2020-2021 中考数学(锐角三角函数提高练习题)压轴题训练附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021 中考数学(锐角三角函数提高练习题)压轴题训练附答案解析
一、锐角三角函数
1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;
(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由
(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.
【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62

23
.
【解析】
【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;
(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;
(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.
【详解】(1)如图1中,延长EO交CF于K,
∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,
∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,
∵△EFK是直角三角形,∴OF=1
2
EK=OE;
(2)如图2中,延长EO交CF于K,
∵∠ABC=∠AEB=∠CFB=90°,
∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,
∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,
∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,
∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;
(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,
∵|CF﹣AE|=2,3AE=CK,∴FK=2,
在Rt△EFK中,tan∠3
∴∠FEK=30°,∠EKF=60°,
∴EK=2FK=4,OF=1
2
EK=2,
∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,
在Rt△PHF中,PH=1
2
PF=1,3OH=23
∴()2
2
12362
+-=
如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,
∴∠BOP=90°,
∴OP=33OE=33
, 综上所述:OP 62233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.
2.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD .
(1)求证:直线OD 是E e 的切线;
(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG :
①当1an 7t ACF ∠=
时,求所有F 点的坐标 (直接写出); ②求BG CF
的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫
⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12. 【解析】
【分析】
(1)连接DE ,证明∠EDO=90°即可;
(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得
12
BG CF ≤,从而得解. 【详解】
(1)证明:连接DE ,则:
∵BC 为直径
∴90BDC ∠=︒
∴90BDA ∠=︒
∵OA OB =
∴OD OB OA ==
∴OBD ODB ∠=∠
∵EB ED =
∴EBD EDB ∠=∠
∴EBD OBD EDB ODB ∠+∠=∠+∠
即:EBO EDO ∠=∠
∵CB x ⊥轴
∴90EBO ∠=︒
∴90EDO ∠=︒
∴直线OD 为E e 的切线.
(2)①如图1,当F 位于AB 上时:
∵1~ANF ABC ∆∆ ∴
11NF AF AN AB BC AC
== ∴设3AN x =,则114,5NF x AF x == ∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠=
==-,解得:1031x = ∴150531
AF x == 1504333131
OF =-= 即143,031F ⎛⎫
⎪⎝⎭
如图2,当F 位于BA 的延长线上时:
∵2~AMF ABC ∆∆
∴设3AM x =,则224,5MF x AF x ==
∴103CM CA AM x =+=+ ∴241tan 1037F M x ACF CM x ∠=
==+ 解得:25
x = ∴252AF x ==
2325OF =+=
即2(5,0)F
②如图,作GM BC ⊥于点M ,
∵BC 是直径
∴90CGB CBF ∠=∠=︒
∴~CBF CGB ∆∆
∴8
BG MG MG CF BC ==
∵MG≤半径4=

41
882 BG MG
CF
=≤=
∴BG
CF
的最大值为
1
2
.
【点睛】
本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
3.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),
∠BPE=1
2
∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)通过观察、测量、猜想:BF
PE
=,并结合图2证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE

