB=5,求PE+PF的值.10.如图,在矩形ABCD中,E为DC边的中点,连接AB,AE的延长线和BC的延长线相交于点F.(1)求证:△ADE≌△FCE;(2)连接AC,与BE相交于点G,若△GEC的面积为2,求矩形ABCD的面积.11.如图,在矩形ABCD中,O为对角线BD的中点,过点O作直线分别与矩形的边AB,CD交于E,F 两点,连接BF,DE.(1)求证:四边形BEDF为平行四边形;(2)若AD=1,AB=3,且EF⊥BD,求AE的长.12.已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.(1)求证:四边形AMCN是平行四边形;(2)当△ABC的边AC、BC满足什么数量关系时,四边形AMCN是矩形,请说明理由.13.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:OC=BC.(2)四边形ABCD是矩形.14.已知,在四边形ABCD中,AD∥BC,点E为BC的中点,连接AC,DE交于点F,AB=AC,AF=CF.(1)如图1,求证:四边形AECD是矩形;(2)如图2,连接BF,在不添加任何辅助线的情况下,请直接写出图2中与△BEF面积相等的三角形.15.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC=ED,连接AC交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.16.如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1(1)判断△BEC的形状,并说明理由;(2)求证:四边形EFPH是矩形.17.如图△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=4,CF=3,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.18.如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向点O运动.(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.19.如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P 作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,MD⊥MP,求AQ的长.20.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.21.如图,在长方形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发沿AD、BC、CB、DA 方向在长方形的边上同时运动,当有一个点先到达所在运动边的另一个端点时即停止,已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,点的运动停止?(2)点P与点N可能相遇吗?点Q与点M呢?请通过计算说明理由.(3)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形?22.如图,AC为矩形ABCD的对角线,BE⊥AC于点E,DF⊥AC于点F.(1)求证:△ABE≌△CDF.(2)求证:四边形BFDE是平行四边形.23.如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线D→C→B→A→D方向以2cm/s 的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且BE=3cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?24.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D回到点A,设点P运动的时间为t秒.(1)当t=3秒时,求△ABP的面积;(2)当t为何值时,点P与点A的距离为5cm?(3)当t为何值时(2<t<5),以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边.参考答案1.证明:∵EA=EB∴∠EAB=∠EBA在矩形ABCD中,∠DAB=∠CBA=90°,AD=BC ∴∠DAB﹣∠EAB=∠CBA﹣∠EBA即∠EAD=∠EBC在△ADE和△BCE中{AD=BC∠DAE=∠CBE EA=EB∴△ADE≌△BCE(SAS).∴ED=EC∴∠ECD=∠EDC.2.(1)证明:在矩形ABCD中,∠D=90°,DC∥AB ∴∠BAN=∠AMD∵BN⊥AM∴∠BNA=90°在△ABN和△MAD中{∠BAN=∠AMD ∠BNA=∠D=90°AB=AM∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD∴BN=AD=3∵AB2=AN2+BN2∴AB2=(AB﹣1)2+9∴AB=53.(1)证明:∵四边形ABCD是矩形∴AD∥BC∴∠DAC=∠BCA∵点O是AC的中点∴AO=CO在△AEO和△CFO中{∠DAC=∠ACB AO=CO∠AOE=∠COF∴△AEO≌△CFO(ASA);(2)解:如图,连接AF∵AO=CO,EF⊥AC∴AF=FC∵AF2=AB2+BF2∴CF2=(16﹣CF)2+64∴CF=10.4.(1)证明:∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵FC=AE∴CD﹣FC=AB﹣AE即DF=BE∴四边形DEBF是平行四边形又∵DE⊥AB∴∠DEB=90°∴平行四边形DEBF是矩形;(2)解:∵AF平分∠DAB∴∠DAF=∠BAF∵DC∥AB∴∠DF A=∠BAF∴∠DF A=∠DAF∴AD=DF=5在Rt△AED中,由勾股定理得:DE=√AD2−AE2=√52−32=4由(1)得:四边形DEBF是矩形∴BF=DE=4.5.(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∵EF=DA∴EF=BC,EF∥BC∴四边形BCEF是平行四边形又∵CE⊥AD∴∠CEF=90°∴平行四边形BCEF是矩形;(2)解:∵四边形ABCD是平行四边形∴CD=AB=3∵CF=4,DF=5∴CD2+CF2=DF2∴△CDF是直角三角形,∠DCF=90°∴△CDF的面积=12DF×CE=12CF×CD∴CE=CF×CDDF=4×35=125由(1)得:EF=BC,四边形BCEF是矩形∴∠FBC=90°,BF=CE=12 5∴BC=√CF2−BF2=√42−(125)2=165∴EF=16 5.6.