土默特右旗实验中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土默特右旗实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知条件p :x 2+x ﹣2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1 D .a ≤﹣3
2. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四
象限”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
3. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )
A .16cm
B .123cm
C .243cm
D .26cm
4. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5 C .9 D .27
5. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题
( B ) “0a >,0b >”是“
2b a
a b
+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”
(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥
6. 设集合3|01x A x x -⎧⎫
=<⎨⎬+⎩⎭
,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )
A .1a ≥
B .12a ≤≤ C.a 2≥ D .12a ≤< 7. 已知抛物线
C :2
8y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,
Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )
A .20x y --=
B .20x y +-=
C .20x y -+=
D .20x y ++= 8. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .﹣
C .4
D .
9. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0
B .1
C .2
D .3
10.已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( ) A .﹣12 B .﹣10 C .﹣8 D .﹣6
11.设函数的集合
,平面上点的集合
,则在同一直角坐标系中,P 中函数
的图象恰好经过Q 中
两个点的函数的个数是 A4 B6 C8 D10
12.有下列关于三角函数的命题
P 1:∀x ∈R ,x ≠k π+(k ∈Z ),若tanx >0,则sin2x >0;
P 2:函数y=sin (x ﹣)与函数y=cosx 的图象相同;
P 3:∃x 0∈R ,2cosx 0=3;
P 4:函数y=|cosx|(x ∈R )的最小正周期为2π,其中真命题是( ) A .P 1,P 4
B .P 2,P 4
C .P 2,P 3
D .P 1,P 2
二、填空题
13.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .
14.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:
①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函
数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1
)”;其中所有正确
结论的序号是 .
15.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23
π,23c a -=,则a

c
的夹角为__________,a c ⋅的最大值为 .
【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.
16.设S n 是数列{a n }的前n 项和,且a 1=﹣1, =S n .则数列{a n }的通项公式a n = .
17.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .
18.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .
三、解答题
19.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣) (1)当x ∈[2,4]时,求该函数的值域;
(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.
20.已知点(1,)是函数f (x )=a x (a >0且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )﹣c ,
数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n ﹣S n ﹣1=+
(n ≥2).记数列{
}前n
项和为T n ,
(1)求数列{a n }和{b n }的通项公式;
(2)若对任意正整数n ,当m ∈[﹣1,1]时,不等式t 2
﹣2mt+>T n 恒成立,求实数t 的取值范围
(3)是否存在正整数m ,n ,且1<m <n ,使得T 1,T m ,T n 成等比数列?若存在,求出m ,n 的值,若不存在,说明理由.
21.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc . (Ⅰ)求A 的大小; (Ⅱ)如果cosB=
,b=2,求a 的值.
22.数列{a n}的前n项和为S n,a1=1,a n+1=2S n+1,等差数列{b n}满足b3=3,b5=9,
(1)分别求数列{a n},{b n}的通项公式;
(2)若对任意的n∈N*,恒成立,求实数k的取值范围.
23.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.
24.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.
土默特右旗实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:∵条件p:x2+x﹣2>0,
∴条件q:x<﹣2或x>1
∵q是p的充分不必要条件
∴a≥1
故选A.
2.【答案】A
【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,
若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;
故选:A.
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
3.【答案】D
【解析】
考点:多面体的表面上最短距离问题.
【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.
4.【答案】C
【解析】解:令log2(x2+1)=0,得x=0,
令log2(x2+1)=1,得x2+1=2,x=±1,
令log
(x2+1)=2,得x2+1=4,x=.
2
则满足值域为{0,1,2}的定义域有:
{0,﹣1,﹣ },{0,﹣1, },{0,1,﹣
},
{0,1, },{0,﹣1,1,﹣ },{0,﹣1,1,
},
{0,﹣1,﹣,
},{0,1,﹣,
},{0,﹣1,1,﹣

}.
则满足这样条件的函数的个数为9.
故选:C .
【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.
5. 【答案】D
【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,
故选项A 错误;对于选项B ,2b
a
a
b
+≥的充分必要条件是,a b 同号,故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .
6. 【答案】A 【解析】

点:集合的包含关系的判断与应用.
【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 7. 【答案】B 【



考点:抛物线的定义及性质.
【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.
8.【答案】B
【解析】解:∵f(x)是定义在R上周期为2的奇函数,
∴f(log35)=f(log35﹣2)=f(log3),
∵x∈(0,1)时,f(x)=3x﹣1
∴f(log3)═﹣
故选:B
9.【答案】B
【解析】解:∵直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”,
∴命题P是真命题,∴命题P的逆否命题是真命题;
¬P:“若直线m不垂直于α,则m不垂直于l”,
∵¬P是假命题,∴命题p的逆命题和否命题都是假命题.
故选:B.
10.【答案】C
【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,
令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,
由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,
从而f′(x)的最小值为﹣9+1=﹣8.
故选C.
【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.
11.【答案】B
【解析】本题考查了对数的计算、列举思想
a=-时,不符;a=0时,y=log2x过点(,-1),(1,0),此时b=0,b=1符合;
a=时,y=log2(x+)过点(0,-1),(,0),此时b=0,b=1符合;
a=1时,y=log2(x+1)过点(-,-1),(0,0),(1,1),此时b=-1,b=1符合;共6个
12.【答案】D
【解析】解:对于P1,∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x=2sinxcosx
==>0,则P1为真命题;
对于P2,函数y=sin(x﹣)=sin(2π+x﹣)=sin(x+)=cosx,则P2为真命题;
对于P3,由于cosx∈[﹣1,1],∉[﹣1,1],则P3为假命题;
对于P4,函数y=|cosx|(x∈R),f(x+π)=|cos(x+π)|=|﹣cosx|=|cosx|=f(x),
则f(x)的最小正周期为π,则P4为假命题.
故选D.
【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式以及周期函数的定义是解题的关键,属于基础题和易错题.
二、填空题
13.【答案】5﹣4.
【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,
|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,
即:﹣4=5﹣4.
故答案为:5﹣4.
【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.
14.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.

