新人教版选修22推理与证明试卷
高中数学选修2-2第二章《推理与证明》单元测试题(含答案)
![高中数学选修2-2第二章《推理与证明》单元测试题(含答案)](https://img.taocdn.com/s3/m/f72f5993a216147917112897.png)
高中数学选修2-2第二章《推理与证明1》单元测试题单元练习题一、选择题1.数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .272.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( )A .都不大于2-B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2-3.已知正六边形ABCDEF ,在下列表达式①EC CD BC ++;②DC BC +2;③+;④-2中,与等价的有( ) A .1个 B .2个 C .3个 D .4个 4.函数]2,0[)44sin(3)(ππ在+=x x f 内( ) A .只有最大值 B .只有最小值 C .只有最大值或只有最小值 D .既有最大值又有最小值5.如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( ) A .5481a a a a > B .5481a a a a <C .5481a a a a +>+D .5481a a a a =6. 若234342423log [log (log )]log [log (log )]log [log (log )]0x x x ===,则x y z ++=( )A .123B .105C .89D .58 7.函数xy 1=在点4=x 处的导数是 ( )A .81B .81-C .161D .161-二、填空题1.从222576543,3432,11=++++=++=中得出的一般性结论是_____________。
2.已知实数0≠a ,且函数)12()1()(2a x x a x f +-+=有最小值1-,则a =__________。
3.已知b a ,是不相等的正数,b a y b a x +=+=,2,则y x ,的大小关系是_________。
4.若正整数m 满足m m 102105121<<-,则)3010.02.(lg ______________≈=m5.若数列{}n a 中,12341,35,7911,13151719,...a a a a ==+=++=+++则10____a =。
高中新课标选修(2-2)推理与证明综合测试题.docx
![高中新课标选修(2-2)推理与证明综合测试题.docx](https://img.taocdn.com/s3/m/2cc9c16b453610661fd9f434.png)
高中数学学习材料鼎尚图文*整理制作高中新课标选修(2-2)推理与证明综合测试题一、选择题1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件答案:A2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥C.n 为正奇数D.n 为正偶数答案:C3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定答案:C4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+D.4578b b b b +>+答案:B5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥,(2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( )A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 答案:D6.观察式子:213122+<,221151233++<,222111712344+++<,,则可归纳出式子为( ) A.22211111(2)2321n n n ++++<-≥ B.22211111(2)2321n n n ++++<+≥ C.222111211(2)23n n n n -++++<≥ D.22211121(2)2321n n n n ++++<+≥答案:C7.如图,在梯形ABCD 中,()AB DC AB a CD b a b ==>,,∥.若EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出:ma mbEF m m+=+.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB △,OCD △的面积分别为12S S ,,EF AB ∥且EF 到CD 与AB 的距离之比为:m n ,则OEF △的面积0S 与12S S ,的关系是( )A.120mS nS S m n+=+B.120nS mS S m n +=+C.120m S n S S m n+=+D.120n S m S S m n+=+答案:C8.已知a b ∈R ,,且2a b a b ≠+=,,则( ) A.2212a b ab +<<B.2212a b ab +<<C.2212a b ab +<<D.2212a b ab +<<答案:B9.用反证法证明命题:若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么a b c ,,中至少有一个是偶数时,下列假设中正确的是( ) A.