值.(用含α的式子表示)
【答案】(1)证明见解析(2)
1
2
BF
PE
=(3)
1
tan
2
BF
PE
α
=
【解析】
解:(1)证明:∵四边形ABCD是正方形,P与C重合,
∴OB="OP" ,∠BOC=∠BOG=90°.
∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).
(2)BF1
PE2
=.证明如下:
如图,过P作PM//AC交BG于M,交BO于N,
∴∠PNE=∠BOC=900,∠BPN=∠OCB.
∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.
∴NB=NP.
∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN≌△PEN(ASA).∴BM=PE.
∵∠BPE=1
2
∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.
∵PF⊥BM,∴∠BFP=∠MFP=900.
又∵PF=PF,∴△BPF≌△MPF(ASA).∴BF="MF" ,即BF=1
2 BM.
∴BF=1
2PE,即
BF1
PE2
=.
(3)如图,过P作PM//AC交BG于点M,交BO于点N,
∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.
由(2)同理可得BF=1
2
BM,∠MBN=∠EPN.
∵∠BNM=∠PNE=900,∴△BMN∽△PEN.∴BM BN
PE PN
=.
在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF =tan PE α. ∴BF 1=tan PE 2
α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .
(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2
=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=
12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由
BM BN PE PN =和Rt △BNP 中BN tan =PN α即可求得BF 1=tan PE 2
α.
4.如图(1),在平面直角坐标系中,点A (0,﹣6),点B (6,0).Rt △CDE 中,∠CDE=90°,CD=4,DE=4,直角边CD 在y 轴上,且点C 与点A 重合.Rt △CDE 沿y 轴正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:
(1)如图(2),当Rt △CDE 运动到点D 与点O 重合时,设CE 交AB 于点M ,求∠BME 的度数.
(2)如图(3),在Rt △CDE 的运动过程中,当CE 经过点B 时,求BC 的长.
(3)在Rt △CDE 的运动过程中,设AC=h ,△OAB 与△CDE 的重叠部分的面积为S ,请写出S 与h 之间的函数关系式,并求出面积S 的最大值.
【答案】(1)∠BME=15°;
(2BC=4;
(3)h≤2时,S=﹣
h 2+4h+8, 当h≥2时,S=18﹣3h .
【解析】
试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA ,要求∠BME 的度数,需先求出∠CMA 的度数.根据三角形外角的定理进行解答即可;
(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC 就可求出BC 的长度;
(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.
试题解析:解:(1)如图2,
∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).
∴OA=OB,
∴∠OAB=45°,
∵∠CDE=90°,CD=4,DE=4,
∴∠OCE=60°,
∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,
∴∠BME=∠CMA=15°;
如图3,
∵∠CDE=90°,CD=4,DE=4,
∴∠OBC=∠DEC=30°,
∵OB=6,
∴BC=4;
(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,
∵CD=4,DE=4,AC=h,AN=NM,
∴CN=4﹣FM,AN=MN=4+h﹣FM,
∵△CMN∽△CED,
∴,
∴,
解得FM=4﹣,
∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,
S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.
考点:1、三角形的外角定理;2、相似;3、解直角三角形
5.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.
(1)求证:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
【答案】(1)证明见解析;(2)
15
2
-+
;(3)
58
16

【解析】
试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;
(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;
(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.
试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°,
∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;
(2)∵∠A=∠ABD=36°,
∴AD=BD,
∵BD=BC,
∴AD=BD=CD=1,
设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,
∴AB BC BD CD
=
,即
11
1
x
x
+
=,
整理得:x2+x-1=0,
解得:x1=
15
-+
,x2=
15
--
(负值,舍去),
则x=
15
2
-+

(3)过B作BE⊥AC,交AC于点E,
∵BD=CD,
∴E为CD中点,即15
-+
在Rt△ABE中,cosA=cos36°=
15
151
4
4
15
1
AE
AB
-+
+
==
-+
+

在Rt△BCE中,cosC=cos72°=
15
15
4
1
EC
BC
-+
-+
==,
则cos36°-cos72°=
51
4
=-
15
4
-+
=
1
2

【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.
6.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=,AK=,求FG的长.
【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .
【解析】
试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出
∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;
(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;
(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.
试题解析:(1)如图1,连接OG.
∵EG为切线,
∴∠KGE+∠OGA=90°,
∵CD⊥AB,
∴∠AKH+∠OAG=90°,
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)AC∥EF,理由为连接GD,如图2所示.
∵KG2=KD•GE,即,
∴,
又∵∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,
又∵∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
(3)连接OG,OC,如图3所示,
∵EG为切线,
∴∠KGE+∠OGA=90°,
∵CD⊥AB,
∴∠AKH+∠OAG=90°,
又∵OA=OG,
∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
∵sinE=sin∠ACH=
,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,
∴CK=AC=5t,
∴HK=CK-CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(2)2,解得t=.
设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r-3t)2+(4t)2=r2,解得r= t=.
∵EF为切线,
∴△OGF为直角三角形,
在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,
∴FG=
【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.
7.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若
314
cos,
53
BAD BE
∠==,求OE的长.
【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =35
6