证明:(1)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD∵AE=FD∴AE+EF=FD+EF即AF=DE在△ABF和△DCE中{AB=CD BF=CE AF=DE∴△ABF≌△DCE(SSS);(2)由(1)可知:△ABF≌△DCE∴∠A=∠D∵AB∥CD∴∠A+∠D=180°∴2∠A=180°∴∠A=90°∴▱ABCD为矩形.7.(1)证明:∵四边形ABCD是平行四边形∴AE∥BC∵CE∥BD∴四边形BCED是平行四边形∴CE=BD.∵CE=AC∴AC=BD.∴▱ABCD是矩形;(2)解:∵AB=4,AD=3,∠DAB=90°∴BD=√AB2+AD2=√42+32=5.∵四边形BCED是平行四边形∴四边形BCED的周长为2(BC+BD)=2×(3+5)=16.8.(1)证明:∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=90°∴∠BAD=90°∴∠BAD=∠ABC=∠ADC=90°∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,DE平分∠ADC∴∠CDE=∠CED=45°∴EC=DC又∵∠BDE=15°∴∠CDO=60°又∵矩形的对角线互相平分且相等∴OD=OC∴△OCD是等边三角形∴∠DOC=∠OCD=60°∴∠OCB=90°﹣∠DCO=30°∵CO=CE∴∠COE=(180°﹣30°)÷2=75°∴∠DOE=∠DOC+∠COE=60°+75°=135°;(3)解:作OF⊥BC于F.∵四边形ABCD是矩形∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD ∴AO=BO=CO=DO∴BF=FC∴OF=12CD=1∵∠OCB=30°,AB=2∴BC=2√3∵DE平分∠ADC,∠ADC=90°∴∠EDC=45°在Rt△EDC中,EC=CD=2∴△BOE的面积=12•EB•OF=12×(2√3−2)×1=√3−1.9.证明:(1)∵AD∥BC∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°∵∠ABC =∠ADC∴∠BAD =∠BCD∴四边形ABCD 是平行四边形∴OA =OC =12AC ,OB =OD =12BD∵OA =OB∴AC =BD∴四边形ABCD 是矩形;(2)如图,连接OP∵AD =12,AB =5∴BD =√AB 2+AD 2=√144+25=13∴BO =OD =AO =CO =132 ∵S △AOD =14S 矩形ABCD =14×12×5=15∴S △AOP +S △POD =15∴12×132×FP +12×132×EP =15 ∴PE +PF =6013.10.(1)证明:∵四边形ABCD 是矩形∴AD ∥CB ,AD =BC∴∠D =∠FCE ;∵E 为DC 中点∴ED =EC在△ADE 与△FCE 中{∠D =∠FCE DE =CE ∠AED =∠FEC∴△ADE ≌△FCE (ASA );(2)解:∵四边形ABCD 是矩形∴AB ∥CD ,AB =DC∴AB EC =BG EG ,S △ABGS △CEG =(AB EC )2∵DE =CE∴AB =2CE∴BG EG =2,S △ABGS △CEG =(AB EC )2=4∵△GEC 的面积为2∴S △BGC =2S △CEG =4,S △ABG =4S △CEG =8∴S △ABC =S △BGC +S △ABG =4+8=12∴矩形ABCD 的面积=2S △ABC =24.11.(1)证明:∵四边形ABCD 是矩形∴AB ∥CD∴∠OBE =∠ODF∵O 为对角线BD 的中点∴OB =OD在△OBE 和△ODF 中{∠OBE =∠ODF OB =OD ∠BOE =∠DOF∴△OBE ≌△ODF (ASA )∴BE =DF又∵BE ∥DF∴四边形BEDF 为平行四边形;(2)解:∵四边形ABCD 是矩形∴∠A =90°由(1)得:四边形BEDF 为平行四边形∵EF ⊥BD∴平行四边形BEDF 为菱形∴BE =DE设AE =x ,则DE =BE =3﹣x在Rt △ADE 中,由勾股定理得:AD 2+AE 2=DE 2即12+x 2=(3﹣x )2解得:x =43即AE 的长为43. 12.(1)证明∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD∵M ,N 分别为AB 和CD 的中点∴AM =12AB ,CN =12CD∴AM =CN∵AB ∥CD∴四边形AMCN 是平行四边形;(2)解:AC =BC 时,四边形AMCN 是矩形证明∵AC =BC ,且M 是BC 的中点∴CM ⊥AB即∠AMC =90°∴四边形AMCN 是矩形.13.证明:(1)∵CE 平分∠ACB∴∠OCE =∠BCE∵BO ⊥CE∴∠CFO =∠CFB =90°在△OCF 与△BCF 中{∠OCE =∠BCE CF =CF ∠CFO =∠CFB△OCF ≌△BCF (ASA )∴OC =BC ;(2)∵点O 是AC 的中点∴OA =OC∵AD ∥BC∴∠DAO =∠BCO ,∠ADO =∠CBO在△OAD 与△OCB 中{∠DAO =∠BCO OA =OC ∠ADO =∠CBO∴△OAD ≌△OCB (ASA )∴AD =BC∵AD ∥BC∴四边形ABCD 是平行四边形∵OE ⊥AC∴∠EOC =90°在△OCE 与△BCE 中{CE =CE ∠OCE =∠BEC OC =BC∴△OCE ≌△BCE (SAS )∴∠EBC =∠EOC =90°∴四边形ABCD 是矩形.14.(1)证明:∵AD ∥BC∴∠F AD =∠FCE ,∠FDA =∠FEC在△ADF 和△CEF 中{∠FAD =∠FCE ∠FDA =∠FEC AF =CF∴△ADF ≌△CEF (AAS )∴AD =CE∵AD ∥CE∴四边形AECD 为平行四边形∵AB =AC ,点E 为BC 的中点∴AE ⊥BC∴∠AEC =90°∴平行四边形AECD 为矩形;(2)解:图2中与△BEF 面积相等的三角形为△AEF ,△ADF ,△CDF ,△CEF .理由如下:∵点E为BC的中点∴S△CEF=S△BEF∵AF=CF∴S△AEF=S△CEF,S△ADF=S△CDF由(1)可知,四边形AECD是矩形∴EF=DF∴S△AEF=S△ADF∴S△CEF=S△BEF=S△AEF=S△ADF=S△CDF即与△BEF面积相等的三角形为△AEF,△ADF,△CDF,△CEF.15.