假设a b c ,,都是偶数 B.假设a b c ,,都不是偶数C.假设a b c ,,至多有一个是偶数 D.假设a b c ,,至多有两个是偶数 答案:B10.用数学归纳法证明(1)(2)()213(21)n n n n n n +++=-····,从k 到1k +,左边需要增乘的代数式为( ) A.21k + B.2(21)k + C.211k k ++ D.231k k ++答案:B11.类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,()2x xa a S x --=,()2x xa a C x -+=,其中0a >,且1a ≠,下面正确的运算公式是( ) ①()()()()()S x y S x C y C x S y +=+; ②()()()()()S x y S x C y C x S y -=-; ③()()()()()C x y C x C y S x S y +=-; ④()()()()()C x y C x C y S x S y -=+;A.①③ B.②④ C.①④ D.①②③④答案:D12.正整数按下表的规律排列1 2 5 10 17 4 3 6 11 18 9 8 7 12 19 16 15 14 13 20 25 24 232221则上起第2005行,左起第2006列的数应为( ) A.22005 B.22006 C.20052006+ D.20052006⨯答案:D二、填空题13.写出用三段论证明3()sin ()f x x x x =+∈R 为奇函数的步骤是 .答案:满足()()f x f x -=-的函数是奇函数, 大前提 333()()sin()sin (sin )()f x x x x x x x f x -=-+-=--=-+=-, 小前提所以3()sin f x x x =+是奇函数. 结论14.已知111()1()23f n n n *=++++∈N ,用数学归纳法证明(2)2n nf >时,1(2)(2)k k f f +-等于 . 答案:111121222kk k ++++++15.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为 .答案:三角形内角平分线交于一点,且这个点是三角形内切圆的圆心16.下面是按照一定规律画出的一列“树型”图:设第n 个图有n a 个树枝,则1n a +与(2)n a n ≥之间的关系是.答案:122n n a a +=+三、解答题17.如图(1),在三角形ABC 中,AB AC ⊥,若AD BC ⊥,则2AB BD BC =·;若类比该命题,如图(2),三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有什么结论?命题是否是真命题.解:命题是:三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有2ABC BCMBCD S S S =△△△·是一个真命题. 证明如下:在图(2)中,连结DM ,并延长交BC 于E ,连结AE ,则有DE BC ⊥. 因为AD ⊥面ABC ,,所以AD AE ⊥. 又AM DE ⊥,所以2AE EM ED =·. 于是22111222ABCBCM BCD SBC AE BC EM BC ED S S ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△△△·····.18.如图,已知PA ⊥矩形ABCD 所在平面,M N ,分别是AB PC ,的中点. 求证:(1)MN ∥平面PAD ;(2)MN CD ⊥.证明:(1)取PD 的中点E ,连结AE NE ,. N E ,∵分别为PC PD ,的中点.EN ∴为PCD △的中位线,12EN CD ∥∴,12AM AB =,而ABCD 为矩形, CD AB ∴∥,且CD AB =.EN AM ∴∥,且EN AM =.AENM ∴为平行四边形,MN AE ∥,而MN ⊄平面PAC ,AE ⊂平面PAD , MN ∴∥平面PAD .(2)PA ⊥∵矩形ABCD 所在平面,CD PA ⊥∴,而CD AD ⊥,PA 与AD 是平面PAD 内的两条直交直线, CD ⊥∴平面PAD ,而AE ⊂平面PAD , AE CD ⊥∴.又MN AE ∵∥,MN CD ⊥∴.19.求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.证明:(分析法)设圆和正方形的周长为l ,依题意,圆的面积为2π2πl ⎛⎫ ⎪⎝⎭·,正方形的面积为24l ⎛⎫⎪⎝⎭.因此本题只需证明22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.要证明上式,只需证明222π4π16l l >,两边同乘以正数24l,得11π4>. 因此,只需证明4π>. ∵上式是成立的,所以22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积最大.20.已知实数a b c d ,,,满足1a b c d +=+=,1ac bd +>,求证a b c d ,,,中至少有一个是负数.证明:假设a b c d ,,,都是非负实数,因为1a b c d +=+=, 所以a b c d ,,,[01]∈,,所以2a c ac ac +≤≤,2b cbd bd +≤≤, 所以122a cb dac bd ++++=≤, 这与已知1ac bd +>相矛盾,所以原假设不成立,即证得a b c d ,,,中至少有一个是负数.21.