一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.
π,18+
15.【答案】
6
【解析】
16.【答案】 .
【解析】解:S n 是数列{a n }的前n 项和,且a 1=﹣1, =S n ,
∴S n+1﹣S n =S n+1S n ,
∴=﹣1,
=﹣1,
∴{}是首项为﹣1,公差为﹣1的等差数列,

=﹣1+(n ﹣1)×(﹣1)=﹣n .
∴S n =﹣,
n=1时,a 1=S 1=﹣1,
n ≥2时,a n =S n ﹣S n ﹣1=﹣+=

∴a n =

故答案为:

17.【答案】30x y -+= 【解析】
试题分析:由圆C 的方程为2
2
230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距
()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时
11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.
考点:直线与圆的位置关系的应用. 18.【答案】 4 .
【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1
所以f(1)+f′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).
三、解答题
19.【答案】
【解析】解:(1)f(x)=(log2x﹣2)(log4x﹣)
=(log2x)2﹣log2x+1,2≤x≤4
令t=log2x,则y=t2﹣t+1=(t﹣)2﹣,
∵2≤x≤4,
∴1≤t≤2.
当t=时,y min=﹣,当t=1,或t=2时,y max=0.
∴函数的值域是[﹣,0].
(2)令t=log2x,得t2﹣t+1>mt对于2≤t≤4恒成立.
∴m<t+﹣对于t∈[2,4]恒成立,
设g(t)=t+﹣,t∈[2,4],
∴g(t)=t+﹣=(t+)﹣,
∵g(t)=t+﹣在[2,4]上为增函数,
∴当t=2时,g(t)min=g(2)=0,
∴m<0.
20.【答案】
【解析】解:(1)因为f(1)=a=,所以f(x)=,
所以,a2=[f(2)﹣c]﹣[f(1)﹣c]=,a3=[f(3)﹣c]﹣[f(2)﹣c]=
因为数列{a n}是等比数列,所以,所以c=1.
又公比q=,所以;
由题意可得:=,
又因为b n>0,所以;
所以数列{}是以1为首项,以1为公差的等差数列,并且有;
当n≥2时,b n=S n﹣S n﹣1=2n﹣1;
所以b n=2n﹣1.
(2)因为数列前n项和为T n,
所以
=
=;
因为当m∈[﹣1,1]时,不等式恒成立,
所以只要当m∈[﹣1,1]时,不等式t2﹣2mt>0恒成立即可,
设g(m)=﹣2tm+t2,m∈[﹣1,1],
所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,
所以,
解得t<﹣2或t>2,
所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).
(3)T1,T m,T n成等比数列,得T m2=T1T n
∴,

结合1<m<n知,m=2,n=12
【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.
21.【答案】
【解析】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,
∴cosA==,
又∵A∈(0,π),
∴A=;
(Ⅱ)∵cosB=,B∈(0,π),
∴sinB==,
由正弦定理=,得a===3.
【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.
22.【答案】
【解析】解:(1)由a n+1=2S n+1①
得a n=2S n﹣1+1②,
①﹣②得a n+1﹣a n=2(S n﹣S n﹣1),
∴a n+1=3a n(n≥2)
又a2=3,a1=1也满足上式,
∴a n=3n﹣1;
b5﹣b3=2d=6∴d=3
∴b n=3+(n﹣3)×3=3n﹣6;
(2),
∴对n∈N*恒成立,
∴对n∈N*恒成立,
令,,
当n≤3时,c n>c n﹣1,当n≥4时,c n<c n﹣1,

所以实数k的取值范围是
【点评】已知数列的项与前n项和间的递推关系求数列的通项,一般通过仿写作差的方法得到数列的递推关系,再据递推关系选择合适的求通项方法.
23.【答案】
【解析】解:由题意可知过焦点的直线方程为y=x﹣,联立,
得,
设A(x1,y1),B(x2,y2)
根据抛物线的定义,得|AB|=x1+x2+p=4p=8,
解得p=2.
∴抛物线的方程为y2=4x.
【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值.着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.
24.【答案】
【解析】解:(1)设事件A为“两手所取的球不同色”,
则P(A)=1﹣.
(2)依题意,X的可能取值为0,1,2,
左手所取的两球颜色相同的概率为=,
右手所取的两球颜色相同的概率为=.
P(X=0)=(1﹣)(1﹣)==;
P(X=1)==;
P(X=2)==.
∴X的分布列为:
EX=0×+1×+2×=.
【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.。

相关文档
最新文档