(1)证明:∵四边形ABDE是平行四边形∴AB∥DE,AB=ED∵DC=ED∴DC=AB,DC∥AB∴四边形ABCD是平行四边形∵DE⊥AD∴∠ADC=90°∴四边形ABCD是矩形;(2)解:过O作OF⊥CD于F∵四边形ABCD是矩形,AD=4,AB=2∴DE=CD=AB=2,AD=BC=4,AC=BD,AO=OC,BO=DO ∴OD=OC∵OF⊥CD∴DF=CF=12CD=12×2=1∴OF=12BC=12×4=2,EF=DE+DF=2+1=3∴OE=√EF2+OF2=√32+22=√13.16.解:(1)△BEC是直角三角形:理由是:∵矩形ABCD∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2由勾股定理得:CE=√CD2+DE2=√22+12=√5同理BE=2√5∴CE2+BE2=5+20=25∵BC2=52=25∴BE2+CE2=BC2∴∠BEC=90°∴△BEC是直角三角形.(2)∵矩形ABCD∴AD=BC,AD∥BC∵DE=BP∴四边形DEBP是平行四边形∴BE∥DP∵AD=BC,AD∥BC,DE=BP∴AE=CP∴四边形AECP是平行四边形∴AP∥CE∴四边形EFPH是平行四边形∵∠BEC=90°∴平行四边形EFPH是矩形.17.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F ∴∠2=∠5,∠4=∠6∵MN∥BC∴∠1=∠5,∠3=∠6∴∠1=∠2,∠3=∠4∴EO=CO,FO=CO∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6∴∠2+∠4=∠5+∠6=90°∵CE=4,CF=3∴EF=√42+32=5∴OC=12EF=52;(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO∵EO=FO∴四边形AECF是平行四边形∵∠ECF=90°∴平行四边形AECF是矩形.18.解:(1)当E与F不重合时,四边形DEBF是平行四边形.理由:∵四边形ABCD是平行四边形∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向点O运动∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形;(2)四边形DEBF能是矩形.理由:∵四边形DEBF是平行四边形∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm由于动点的速度都是1cm/s所以t=2(s)故当运动时间t=2s时,以D、E、B、F为顶点的四边形是矩形.19.解:(1)∵△CDQ≌△CPQ∴DQ=PQ,PC=DC∵AB=DC=5,AD=BC=3∴PC=5在Rt△PBC中,PB=√PC2−BC2=4∴P A=AB﹣PB=5﹣4=1设AQ=x,则DQ=PQ=3﹣x在Rt△P AQ中,(3﹣x)2=x2+12解得x=4 3∴AQ=4 3.(2)方法1,如图2,过M作EF⊥CD于F,则EF⊥AB ∵MD⊥MP∴∠PMD=90°∴∠PME+∠DMF=90°∵∠FDM+∠DMF=90°∴∠MDF=∠PME∵M是QC的中点∴DM=12QC,PM=12QC∴DM=PM在△MDF和△PME中{∠MDF=∠PME ∠DFM=∠MEP DM=PM∴△MDF≌△PME(AAS)∴ME=DF,PE=MF∵EF⊥CD,AD⊥CD∴EF∥AD∵QM=MC∴DF=CF=12DC=52∴ME=5 2∵ME是梯形ABCQ的中位线∴2ME=AQ+BC,即5=AQ+3∴AQ=2.方法2、∵点M是Rt△CDQ的斜边CQ中点∴DM=CM∴∠DMQ=2∠DCQ∵点M是Rt△CPQ的斜边的中点∴MP=CM∴∠PMQ=2∠PCQ∵∠DMP=90°∴2∠DCQ+2∠PCQ=90°∴∠PCD=45°,°∠BCP=90°﹣45°=45°∴∠BPC=45°=∠BCP,∴BP=BC=3∵∠CPQ=90°∴∠APQ=180°﹣90°﹣45°=45°∴∠AQP=90°﹣45°=45°=∠APQ∴AQ=AP=2.20.(1)证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,OB=OD,OA=OC∴∠ABE=∠CDF∵点E,F分别为OB,OD的中点∴BE=12OB,DF=12OD∴BE=DF在△ABE和△CDF中{AB=CD∠ABE=∠CDF BE=DF∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB∴AB=OA∵E是OB的中点∴AG⊥OB∴∠OEG=90°同理:CF⊥OD∴AG∥CF∴EG∥CF由(1)得:△ABE≌△CDF∴AE=CF∵EG=AE∴EG=CF∴四边形EGCF是平行四边形∵∠OEG=90°∴四边形EGCF是矩形.21.解:(1)由题意得x2=20∴x=2√5∴当x为2√5时,点的运动停止;(2)当点P与点N相遇时,2x+x2=20解得x=2√21−1或﹣1﹣2√21(舍去)当点Q与点M相遇时,x+3x=20解得x=5当x=5时,x2=25>20∴点Q与点M不能相遇;(3)∵当点N到达A点时,x2=20∴x=2√5∴BQ=2√5cm,CM=6√5cm∵BQ+CM=8√5<20∴此时M点与Q点还未相遇∴点Q只能在点M的左侧①如图,当点P在点N的左侧时20﹣(x+3x)=20﹣(2x+x2)解得x=0(舍去)或x=2∴当x=2时,以P、Q、M、N为顶点的四边形是平行四边形;②如图,当点P在点N的右侧时20﹣(x+3x)=(2x+x2)﹣20解得x=4或﹣10(舍去)∴当x=4时,以P、Q、M、N为顶点的四边形是平行四边形综上,当x=2或4时,以P、Q、M、N为顶点的四边形是平行四边形.22.证明:(1)∵四边形ABCD是矩形∴AB=CD,AB∥CD∴∠BAE=∠DCF又∵BE⊥AC,DF⊥AC∴∠AEB=∠CFD=90°在△ABE和△CDF中{∠AEB=∠CFD ∠BAE=∠DCF AB=CD∴△ABE≌△CDF(AAS);(2)由(1)得:△ABE≌△CDF∴BE=DF又∵BE⊥AC,DF⊥AC∴BE∥DF∴四边形BFDE是平行四边形.23.解:(1)设t秒时两点相遇根据题意得,t+2t=2(4+8)解得t=8答:经过8秒两点相遇;(2)观察图象可知,点M不可能在AB或DC上.①如图1,点M在E点右侧时,当AN=ME时,四边形AEMN为平行四边形得:8﹣t=9﹣2t解得t=1∵t =1时,点M 还在DC 上∴t =1舍去;②如图2,点M 在E 点左侧时,当AN =ME 时,四边形AEMN 为平行四边形 得:8﹣t =2t ﹣9解得t =173. 所以,经过173秒钟,点A 、E 、M 、N 组成平行四边形.24.解:(1)当t =3时,点P 的路程为2×3=6cm∵AB =4cm ,BC =6cm∴点P 在BC 上∴S △ABP =12AB ⋅BP =4(cm 2).(2)(Ⅰ)若点P 在BC 上∵在Rt △ABP 中,AP =5,AB =4∴BP =2t ﹣4=3∴t =72;(Ⅱ)若点P 在DC 上则在Rt △ADP 中,AP 是斜边∵AD =6∴AP >6∴AP ≠5;(Ⅲ)若点P 在AD 上AP =5则点P 的路程为20﹣5=15∴t=15 2综上,当t=72秒或t=152时,AP=5cm.(3)当2<t<5时,点P在BC边上∵BP=2t﹣4,CP=10﹣2t∴AP2=AB2+BP2=42+(2t﹣4)2由题意,有AD2+CP2=AP2∴62+(10﹣2t)2=42+(2t﹣4)2∴t=133<5即t=13 3.。