设()2x x a a f x -+=,()2x xa a g x --=(其中0a >,且1a ≠).(1)523=+请你推测(5)g 能否用(2)(3)(2)(3)f f g g ,,,来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解:(1)由3332332255(3)(2)(3)(2)22221a a a a a a a a a a f g g f -----+--+-+=+=··, 又55(5)2a a g --=,因此(5)(3)(2)(3)(2)g f g g f =+.(2)由(5)(3)(2)(3)(2)g f g g f =+,即(23)(3)(2)(3)(2)g f g g f +=+, 于是推测()()()()()g x y f x g y g x f y +=+.证明:因为()2x x a a f x -+=,()2x xa a g x --=(大前提).所以()()2x y x y a a g x y +-+-+=,()2y y a a g y --=,()2y ya a f y -+=,(小前提及结论)所以()()()()()()22222x x y y x x y y x y x y a a a a a a a a a a f x g y g x f y g x y ----+-++--+-+=+==+··.22.若不等式111123124an n n +++>+++对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解:当1n =时,11111123124a ++>+++,即262424a>, 所以26a <.而a 是正整数,所以取25a =,下面用数学归纳法证明:11125123124n n n +++>+++. (1)当1n =时,已证;(2)假设当n k =时,不等式成立,即11125123124k k k +++>+++. 则当1n k =+时,有111(1)1(1)23(1)1k k k +++++++++111111112313233341k k k k k k k =++++++-+++++++ 251122432343(1)k k k ⎡⎤>++-⎢⎥+++⎣⎦. 因为2116(1)2323491883(1)k k k k k k ++=>+++++, 所以2116(1)2323491883(1)k k k k k k ++=>+++++, 所以112032343(1)k k k +->+++. 所以当1n k =+时不等式也成立. 由(1)(2)知,对一切正整数n ,都有11125123124n n n +++>+++, 所以a 的最大值等于25.高中新课标选修(2-2)推理与证明综合测试题一、选择题1.下面使用的类比推理中恰当的是( ) A.“若22m n =··,则m n =”类比得出“若00m n =··,则m n =” B.“()a b c ac bc +=+”类比得出“()a b c ac bc =··” C.“()a b c ac bc +=+”类比得出“(0)a b a bc c c c+=+≠” D.“()n nn pq p q =·”类比得出“()n n n p q p q +=+”答案:C2.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是( )A.25 B.66C.91D.120答案:C3.推理“①正方形是平行四边形;②梯形不是平行四边形;③所以梯形不是正方形”中的小前提是( ) A.① B.② C.③ D.①和② 答案:B4.用数学归纳法证明等式(3)(4)123(3)()2n n n n *+++++++=∈N 时,第一步验证1n =时,左边应取的项是( ) A.1 B.12+ C.123++ D.1234+++答案:D5.在证明命题“对于任意角θ,44cos sin cos2θθθ-=”的过程:“44222222cos sin (cos sin )(cos sin )cos sin cos 2θθθθθθθθθ-=+-=-=”中应用了( ) A.分析法 B.综合法 C.分析法和综合法综合使用 D.间接证法答案:B6.要使333a b a b -<-成立,则a b ,应满足的条件是( )A.0ab <且a b > B.0ab >且a b > C.0ab <且a b < D.0ab >且a b >或0ab <且a b <答案:D7.下列给出的平面图形中,与空间的平行六面体作为类比对象较为合适的是( )A.三角形 B.梯形 C.平行四边形 D.矩形答案:C8.命题“三角形中最多只有一个内角是钝角”的结论的否定是( ) A.有两个内角是钝角 B.有三个内角是钝角 C.至少有两个内角是钝角 D.没有一个内角是钝角 答案:C9.用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为( )A.41412156325(35)k k k +++++· B.441223355k k ++·· C.412135k k +++D.412125(35)k k +++答案:A10.已知扇形的弧长为l ,所在圆的半径为r ,类比三角形的面积公式:12S =⨯底⨯高,可得扇形的面积公式为( ) A.212rB.212lC.12rlD.不可类比答案:C11.