【解析】
试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;
(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,
可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;
(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.
试题解析:(1)DE为⊙O的切线,理由如下:
连接OD,BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
在Rt△BDC中,E为斜边BC的中点,
∴CE=DE=BE=BC,
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,
∴∠C+∠A=90°,
∴∠ADO+∠CDE=90°,
∴∠ODE=90°,
∴DE⊥OD,又OD为圆的半径,
∴DE为⊙O的切线;
(2)∵E是BC的中点,O点是AB的中点,
∴OE是△ABC的中位线,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴,即BC2=AC•CD.
∴BC2=2CD•OE;
(3)解:∵cos∠BAD=,
∴sin∠BAC=,
又∵BE=,E是BC的中点,即BC=,
∴AC=.
又∵AC=2OE,
∴OE=AC=.
考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数
8.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.
(1)如图1,当圆心O在AB边上时,求证:AC=2OH;
(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:
∠ACD=∠APB;
(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣
∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)24.
【解析】
试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.
在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.
试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,
∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,
∵tan∠ABC=,∴,∴,
∴,∵∠BNQ=∠QHD=90°,
∴∠ABC=∠QDH,∵OE=OD,
∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,
∴BG=BQ=,GN=NQ=,
∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,
设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,
∵OB2=BH2+OH2,∴,解得:,当QH=
时,∴QD=,
∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=
∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,
∵tan∠OED=,∴,
∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.
考点:1圆;2相似三角形;3三角函数;4直角三角形.
9.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点
D,其纵坐标为2
3,l与x轴的交点为E,经过A、T、D三点作⊙M.
(1)求二次函数的表达式;
(2)在点T的运动过程中,
①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;
②若MT=1
2
AD,求点M的坐标;
(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).
【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(0,3)(3)见解析
【解析】
【分析】
(1)把点B的坐标代入抛物线解析式求得系数b的值即可;
(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE=3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;
②如图2,由已知条件MT=1
2
AD,MT=MD,推知MD=
1
2
AD,根据△ADT的外接圆圆
心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD
=1
2
AD.根据点A、D的坐标求得点M的坐标即可;
(3)如图3,作MH⊥x于点H,则AH=HT=1
2
AT.易得H(a﹣1,0),T(2a﹣1,
0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a﹣1≤x≤2a﹣1.
需要分类讨论:(i)当
211
1(1)211
a
a a
-


----



,即
4
1
3
a<
…,根据抛物线的增减性求得y
的极值.
(ii )当0112111(1)211a a a a <-⎧⎪->⎨⎪--<--⎩
…,即43<a≤2时,根据抛物线的增减性求得y 的极值. (iii )当a ﹣1>1,即a >2时,根据抛物线的增减性求得y 的极值.
【详解】
解:(1)把点B (3,0)代入y =x 2+bx ﹣3,得32+3b ﹣3=0,
解得b =﹣2,
则该二次函数的解析式为:y =x 2﹣2x ﹣3;
(2)①∠DMT 的度数是定值.理由如下:
如图1,连接AD .
∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4.
∴抛物线的对称轴是直线x =1.
又∵点D 的纵坐标为
∴D (1,
由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1),
∴A (﹣1,0),B (3,0).
在Rt △AED 中,tan ∠DAE

2DE AE ==. ∴∠DAE =60°.
∴∠DMT =2∠DAE =120°.
∴在点T 的运动过程中,∠DMT 的度数是定值;
②如图2,∵MT =
12AD .又MT =MD , ∴MD =12
AD . ∵△ADT 的外接圆圆心M 在AD 的中垂线上, ∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =
12AD . ∵A (﹣1,0),D (1,
∴点M 的坐标是(0
(3)如图3,作MH ⊥x 于点H ,则AH =HT =
12
AT . 又HT =a ,
∴H (a ﹣1,0),T (2a ﹣1,0).
∵OH≤x≤OT ,又动点T 在射线EB 上运动,
∴0≤a ﹣1≤x≤2a ﹣1.
∴0≤a ﹣1≤2a ﹣1.
∴a≥1,
∴2a﹣1≥1.
(i)当
211
1(1)211
a
a a
-


----



,即1
4
a
3

时,
当x=a﹣1时,y最大值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a;
当x=1时,y最小值=4.
(ii)当
011
211
1(1)211
a
a
a a
<-


->

⎪--<--


,即
4
3
<a≤2时,
当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.
(iii)当a﹣1>1,即a>2时,
当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.
【点睛】
主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.
10.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C ,连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα︒<<︒,得到矩形ADEF ,点,,O C B 的对应点分别为,,D E F .
(Ⅰ)如图,当点D 落在对角线OB 上时,求点D 的坐标;
(Ⅱ)在(Ⅰ)的情况下,AB 与DE 交于点H .
①求证BDE DBA ∆≅∆;
②求点H 的坐标.
(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).
【答案】(Ⅰ)点D 的坐标为5472(
,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258
);(Ⅲ)60α=︒或300︒.
【解析】
【分析】 (Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的
长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明
△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数.
【详解】
(Ⅰ)∵点()30A ,
,点()04C ,, ∴3,4OA OC ==.
∵四边形OABC 是矩形,
∴AB=OC=4,
∵矩形DAFE 是由矩形AOBC 旋转得到的
∴3AD AO ==.
在Rt OAB ∆中,5OB =,
过A D 、分别作B,DN OA AM O ⊥⊥
在Rt ΔOAM 中,OM OA 3cos BOA OA OB 5∠=
==, ∴9OM 5
= ∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5
==. 在Rt ΔODN 中:DN 4sin BOA OD 5∠=
=,cos ∠BOA=ON OD =35, ∴72DN 25=,54ON 25
=. ∴点D 的坐标为5472,2525⎛⎫
⎪⎝⎭.
(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的,
∴OA AD 3,ADE 90,DE AB 4∠===︒==.
∴OD AD =.