中考数学复习----《矩形的性质》知识点总结与专项练习题(含答案解析)
![中考数学复习----《矩形的性质》知识点总结与专项练习题(含答案解析)](https://img.taocdn.com/s3/m/f01cc8683a3567ec102de2bd960590c69ec3d8db.png)
中考数学复习----《矩形的性质》知识点总结与专项练习题(含答案解析)知识点总结1.矩形的定义:有一个角是直角的平行四边形是矩形。
2.矩形的性质:①具有平行四边形的一切性质。
②矩形的四个角都是直角。
③矩形的对角线相等。
④矩形既是一个中心对称图形,也是轴对称图形。
对角线交点是对称中心,过一组对边中点的直线是矩形的对称。
⑤由矩形的对角线的性质可知,直角三角形斜边上的中线等于斜边的一半。
练习题1.(2022•无锡)雪花、风车……展示着中心对称的美,利用中心对称,可以探索并证明图形的性质.请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为()A.扇形B.平行四边形C.等边三角形D.矩形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.扇形是轴对称图形,不是中心对称图形,故此选项不合题意;B.平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;C.等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;D.矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B.2.(2022•安徽)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α【分析】根据矩形的性质和三角形外角的性质,可以用含α的式子表示出∠2.【解答】解:由图可得,∠1=90°+∠3,∵∠1=α,∴∠3=α﹣90°,∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣(α﹣90°)=90°﹣α+90°=180°﹣α,故选:C.3.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE =AE=5即可;②当P1E=AE=5时,求出BE,由勾股定理求出P1B,再由勾股定理求出底边AP1即可.【解答】解:如图所示,①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=,∴底边AP1=;综上所述:等腰三角形AEP1的底边长为5或4;故答案为:5或4.4.(2022•青海)如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB=3,BC=4,则图中阴影部分的面积为.【分析】首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△BDC的面积.【解答】解:∵四边形ABCD是矩形,AB=3,∴OA=OC,AB=CD=3,AD∥BC,∴∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影=S△AOE+S△BOF+S△COD=S△COF+S△BOF+S△COD=S△BCD,∵S△BCD=BC•CD==6,∴S阴影=6.故答案为6.5.(2022•吉林)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的1AC,连接EF.若AC=10,则EF=.中点,点F在对角线AC上,且AF=4【分析】由AF=AC可得点F为AO中点,从而可得EF为△AOD的中位线,进而求解.【解答】解:在矩形ABCD中,AO=OC=AC,AC=BD=10,∵AF=AC,∴AF=AO,∴点F为AO中点,又∵点E为边AD的中点,∴EF为△AOD的中位线,∴EF=OD=BD=.故答案为:.6.(2022•黔东南州)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是.【分析】先证四边形OCED是平行四边形,得OC=DE,OD=CE,再由矩形的性质得OC=OD=5,则OC=OD=CE=DE,得平行四边形OCED是菱形,即可得出结论.【解答】解:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴OC=DE,OD=CE,∵矩形ABCD的对角线AC,BD相交于点O,∴OC=AC=5,OD=BD,BD=AC,∴OC=OD=5,∴OC=OD=CE=DE,∴平行四边形OCED是菱形,∴菱形OCED的周长=4OC=4×5=20,故答案为:20.7.(2022•十堰)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF,AG分别架在墙体的点B,C处,且AB=AC,侧面四边形BDEC为矩形.若测得∠FBD=55°,则∠A=°.【分析】利用矩形的性质可得∠DBC=90°,从而利用平角定义求出∠ABC的度数,然后利用等腰三角形的性质可得∠ABC=∠ACB=35°,最后利用三角形内角和定理进行计算即可解答.【解答】解:∵四边形BDEC为矩形,∴∠DBC=90°,∵∠FBD=55°,∴∠ABC=180°﹣∠DBC﹣∠FBD=35°,∵AB=AC,∴∠ABC=∠ACB=35°,∴∠A=180°﹣∠ABC﹣∠ACB=110°,故答案为:110.8.(2022•宜昌)如图,在矩形ABCD中,E是边AD上一点,F,G分别是BE,CE的中点,连接AF,DG,FG,若AF=3,DG=4,FG=5,矩形ABCD的面积为.【分析】由矩形的性质得出∠BAE=∠CDE=90°,AD∥BC,由直角三角形斜边上中线的性质及三角形中位线的性质求出BE=6,CE=8,BC=10,由勾股定理的逆定理得出△BCE是直角三角形,∠BEC=90°,进而求出=24,即可求出矩形ABCD 的面积.