已知1m >,1a m m =+-,1b m m =--,则以下结论正确的是( ) A.a b > B.a b < C.a b = D.a ,b 大小不定答案:B12.观察下列各式:211=,22343++=,2345675++++=,2456789107++++++=,,可以得出的一般结论是( ) A.2(1)(2)(32)n n n n n ++++++-= B.2(1)(2)(32)(21)n n n n n ++++++-=- C.2(1)(2)(31)n n n n n ++++++-= D.2(1)(2)(31)(21)n n n n n ++++++-=-答案:B二、填空题 13.已知21111()12f n n n n n =++++++,则()f n 中共有 项.答案:21n n -+14.已知经过计算和验证有下列正确的不等式:317210+<,7.512.5210+<, 82122210++-<,根据以上不等式的规律,请写出对正实数m n ,成立的条件不等式 .答案:当20m n +=时,有210m n +≤15.在数列{}n a 中,12a =,1()31nn n a a n a *+=∈+N ,可以猜测数列通项n a 的表达式为 .答案:265n a n =-16.若三角形内切圆的半径为r ,三边长为a b c ,,,则三角形的面积等于1()2S r a b c =++,根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别是1234S S S S ,,,,则四面体的体积V = .答案:12341()3R S S S S +++三、解答题17.已知a 是整数,2a 是偶数,求证:a 也是偶数.证明:(反证法)假设a 不是偶数,即a 是奇数. 设21()a n n =+∈Z ,则22441a n n =++. 24()n n +∵是偶数,2441n n ++∴是奇数,这与已知2a 是偶数矛盾. 由上述矛盾可知,a 一定是偶数.18.已知命题:“若数列{}n a 是等比数列,且0n a >,则数列12()nn n b a a a n *=∈N 也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.解:类比等比数列的性质,可以得到等差数列的一个性质是:若数列{}n a 是等差数列,则数列12nn a a a b n+++=也是等差数列.证明如下: 设等差数列{}n a 的公差为d ,则12nn a a a b n+++=11(1)2(1)2n n dna d a n n -+==+-,所以数列{}n b 是以1a 为首项,2d为公差的等差数列.19.已知a b c >>,且0a b c ++=,求证:23b aca-<.证明:因为a b c >>,且0a b c ++=,所以0a >,0c <,要证明原不等式成立,只需证明23b ac a -<r , 即证223b ac a -<,从而只需证明22()3a c ac a +-<, 即()(2)0a c a c -+>,因为0a c ->,20a c a c a a b +=++=->, 所以()(2)0a c a c -+>成立,故原不等式成立.20.用三段论方法证明:2222222()a b b c c a a b c +++++++≥.证明:因为222a b ab +≥,所以22222()2a b a b ab +++≥(此处省略了大前提), 所以2222()22a b a b a b +++≥≥(两次省略了大前提,小前提), 同理,222()2b c b c ++≥,222()2c a c a +>+, 三式相加得2222222()a b b c c a a b c +++++++≥. (省略了大前提,小前提)21.由下列不等式:112>,111123++>,111312372++++>,111122315++++>,,你能得到一个怎样的一般不等式?并加以证明.解:根据给出的几个不等式可以猜想第n 个不等式,即一般不等式为:1111()23212n n n *++++>∈-N . 用数学归纳法证明如下: (1)当1n =时,112>,猜想成立; (2)假设当n k =时,猜想成立,即111123212k k++++>-, 则当1n k =+时, 111111111111211232122121222121222k k k k k k k k k k k k ++++++++++++>++++>+=-+-+-,即当1n k =+时,猜想也正确,所以对任意的n *∈N ,不等式成立.22.是否存在常数a b c ,,,使得等式222222421(1)2(2)()n n n n n an bn c -+-++-=++对一切正整数n 都成立?若存在,求出a b c ,,的值;若不存在,说明理由.解:假设存在a b c ,,,使得所给等式成立. 令123n =,,代入等式得0164381918a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,,,解得14140a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,,以下用数学归纳法证明等式22222242111(1)2(2)()44n n n n n n n -+-++-=+对一切正整数n 都成立.(1)当1n =时,由以上可知等式成立;(2)假设当n k =时,等式成立,即22222242111(1)2(2)()44k k k k k k k -+-++-=-,则当1n k =+时,222222221[(1)1]2[(1)2][(1)](1)[(1)(1)]k k k k k k k k +-++-+++-+++-+2222221(1)2(2)()(21)2(21)(21)k k k k k k k k k =-+-++-+++++++424211(1)11(21)(1)(1)44244k k k k k k k +=-++=+-+·. 由(1)(2)知,等式结一切正整数n 都成立.。