DOA ODA ∠∠=.
又∵DOA OBA 90∠∠+=︒,BDH ADO 90∠∠+=︒
∴ABD BDE ∠∠=. 又∵BD BD =,
∴ΔBDE ΔDBA ≅.
②由ΔBDE ΔDBA ≅,得BEH DAH ∠∠=,BE AD 3==,
又∵BHE DHA ∠∠=,
∴ΔBHE ΔDHA ≅.
∴DH=BH ,
设AH x =,则DH BH 4x ==-,
在Rt ΔADH 中,222AH AD DH =+,
即()222x 34x =+-,得25x 8=
, ∴25AH 8
=. ∴点H 的坐标为253,
8⎛
⎫ ⎪⎝⎭. (Ⅲ)如图,过F 作FO ⊥AB ,
当0<α≤180°时,
∵点B 与点F 是对应点,A 为旋转中心,
∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4,
∵FA=FB ,FO ⊥AB ,
∴OA=12
AB=2, ∴cos ∠BAF=
OA AF =12
, ∴∠BAF=60°,即α=60°,
当180°<α<360°时,
同理解得:∠BAF′=60°,
∴旋转角α=360°-60°=300°.
综上所述:α60=︒或300︒.
【点睛】
本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.
11.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.
(1)求k 的值;
(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);
(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.
【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .
【解析】
【分析】
(1)先求出A 的坐标,然后利用待定系数法求出k 的值;
(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证
POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;
(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.
【详解】
解:(1)把0x =代入4y kx =+,4y =,
∴4BO =,
又∵
4ABO S ∆=, ∴142
AO BO ⋅=,4AO =, ∴(4,0)A -,
把4x =-,0y =代入4y kx =+,
得044k =-+,
解得1k =.
故答案为1;
(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +
如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,
∴90PDO CEO ∠=∠=︒,
∴90POD OPD ∠+∠=︒,
∵线段OP 绕点O 顺时针旋转90°至线段OC ,
∴90POC ∠=︒,OP OC =,
∴90POD EOC ∠+∠=︒,
∴OPD EOC ∠=∠,
∴POD OCE ∆≅∆,
∴OE PD =,
4m t =+.
故答案为4m t =+.
(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,
由(1)知,4AO BO ==,90BOA ∠=︒,
∴ABO ∆为等腰直角三角形,
∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,
∴BT TO =,
∵90BTO ∠=︒,
∴90TPO TOP ∠+∠=︒,
∵PO BM ⊥,
∴90BNO ∠=︒,
∴BQT TPO ∠=∠,
∴QTB PTO ∆≅∆,
∴QT TP =,PO BQ =,
∴PQT QPT ∠=∠,
∵PO PK KB =+,
∴QB PK KB =+,QK KP =,
∴KQP KPQ ∠=∠,
∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,
∴KPB BPN ∠=∠,
设KPB x ∠=︒,
∴BPN x ∠=︒,
∵2PMB KPB ∠=∠,
∴2PMB x ∠=︒,
45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,
∴PO PM =,
过点P 作PD x ⊥轴,垂足为点D ,
∴22OM OD t ==,
9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,
tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t
=+, 14t =,22t =-(舍)
∴8OM =,由(2)知,48m t OM =+==,
∴CM y P 轴,
∵90PNM POC ∠=∠=︒,
∴BM OC P ,
∴四边形BOCM 是平行四边形,
∴4832BOCM S BO OM =⨯=⨯=Y .
故答案为32.
【点睛】
本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.
12.如图,AB 是⊙O 的直径,E 是⊙O 上一点,C 在AB 的延长线上,AD ⊥CE 交CE 的延长线于点D ,且AE 平分∠DAC .
(1)求证:CD 是⊙O 的切线;
(2)若AB =6,∠ABE =60°,求AD 的长.
【答案】(1)详见解析;(2)
92
【解析】
【分析】 (1)利用角平分线的性质得到∠OAE =∠DAE ,再利用半径相等得∠AEO =∠OAE ,等量代换即可推出OE ∥AD ,即可解题,(2)根据30°的三角函数值分别在Rt △ABE 中,AE =AB·cos30°, 在Rt △ADE 中,AD=cos30°×AE 即可解题.
【详解】
证明:如图,连接OE,
∵AE平分∠DAC,
∴∠OAE=∠DAE.
∵OA=OE,
∴∠AEO=∠OAE.
∴∠AEO=∠DAE.
∴OE∥AD.
∵DC⊥AC,
∴OE⊥DC.
∴CD是⊙O的切线.
(2)解:∵AB是直径,
∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,
在Rt△ABE中,AE=AB·cos30°=6×
3
2
=33
在Rt△ADE中,∠DAE=∠BAE=30°,
∴AD=cos30°3339 2 .
【点睛】
本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.
13.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣6,0),点
C在y轴正半轴上,且cos B=3
5
,动点P从点C出发,以每秒一个单位长度的速度向D点
移动(P点到达D点时停止运动),移动时间为t秒,过点P作平行于y轴的直线l与菱形的其它边交于点Q.
(1)求点D坐标;
(2)求△OPQ的面积S关于t的函数关系式,并求出S的最大值;
(3)在直线l移动过程中,是否存在t值,使S=3
20ABCD
S
菱形
?若存在,求出t的值;若
不存在,请说明理由.
【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =
24(04)220(410)3
3t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或7. 【解析】
【分析】
(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -
+= 【详解】
解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35
, 10cos OB BC B
∴== 228OC BC OB ∴=-=∵四边形ABCD 为菱形,CD ∥x 轴,
∴点D 的坐标为(10,8).
(2)∵AB =BC =10,点B 的坐标为(﹣6,0),
∴点A 的坐标为(4,0).
分两种情况考虑,如图1所示.
①当0≤t ≤4时,PQ =OC =8,OQ =t ,
∴S =12
PQ •OQ =4t , ∵4>0,
∴当t =4时,S 取得最大值,最大值为16;
②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0),
将A (4,0),D (10,8)代入y =kx +b ,得:
4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩

∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-
, 41648(10)3
33PQ t t ⎛⎫∴=--=- ⎪⎝⎭ 21220233
S PQ OP t t ∴=⋅=-+ 22202502(5),033333
S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503
. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)3
3t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503. (3)S 菱形ABCD =AB •OC =80.
当0≤t ≤4时,4t =12,
解得:t =3;
当4<t ≤10时,222033
t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =
320ABCD S 菱形,t 的值为3或5+7.
【点睛】
考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.
14.在Rt △ABC 中,∠ACB=90°,7,AC=2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A′B′C(点A ,B 的对应点分别为A',B′),射线CA′,CB′分別交直线m 于点P ,Q .
(1)如图1,当P 与A′重合时,求∠ACA′的度数;
(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长;
(3)在旋转过程中,当点P ,Q 分别在CA′,CB′的延长线上时,试探究四边形PA 'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q 的最小面积;若不存在,请说明理由.
【答案】(1)60°;(2)PQ =
72
;(3)存在,S 四边形PA 'B ′Q =33【解析】
【分析】 (1)由旋转可得:AC =A 'C =2,进而得到BC 3=∠A 'BC =90°,可得
cos ∠A 'CB 3'2
BC A C ==,即可得到∠A 'CB =30°,∠ACA '=60°; (2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 3=32=,依据tan ∠Q =tan ∠A 3=BQ =BC 3=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=
PQ ×BC 3=,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论.
【详解】
(1)由旋转可得:AC =A 'C =2.
∵∠ACB =90°,AB 7=AC =2,∴BC 3=
∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C =
=∴∠A 'CB =30°,∴∠ACA '=60°;
(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,
∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=∴PB 3=32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=∴BQ =BC 3=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=, 取PQ 的中点G .
∵∠PCQ=90°,∴CG1
=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与
2
CB重合时,CG最小,∴CG min3
=,PQ min=23,∴S△PCQ的最小值=3,S四边形
-;
PA'B'Q=33
【点睛】
本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
15.关于三角函数有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ﹣sinαsinβ②
tan(α+β)=③
利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:
tan105°=tan(45°+60°)==﹣
(2+).
根据上面的知识,你可以选择适当的公式解决下面的实际问题:
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.
【答案】建筑物CD的高为84米.
【解析】
分析:
如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,
∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.
详解:
如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,
CD=BE,∠ADE=60°,
∴在Rt△ABC和Rt△ADE
AB=BC•tan75°=42tan75°=,
AE=,
∴CD=AB﹣AE=(米).
答:建筑物CD的高为84米.
睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.。

相关文档
最新文档