【解答】解:∵四边形ABCD是矩形,∴∠BAE=∠CDE=90°,AD∥BC,∵F,G分别是BE,CE的中点,AF=3,DG=4,FG=5,∴BE=2AF=6,CE=2DG=8,BC=2FG=10,∴BE2+CE2=BC2,∴△BCE是直角三角形,∠BEC=90°,∴==24,∵AD∥BC,∴S矩形ABCD=2S△BCE=2×24=48,故答案为:48.9.(2022•邵阳)已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为cm2.【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:∵长方形的一条对角线的长为10cm,一边长为6cm,∴另一边长==8cm ,∴它的面积为8×6=48cm 2.故答案为:48.10.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN .已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE =a ,DE =b ,且a >b .(1)若a ,b 是整数,则PQ 的长是 ;(2)若代数式a 2﹣2ab ﹣b 2的值为零,则PQMNABCD S S 矩形四边形的值是 .【分析】(1)直接根据线段的差可得结论;(2)先把b 当常数解方程:a 2﹣2ab ﹣b 2=0,a =b +b (负值舍),根据四个矩形的面积都是5表示小矩形的宽,最后计算面积的比,化简后整体代入即可解答.【解答】解:(1)由图可知:PQ =a ﹣b ,故答案为:a ﹣b ;(2)∵a 2﹣2ab ﹣b 2=0,∴a 2﹣b 2=2ab ,(a ﹣b )2=2b 2,∴a =b +b (负值舍),∵四个矩形的面积都是5.AE =a ,DE =b ,∴EP =,EN =,则======3+2.故答案为:3+2.11.(2022•日照)如图,矩形ABCD为一个正在倒水的水杯的截面图,杯中水面与CD的交点为E,当水杯底面BC与水平面的夹角为27°时,∠AED的大小为()A.27°B.53°C.57°D.63°【分析】根据题意可知AE∥BF,∠EAB=∠ABF,∠ABF+27°=90°,等量代换求出∠EAB,再根据平行线的性质求出∠AED.【解答】解:如图,∵AE∥BF,∴∠EAB=∠ABF,∵四边形ABCD是矩形,∴AB∥CD,∠ABC=90°,∴∠ABF+27°=90°,∴∠ABF=63°,∴∠EAB=63°,∵AB∥CD,∴∠AED=∠EAB=63°.故选:D.12.(2022•包头)如图,在矩形ABCD中,AD>AB,点E,F分别在AD,BC边上,EF ∥AB,AE=AB,AF与BE相交于点O,连接OC.若BF=2CF,则OC与EF之间的数量关系正确的是()A.2OC=5EF B.5OC=2EF C.2OC=3EF D.OC=EF【分析】过点O作OH⊥BC于点H,得出四边形ABFE是正方形,再根据线段等量关系得出CF=EF=2OH,根据勾股定理得出OC=OH,即可得出结论.【解答】解:过点O作OH⊥BC于点H,∵在矩形ABCD中,EF∥AB,AE=AB,∴四边形ABFE是正方形,∴OH=EF=BF=BH=HF,∵BF=2CF,∴CH=EF=2OH,∴OC===OH,即2OC=EF,故选:A.13.(2022•泰安)如图,四边形ABCD 为矩形,AB =3,BC =4,点P 是线段BC 上一动点,点M 为线段AP 上一点,∠ADM =∠BAP ,则BM 的最小值为( )A .25B .512C .13﹣23D .13﹣2【分析】如图,取AD 的中点O ,连接OB ,OM .证明∠AMD =90°,推出OM =AD =2,点M 的运动轨迹是以O 为圆心,2为半径的⊙O .利用勾股定理求出OB ,可得结论.【解答】解:如图,取AD 的中点O ,连接OB ,OM .∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC =4,∴∠BAP +∠DAM =90°,∵∠ADM =∠BAP ,∴∠ADM +∠DAM =90°,∴∠AMD =90°,∵AO =OD =2,∴OM=AD=2,∴点M的运动轨迹是以O为圆心,2为半径的⊙O.∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.。
人教版九年级上册数学矩形的性质专项练习题
![人教版九年级上册数学矩形的性质专项练习题](https://img.taocdn.com/s3/m/46f09675cc22bcd127ff0c11.png)
1.2矩形的性质与判定第1课时矩形的性质1.我们把__________叫做矩形.2.矩形是特殊的____________,所以它不但具有一般________的性质,而且还具有特殊的性质:(1)_________;(2)___________.3.矩形既是______图形,又是________图形,它有_______条对称轴.4.如图1所示,矩形ABCD的两条对角线相交于点O,图中有_______个直角三角形,•有____个等腰三角形.5.矩形的两条邻边分别是5、2,则它的一条对角线的长是______.6.如图所示,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,OB=•4,•则DC=________.7.矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对角相等 C.对边相等 D.对角线互相平分8.若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为()A.83cm2B.43cm2C.23c m2D.8cm29.如图2所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处,则∠ABE的度数是()A.29° B.32° C.22° D.61°10.矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BC O的周长差为4,•则AB的长是()A.12 B.22 C.16 D.2611.如图3所示,在矩形ABCD中,E是BC的中点,AE=AD=2,则AC的长是() A.5 B.4 C. 23 D.712.如图所示,在矩形ABCD中,点E在DC上,AE=2BC,且A E=AB,求∠CBE的度数.13.如图所示,在矩形ABCD中,对角线AC,BD交于点O,过顶点C作CE∥BD,交A•孤延长线于点E,求证:AC=CE.14.如图所示,在矩形ABCD中,AB=8,AD=10,将矩形沿直线AE折叠,顶点D恰好落在BC边上的点F处,求CE的长.15.