(完整word版)高中数学选修2-2推理与证明单元测试卷
![(完整word版)高中数学选修2-2推理与证明单元测试卷](https://img.taocdn.com/s3/m/c53959b9f7ec4afe05a1dff6.png)
章末检测一、选择题 1.由 1= 12,1 + 3 = 22,1 + 3+ 5= 32,1 + 3 + 5+ 7= 42,…,得到 1 + 3+ — + (2n — 1) = n 2 用的是( ) A. 归纳推理 B.演绎推理 C.类比推理 D.特殊推理答案 A 2.在厶ABC 中,E 、F 分别为AB 、AC 的中点,则有EF // BC ,这个问题的大前提为( )A •三角形的中位线平行于第三边 B. 三角形的中位线等于第三边的一半 C. EF 为中位线 D.EF // BC答案 A解析 这个三段论推理的形式为:大前提:三角形的中位线平行于第三边;小前提: EF 为△ ABC 的中位线;结论: EF // BC. 3.用反证法证明命题“2 + . 3是无理数”时,假设正确的是 ()A. 假设,2是有理数 C.假设,2或,3是有理数 答案 DB. 假设.3是有理数D.假设.2+ 3是有理数解析应对结论进行否定,则 ,2+ 3不是无理数,即.2+ 3是有理数. 4•若A 是厶ABC 的一个内角,1cos A >2,则A 的取值范围是(n A. 0, 6n B. 0, 3n nc. 6, 2答案B1解析■/ A是厶ABC的一个内角,••• A € (0, n)又cos A> ?,且y= cos A在(0, n上是减函2f x5.已知f(x+ 1) = f x+ 2, f(1) = 1(x€ N*),猜想f(x)的表达式为()4A.2x+ 2B. 2x+ 1a 》一2, • 解得—2 w a w 1. 1 + a w 2,8.对“ a , b , c 是不全相等的正数”,给出下列判断: ① (a — b)2 + (b — c)2+ (c — a)2* 0;② a = b 与b = c 及a = c 中至少有一个成立; ③ a 丰c , b * c , a * b 不能同时成立 . 其中判断正确的个数为() A.0B.1C.2D.31C.x+7答案 B2f 12 解析 当 x = 1 时,f(2) == -2+22当 x =3 时,f(4)=髡=1=占, 2故可猜想f(x) = -^,故选B.x + 16.设有两个命题:①关于x 的不等式x 2+ 2ax + 4>0对一切x € R 恒成立; ②函数f(x)=— (5 — 2a)x 是减函数. 若命题中有且只有一个是真命题,则实数 a 的取值范围是(A.( —a, — 2]B.( —a, 2)C.[2 ,+a )D.( — 2,2)答案 A解析 若①为真,则A= 4a 2— 16v 0•即—2v a v 2 ;若②为真,则5— 2a > 1,即a v 2•当①真 ②假时,无解;当①假②真时,a w — 2.X7.在R 上定义运算O : x Oy =口若关于x 的不等式(x — a) O (x + 1 — a) > 0的解集是集合{x|—2w x < 2, x € R }的子集,则实数 a 的取值范围是( A.[ — 2,2] B.[ — 1,2] C.[1,2) D.[ — 2,1]答案 Dx — ax — a x — a解析由定义知(x - a) O(x +1 - a)= 2 — x + 1 — a — 1 + a — x — 1 + a'•••不等式为—x ——>0,x ——v0 的解集为{x|a v x v a + 1},也就是{x|— 2w x w 2}的子集,答案 B解析 若(a — b)2+ (b — c)2+ (c — a)2 = 0,则a = b = c ,与“a , b, c 是不全相等的正数”矛盾, 故①正确.a = b 与b = c 及a = c 中最多只能有一个成立,故 ②不正确.由于“a , b , c 是不全相 等的正数”,有两种情形:至多有两个数相等或三个数都互不相等,故③不正确.1a n +1 = 1 —一,贝U a 2 015等于(a n1A ・2 B. — 1 C.2 D.3答案 B1 彳 a5=1 —04=— 1, a6=1 —a n + 3k = a n (n € N , k € N ) • a 2 015= a 2 + 3X 671= a 2=— 1.10. 定义在 R 上的函数f(x)满足f(— x)=— f(x + 4),且f(x)在(2,+s )上为增函数.已知X 1 + X 2<4 且(x 1— 2) •(— 2)<0,贝U f(x 1)+ f(x 2)的值( )A.恒小于0B.恒大于0C. 可能等于0D.可正也可负答案 A解析 不妨设 X 1 — 2<0 , X 2— 2>0 , 则 X 1<2 , x 2>2, • 2<X 2<4 — X 1 ,• f(X 2)<f(4 — X 1),即一f(X 2)> — f(4 — X 1), 从而一f(X 2)> — f(4 — X 1)= f(X 1), f(X 1 ) + f(X 2)<0. 