如图所示,在矩形ABCD中,AB=5cm,BC=4cm,动点P以1cm/s的速度从A点出发,•经点D,C到点B,设△ABP的面积为s(cm2),点P运动的时间为t(s).(1)求当点P在线段AD上时,s与t之间的函数关系式;(2)求当点P在线段BC上时,s与t之间的函数关系式;(3)在同一坐标系中画出点P在整个运动过程中s与t之间函数关系的图像.答案:1.有一个角是直角的平行四边形2.平行四边形,平行四边形(1)矩形的四个角都是直角(2)矩形的对角线相等3.中心对称,轴对称,2 4.4,4 5.3 6.437.A 8.B 9.B 10.C 11.D 12.15°13.证四边形BDCE是平行四边形,得CE=•BD=AC14. 3 15.(1)s=52t (2)s=-52t+35 (3)略1.3矩形的性质与判定第1课时矩形的性质1. 矩形具有而一般平行四边形不具有的性质是()A. 对边相互平行B. 对角线相等C. 对角线相互平分D. 对角相等2. 在下列图形性质中,矩形不一定具有的是()A.对角线互相平分且相等 B.四个角相等ODC B AONM DCBA PHDCBAE DCBAO EDCB AC .是轴对称图形D .对角线互相垂直3. 在矩形ABCD 中, 对角线交于O 点,AB=6, BC=8, 那么△AOB 的面积为_______________; 周长为_______________.4. 一个矩形周长是16cm, 对角线长是7cm, 那么它的面积为__________________.5. 如图, 矩形ABCD 的对角线交于O 点, 若, 那么∠BDC 的大小为________________.6. 如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN, 给出以下结论: ①MN //DC; ②∠DMN=∠MNC; ③OMDONCS S=. 其中正确的是______________.7. 如图, 在矩形ABCD 中, AE 平分∠BAD, ∠CAE=15︒, 那么∠BOE 的度数为__________________.8. 在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为__________________.9. 在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_______.10. 如图, 在矩形ABCD 中,DE ⊥AC 于点E, BC=那么CE=________;BE=_________11. 如图, 在矩形ABCD 中, AP=DC, PH=PC, (1)求证:△ABH ≌△PAD ; (2)求证: PB 平分∠CBH.FED C B AFED CB A12. 如图, 在矩形ABCD 中, △CEF 为等腰直角三角形, (1)求证:AE=AB ;(2)若矩形ABCD 的周长为16cm, DE=2cm,求△CEF 的面积.13. 如图, 在矩形ABCD 中, AD=12, AB=7, DF 平分∠ADC, AF ⊥EF, (1)求证:AF=EF ; (2)求EF 长;14. 如图,在矩形ABCD 中,AB=3,BC=4,如果将该矩形沿对角线BD 重叠,(1)求证:△ABE ≌△C 1DE (2)求图中阴影部分的面积.CCDAB★15. 如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点. 求证:BF DF ⊥.1.4 矩形的性质与判定第1课时 矩形的性质1.矩形具备而平行四边形不具有的性质是( )A .对角线互相平分B .邻角互补C .对角相等D .对角线相等 2.在下列图形性质中,矩形不一定具有的是( )A .对角线互相平分且相等B .四个角相等C .既是轴对称图形,又是中心对称图形D .对角线互相垂直平分3、如左下图,在矩形ABCD 中,两条对角线AC 和BD 相交于点O ,AB =OA =4 cm ,求BD 与AD 的长.4、如右上图,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =2,则矩形的对角线AC 的长是______.5、已知:△ABC 的两条高为BE 和CF ,点M 为BC 的中点. 求证:ME =MF6、如左下图,矩形ABCD 中,AC 与BD 相交于一点O ,AE 平分∠BAD ,若∠EAO =15°,求∠BOE 的度数.ABCEFD7、把一张长方形的纸片按右上图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,那么∠EMF 的读度为( )A .85°B .90°C .95°D .100°8、如右图所示,把两个大小完全一样的矩形拼成“L ”形图案,则∠FAC=_______,∠FCA=________.9、如右图,在矩形ABCD 中,EF ∥AB ,GH ∥BC ,EF 、GH 的交点P 在BD 上,图中面积相等 的四边形有( )A .3对B .4对C .5对D .6对10、如图4,矩形ABCD 的周长为68,它被分成7个全等的矩形,则矩形ABCD•的面积为( )A .98B .196C .280D .28411、如左下图所示,矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,若矩形的周长为36 cm ,求此矩形的面积。
九年级数学矩形的性质(基础)(含答案)
![九年级数学矩形的性质(基础)(含答案)](https://img.taocdn.com/s3/m/b3d2d39ec850ad02df80414d.png)
矩形的性质(基础)一、单选题(共10道,每道10分)1.下列图形中一定是轴对称图形的是( )A. B.C. D.答案:D解题思路:轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.A,B,C选项都不是轴对称图形D选项是轴对称图形,并且有两条对称轴试题难度:三颗星知识点:略2.矩形具有而平行四边形不一定具有的性质是( )A.对边相等B.对角相等C.对角线相等D.对角线互相平分答案:C解题思路:平行四边形的性质:对边相等;对角相等;对角线互相平分矩形的性质:对边相等;对角相等;对角线相等且互相平分故矩形具有而平行四边形不一定具有的性质是对角线相等试题难度:三颗星知识点:略3.如图,矩形ABCD的对角线AC=8,∠AOD=120°,则AB的长为( )A. B.2C. D.4答案:D解题思路:∵四边形ABCD是矩形,AC=8∴OA=OC=OB=AC=4∵∠AOD=120°∴∠AOB=60°∴△AOB为等边三角形∴AB=OA=4试题难度:三颗星知识点:略4.