二、填空题 11. 观察下列等式: (1 + 1) = 2 X 1(2 + 1)(2 + 2)= 22X 1 X 3(3 + 1)(3 + 2)(3 + 3) = 23X 1 X 3 X 5 按此规律,第n 个等式可为 ___________ .答案 (n + 1)(n + 2)(n + 3) •- •(+ n) = 2n - 1 - 3•- -5•- 1)11 1 3 5 7 12. f(n)= 1 + + 3+-+ 卞n € N *),经计算得 f(2)=?, f(4)>2 , f(8)>?, f(16)>3 , f(32)>-,推测9.数列{a n }满足a i =1,解析1-a1 = 2’an + 1=1 1 —a n••• a2=a3=1-02=2,1 1a4=1—ar 2,a 5=2,当n》2时,有 __________________ .2 + n答案f(2n)>—^( n A 2)解析观测f(n)中n的规律为2k(k= 1,2,…),2 + k不等式右侧分别为2,k= 1,2 ,…,••• f(2n)>^( n A 2).13.用数学归纳法证明:1 1 1 2n1+ 1 + 2 + 1 + 2+ 3+…+ 1 + 2+ 3+・・・+ n—n +1 时,由 * k到* k+1左边需要添加的项是___________ 答案2k+ 1 k+ 2解析1 2由n—k到n—k+ 1时,左边需要添加的项是一.1 + 2+ 3+ …+ k+ 1 k+ 1 k+ 214.设S, V分别表示表面积和体积,如△ ABC的面积用S A ABC表示,二棱锥O —ABC的体积用V O —ABC表示,对于命题:如果0是线段AB上一点,则Q B|OA+ |<OA| OB= 0.将它类比到平面的情形时,应该有:若0是厶ABC内一点,有OBC 0A+ S SCA 0B + OBA OC = 0.将它类比到空间的情形时,应该有:若O是三棱锥A—BCD内一点,则有____________________ .答案V O-BCD 0A + V O—ACD OB+ V O—ABD OC + V O—ABC OD= 0三、解答题15. 设a, b, c三数依次成等比数列,而x, y分别为a, b和b, c的等差中项,试证:号+y = 2.证明依题意,a, b, c依次成等比数列,即a= b.b c由比例性质有—=—匚,又由题设x=旦乎,y=中,a+ b b + c 2 2a c 2a 2c 2b 2c 2 b+ c因而 + = = + = = 2.x y a+ b b + c b+ c b+ c b+ c116. 证明:对于任意实数x, y,都有x4+ y4A~xy(x + y)2.1 证明要证x4+ y4A?xy(x+ y)2,只需证2(x4+ y4) A xy(x+ y)2,即证2(x4+ y4) A x3y+ xy3+ 2x2y2.只需x4+ y4A x3y+ xy3与x4+ y4A 2x2y2同时成立即可.又知x4+ y4—2x2y2= (x2—y2)2A 0 显然成立,即x4+ y4A 2x2y2成立,只需再证x 4+ y 4>x 3y + xy 3即可. 而 x 4 + y 4- x 3y - xy 3= (x — y)(x 3- y 3),T x - y 与 x 3- y 3 同号,•- (x - y)(x 3- y 3) > 0,即卩 x 4 + y 4>x 3y + xy 3成立,1•对于任意实数x , y ,都有x 4 + y 4>2xy(x + y)2.17. 如图,在直三棱柱 ABC - A i B i C i 中,E,F 分别为 A i B,A i C 的中点,点D 在B i C i 上,A i D 丄B i C.求证:(1)EF //平面ABC ; (2)平面 A i FD 丄平面BB i C i C.证明 ⑴因为E , F 分别为A i B , A i C 的中点,所以 EF // BC,又EF?平面ABC , BC?平面 ABC ,所以EF //平面ABC.(2)因为三棱柱 ABC - A i B i C i 为直三棱柱, 所以BB i 丄平面A i B i C i , BB i 丄A i D , 又 A i D 丄 B i C ,所以 A i D 丄平面BB i C i C , 又A i D?平面A i FD ,所以平面A i FD 丄平面BB i C i C.I8.已知△ ABC 中,A : B : C = I : 2 : 6. a a + b求证:厂= -------b a + b + C只需证 a 2 + ab + ac = ab + b 2, 即证 a(a + c) = b 2.由正弦定理,只需证 sin A(sin A + sin C) = si n 2B. •/ A : B : C = i : 2 : 6,即卩 sin n sin f+sin§n)sin 29n证明 要证 a _ a + b b a +b +c ‘•-A =9,6 一9=c2 一9n n ・ 3 o2 即singling + sing n# sin2§n,n 2 n n ?2 即sin 9 • 2singcos g = sin2g n,n n 2即2si n geos g= sin g n,显然成立a+ b成立.a+ b+ e。
新人教A版高中数学选修22第二章推理与证明单元测试1
![新人教A版高中数学选修22第二章推理与证明单元测试1](https://img.taocdn.com/s3/m/585687a1852458fb760b5674.png)