如图,在矩形ABCD中,E是AB的中点,连接DE,CE,若AB=6,AD=4,则△CDE的周长为( )A.12B.14C.16D.17答案:C解题思路:∵E是AB的中点,AB=6∴AE=EB=3∵四边形ABCD是矩形,AD=4∴CD=AB=6,BC=AD=4,∠A=∠B=90°在Rt△ADE中,同理,CE=5∴C△CDE=CD+DE+CE=6+5+5=16试题难度:三颗星知识点:略5.如图,矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点.若MN=4,则AC 的长为( )A.8B.12C.16D.答案:C解题思路:∵M,N分别为BC,OC的中点,MN=4∴OB=2MN=8∵四边形ABCD是矩形∴OA=OC=OB=8,AC=2OA∴AC=16试题难度:三颗星知识点:略6.如图,在矩形ABCD中,点E在AD边上,且EF⊥EC,EF=EC,AF=2,矩形的周长为16,则AE的长为( )A.3B.4C.5D.7答案:A解题思路:∵EF⊥EC∴∠AEF+∠CED=90°∵四边形ABCD是矩形∴∠A=∠D=90°,AB=CD,AD=BC∴∠AEF+∠AFE=90°∴∠CED=∠AFE又∵EF=EC∴△AEF≌△DCE(AAS)∴AE=CD,DE=AF=2设AE=CD=x,则AD=x+2∵矩形ABCD的周长为16∴2(CD+AD)=16,即2(x+x+2)=16∴x=3,即AE=3试题难度:三颗星知识点:略7.如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长为( )A. B.5C. D.3答案:A解题思路:∵四边形ABCD是矩形∴AC=BD=10,∠ADC=∠BAD=90°∴OC=OD=5∵∠EDC:∠EDA=1:3∴∠EDC=22.5°∵DE⊥AC∴∠DCE=67.5°∴∠ODC=∠DCE=67.5°∴∠DOC=45°∴△ODE为等腰直角三角形∴∴试题难度:三颗星知识点:略8.如图,在矩形ABCD中,AB=3,BC=4,BE∥DF且BE与DF之间的距离为3,则AE的长为( )A. B.C. D.答案:C解题思路:如图,过点E作EG⊥DF交DF于点G∵BE∥DF且BE与DF之间的距离为3∴∠BEG=∠DGE=90°,EG=3∴∠AEB=∠EDF∵四边形ABCD是矩形∴∠A=∠DGE=90°,AD=BC=4∵AB=3∴EG=AB∴△AEB≌△GDE(AAS)∴BE=ED设AE=x,则BE=ED=4-x在Rt△ABE中,AB2+AE2=BE2即32+x2=(4-x)2∴,即试题难度:三颗星知识点:略9.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( )A. B.C.10D.8答案:A解题思路:如图,连接AE∵EF垂直平分AC∴OA=OC=AC,AE=CE∵四边形ABCD是矩形∴AD∥BC,∠B=90°∴∠CAD=∠ACB又∵∠AOF=∠COE∴△AOF≌△COE(ASA)∴AE=CE=AF=5∵BE=3∴BC=8在Rt△ABE中,在Rt△ABC中,试题难度:三颗星知识点:略10.如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为( )A.4B.C. D.答案:C解题思路:∵四边形ABCD是矩形∴OA=OB=OC=OD,∠BAD=90°∵AE平分∠BAC∴∠BAE=∠OAE∵AE⊥BD∴∠AEB=∠AEO=90°又AE=AE∴△ABE≌△AOE(ASA)∴AB=OA=OB=BD设AB=x,则BD=2x在Rt△ABD中,AD2+AB2=BD2∵AD=8∴82+x2=(2x)2∴,即试题难度:三颗星知识点:略。
初三数学-矩形习题精选(含答案)
![初三数学-矩形习题精选(含答案)](https://img.taocdn.com/s3/m/90c4a64c0740be1e640e9a11.png)
初三数学 矩形习题精选1. 如图,矩形ABCD 的对角线相交于点O ,OF ⊥BC ,CE ⊥BD ,OE :BE=1:3,OF=4,求∠ADB的度数和BD 的长。
2. 如图所示,矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,若矩形的周长为36cm ,求此矩形的面积。
3. 折叠矩形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,如图,若AB=2,BC=1,求AG 。
4. 已知:如图,平行四边形ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H ,求证:四边形EFGH 是矩形。
5. 如图,在矩形ABCD 中,E 是AD 上一点,F 是AB 上一点,EF CE =,且,2EF CE DE cm ⊥=,矩形ABCD 的周长为16cm ,求AE 与CF 的长.OFEDCBAGEDCBA6.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.7.已知:如图所示,ABCD为菱形,通过它的对角线的交点O作AB、BC的垂线,与AB、BC,CD,DA分别相交于点E、F、G、H,求证:四边形EFGH为矩形。
参考答案1.30°,162.723.(5^1/2—1)/24.因为BG. CG AE DE 分别为四个角的角平分线,所以∠GBC+∠GCB=90°所以∠G=90°同理,可证得∠E ∠GFE ∠GHE 都为90°所以四边形FGHE为矩形5.3 √266.提示:证明△FBE和△ECD全等(ASA)于是BE=CD=BA7.△ABO △ADO △BCO △DCO 都为等全等的三角形,易证得OE=OH=OF=OD所以,∴四边形EFGH为平行四边形EG=HF故EFGH为矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
九年级数学矩形的习题精选
一、性质
1、下列性质中,矩形具有而平行四边形不一定具有的是()
A、对边相等
B、对角相等
C、对角线相等
D、对边平行
2.在矩形ABCD中,∠AOD=130°,则∠ACB=__ _
3.已知矩形的一条对角线长是8cm,两条对角线的一个交角为60°,则矩形的周长为______
4.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,
对角线是13cm,那么矩形的周长是____________
5.如图所示,矩形ABCD中,AE⊥BD于E,∠BAE=30°,BE=1cm,那么DE的长为_____
6、直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积为___
7、已知,在Rt△ABC中,BD为斜边AC上的中线,若∠A=35°,那么∠DBC= 。
8、如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.
求证:BE=CF.
9.如图,△ABC中,∠ACB=900,点D、E分别为AC、AB的中点,点F在BC
延长线上,且∠CDF=∠A,求证:四边形DECF是平行四边形;
10.已知:如图,在△ABC中,∠BAC≠90°∠ABC=2∠C,AD⊥AC,交BC
或CB的延长线D。
试说明:DC=2AB.
11、在△ABC中,∠C=90O,AC=BC,AD=BD,PE⊥AC于点E,PF⊥BC于点F。
求证:DE=DF 二、判定
1、下列检查一个门框是否为矩形的方法中正确的是()
A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分
C.用曲尺测量门框的三个角,是否都是直角D.用曲尺测量对角线,是否互相垂直
2、平行四边形ABCD,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形
3、在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:四边形AFCE
是矩形
4、平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB⊥PD,
垂足为P。
求证:四边形ABCD为矩形
5、已知:如图,平行四边形ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH
为矩形.
6、如图,△ABC中,点O是AC上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线
于点E,交∠BCA的外角平分线于点F,(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论。
精品文档
菱形的习题精选
一、性质
1.小明和小亮在做一道习题,若四边形ABCD 是平行四边形,请补充条件 ,使得四边形ABCD 是菱形。
小明补充的条件是AB=BC ;小亮补充的条件是AC=BD ,你认为下列说法正确的是( ) A 、小明、小亮都正确 B 、小明正确,小亮错误 C 、小明错误,小亮正确 D 、小明、小亮都错误 2.下面性质中菱形有而矩形没有的是( )
(A )邻角互补 (B )内角和为360° (C )对角线相等 (D )对角线互相垂直 3.如图,已知四边形ABCD 是平行四边形,下列结论不正确的是( )
A. 当AB=BC 时,它是菱形;
B. 当AC ⊥BD 时,它是菱形;
C. 当∠ABC=90°时,它是矩形;
D. 当AC=BD 时,它是菱形。
4.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 5.若菱形的周长为24 cm ,一个内角为60°,则菱形的面积为______ cm 2。
6 .已知:菱形的周长为40cm ,两条对角线长的比是3:4。
求两对角线长分别是 。
7、已知菱形的面积等于80cm2,高等于8cm ,则菱形的周长为 .
8、如图,P 为菱形ABCD 的对角线上 一 点,PE ⊥AB 于点E ,PF ⊥AD 于点 F ,PF=3cm ,则P 点到AB 的距离是_____ cm
13、如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是_______.
9.已知菱形ABCD 中,对角线AC 和BD 相交于点O ,∠BAD=120°,求∠ABD 的度数。
10、已知如图,菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AE=2。
求(1)∠ABC 的度数; (2)对角线AC 、BD 的长; (3)菱形ABCD 的面积。
11、已知:如图,AD 平分∠BAC ,DE ∥AC 交AB 于E , DF ∥AB 交AC 于F . 求证:四边形AEDF 是菱形;
12、如图,边长为a 的菱形ABCD 中,∠DAB=60度,E 是异于A 、D 两点的动点,F 是CD 上的动点,满足AE+CF=a 。
证明:不论E 、F 怎样移动,△BEF 总是正三角形。
二、判定
1、□ABCD 的对角线AC 与BD 相交于点O ,
(1)若AB=AD ,则□ABCD 是 形; (2)若AC=BD ,则□ABCD 是 形; (3)若∠ABC 是直角,则□ABCD 是 形; (4)若∠BAO=∠DAO ,则□ABCD 是 形。
2、下列条件中,不能判定四边形ABCD为菱形的是( ). A、AC ⊥BD ,AC 与BD 互相平分 B、AB=BC=CD=DA
C、AB=BC ,AD=CD ,且AC ⊥BD D、AB=CD ,AD=BC ,AC ⊥BD
3、如图,Rt △ABC 中,∠ACB=900,∠BAC=600,DE 垂直平分BC ,垂足为D ,交AB 于E ,又点F 在DE 的延长线上,且AF=CE ,求证:四边形ACEF 是菱形。
4、如图,在已知平行四边形ABCD 中,AE 平分∠BAD ,与BC 相交于点E ,EF//AB ,与AD 相交于点F.求证:四边形ABEF 是菱形.
B
C
A
D
O
精品文档
5、如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,CE 平分∠ACB ,交AD 于G ,交AB 于E ,EF ⊥BC 于F ,四边形AEFG 是菱形吗?
6、如图,已知在□ABCD 中,AD=2AB ,E 、F 在直线AB 上,且AE=AB=BF ,说明CE ⊥DF.。