百度文库-让每个人平等地提升自我高中新课标选修〔2-2〕推理与证明综合测试题一、选择题1.分析法是从要证明的结论出发,逐步寻求使结论成立的〔〕A.充分条件B.必要条件C.充要条件D.等价条件答案:A2.结论为:能被整除,令验证结论是否正确,得到此结论成立的条件可以为〔〕A.B.且C.为正奇数D.为正偶数答案:C3.在中,,那么一定是〔〕A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案:C4.在等差数列中,假设,公差,那么有,类经上述性质,在等比数列中,假设,那么的一个不等关系是〔〕A.B.C.D.答案:B5.〔1〕,求证,用反证法证明时,可假设,〔2〕,,求证方程的两根的绝对值都小于1.用反证法证明时可假设方程有一根的绝对值大于或等于1,即假设,以下结论正确的选项是〔〕A.与的假设都错误B.与的假设都正确C.的假设正确;的假设错误D.的假设错误;的假设正确答案:D6.观察式子:,,,,那么可归纳出式子为〔〕A.B.C.D.答案:C7.如图,在梯形中,.假设,到与的距离之比为,那么可推算出:.试用类比的方法,1百度文库-让每个人平等地提升自我推想出下述问题的结果.在上面的梯形中,延长梯形两腰相交于点,设,的面积分别为,且到与的距离之比为,那么的面积与的关系是〔〕A.B.C.D.答案:C8.,且,那么〔〕A.B.C.D.答案:B9.用反证法证明命题:假设整系数一元二次方程有有理根,那么中至少有一个是偶数时,以下假设中正确的选项是〔〕A.假设都是偶数B.假设都不是偶数C.假设至多有一个是偶数D.假设至多有两个是偶数答案:B10.用数学归纳法证明,从到,左边需要增乘的代数式为〔〕A.B.C.D.答案:B11.类比“两角和与差的正余弦公式〞的形式,对于给定的两个函数,,,其中,且,下面正确的运算公式是〔〕①;②;③;④;A.①③B.②④C.①④D.①②③④[来答案:D12.正整数按下表的规律排列2百度文库-让每个人平等地提升自我那么上起第2005行,左起第2006列的数应为〔〕A.B.C.D.答案:D二、填空题13.写出用三段论证明为奇函数的步骤是.答案:满足的函数是奇函数,大前提,小前提所以是奇函数.结论14.,用数学归纳法证明时,等于.答案:15.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为.答案:三角形内角平分线交于一点,且这个点是三角形内切圆的圆心16.下面是按照一定规律画出的一列“树型〞图:设第个图有个树枝,那么与之间的关系是.答案:三、解答题17.如图〔1〕,在三角形中,,假设,那么;假设类比该命题,如图〔2〕,三棱锥中,面,假设点在三角形所在平面内的射影为,那么有什么结论?命题是否是真命题.3百度文库-让每个人平等地提升自我解:命题是:三棱锥中,面,假设点在三角形所在平面内的射影为,那么有是一个真命题.证明如下:在图〔2〕中,连结,并延长交于,连结,那么有.因为面,,所以.又,所以.于是.18.如图,矩形所在平面,分别是的中点.求证:〔1〕平面;〔2〕.证明:〔1〕取的中点,连结.分别为的中点.为的中位线,,,而为矩形,,且.,且.为平行四边形,,而平面,平面,平面.〔2〕矩形所在平面,,而,与是平面内的两条直交直线,平面,而平面,.又,.19.求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.证明:〔分析法〕设圆和正方形的周长为,依题意,圆的面积为,正方形的面积为.因此此题只需证明.要证明上式,只需证明,两边同乘以正数,得.因此,只需证明.上式是成立的,所以.这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积最大.20.实数满足,,求证中至少有一个是负数.证明:假设都是非负实数,因为,所以,所以,,所以,4百度文库-让每个人平等地提升自我这与相矛盾,所以原假设不成立,即证得中至少有一个是负数.21.设,〔其中,且〕.1〕请你推测能否用来表示;2〕如果〔1〕中获得了一个结论,请你推测能否将其推广.解:〔1〕由,又,因此.2〕由,即,于是推测.证明:因为,〔大前提〕.所以,,,〔小前提及结论〕所以.22.假设不等式对一切正整数都成立,求正整数的最大值,并证明结论.解:当时,,即,所以.而是正整数,所以取,下面用数学归纳法证明:.1〕当时,已证;2〕假设当时,不等式成立,即.那么当时,有.因为,所以,所以.所以当时不等式也成立.由〔1〕〔2〕知,对一切正整数,都有,所以的最大值等于25.5。
人教A版选修2-2第二章推理与证明基础测试题
![人教A版选修2-2第二章推理与证明基础测试题](https://img.taocdn.com/s3/m/1c37cb610029bd64793e2cad.png)
人教A 版选修2-2第二章推理与证明基础测试题一、单选题1.“一切金属都能导电,铁是金属,所以铁能导电”.此推理方法是( ) A .类比推理B .演绎推理C .归纳推理D .以上都不对2.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩3.在平面直角坐标系中,点()00,x y 到直线0Ax By C ++=的距离d =,类比可得在空间直角坐标系中,点()2,3,4到平面2240x y z ++-=的距离为( )A .4B .5C .163D .2034.用数学归纳法证明等式()221*111,1n n a a a aa n N a++-++++=≠∈-时,当1n =时,左边等于( ) A .1B .1a +C .21a a ++D .2a5.华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”,是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检测效率:每16人为组,把每个人抽取的鼻咽拭子分泌物混合检查,如果为阴性则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验将会是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性,则认定在本组.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查……以此类推,最终从这16人中认定那名感染者需要经过( )次检测.6.在一次数学测验后,甲、乙、丙三人对成绩进行预测 甲:我的成绩比丙高.乙:我的成绩比丙高. 丙:甲的成绩比我和乙的都高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( ) A .甲、乙、丙 B .乙、丙、甲 C .丙、乙、甲D .甲、丙、乙7.某集团军接到抗洪命令,紧急抽调甲、乙、丙、丁四个专业抗洪小组去A ,B ,C ,D 四地参加抗洪抢险,每地仅去1人,其中甲不去A 地也不去B 地,乙与丙不去A 地也不去D 地,如果乙不去B 地,则去D 地的是( ) A .甲B .乙C .丙D .丁8.用反证法证明命题:“三角形的内角中至少有一个不大于60︒”时,假设正确的是( ) A .假设三内角都不大于60︒ B .假设三内角都大于60︒C .假设三内角至少有一个大于60︒D .假设三内角至多有两个大于60︒9.甲、乙、丙、丁四位同学参加一次数学智力竞赛,决出了第一名到第四名的四个名次.甲说:“我不是第一名”;乙说:“丁是第一名”;丙说:“乙是第一名”;丁说:“我不是第一名”.成绩公布后,发现这四位同学中只有一位说的是正确的,则获得第一名的同学为() A .丙B .甲C .乙D .丁10.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =2⨯底高,可推知扇形面积公式S 扇等于( )A .22rB .22lC .12lr D .不可类比11.如图,观察①、②、③的变化规律,则第④张图形应为( )① ② ③ ④______A .B .C .D .12.“已知对数函数log a y x =(0a >且1a ≠)是增函数,因为2log y x =是对数函数,所以2log y x =为增函数”,在以上三段论的推理中( ) A .大前提错误 B .小前提错误 C .推理形式错误 D .结论错误二、填空题13.用反证法证明:存在x ∈R ,cos 1x ≥,应先假设:________.14.已知不等式213122+<,221151233++<,222111712344+++<,……均成立,照此规律,第五个不等式应为2222211111123456+++++<_______.15.已知甲、乙、丙三人恰好都去过北京、上海中的某一个城市,三人分别给出了以下说法:甲说:我去过北京,乙去过上海,丙去过北京;乙说:我去过上海,甲说的不完全对;丙说:我去过北京,乙说的对.若甲、乙、丙三人中恰好有1人说得不对,则去过北京的是_____.16.一个自然数的立方,可以分裂成若千个连续奇数的和.例如:32、33和34分别可以“分裂”成2个、3个和4个连续奇数的和,即3235=+,337911=++,3413151719=+++,…若3100也按照此规律来进行“分裂”,则3100“分裂”出的奇数中,最小的奇数是______.三、解答题17.已知数列{}n a 第一项12a =,且1(1,2,3,4)1n n na a n n +==+, (1)计算234,,a a a 的值.(2)试猜想这个数列的通项公式(不用写出推导过程). 18.设数列{}n a 的前n 项和为n S ,且满足()2n n S a n N ++=∈. (1)求123,,a a a 的值,并写出数列{}n a 的通项公式;(2)写出用三段论证明数列{}n a 是等比数列的大提前、小前提、结论. 19.已知a 、b 、c +∈R , (1)求证:()114a b a b ⎛⎫++≥⎪⎝⎭;(2)求证:()1119a b c a b c ⎛⎫++++≥⎪⎝⎭; (3)由(1)、(2),将命题推广到一般情形(不作证明). 20.(1)已知a ,b 都是正数,并且ab ,求证:552332a b a b a b +>+;(2)若x ,y 都是正实数,且2x y =>,求证:12x y +<与12yx+<中至少有一个成立.21.设关于正整数n 的函数222()1223(1)f n n n =⋅+⋅++(1)求(1),(2),(3)f f f ; (2)是否存在常数,,a b c 使得()f n =2(1)()12n n an bn c +++对一切自然数n 都成立?并证明你的结论22.设函数()y f x =对任意实数x 、y 都有()()()2f x y f x f y xy +=++, (1)求(0)f 的值;(2)若(1)1f =,求(2)f 、(3)f 、(4)f 的值;(3)在(2)的条件下,猜想()f n ()n N +∈的表达式,并用数学归纳法加以证明.参考答案1.B 【分析】符合三段论:大前提,小前提,结论,所以是演绎推理. 【详解】在推理的过程中:一切金属都能导电,是大前提, 铁是金属,是小前提, 所以铁能导电,是结论, 故是演绎推理, 故选:B 2.D 【分析】根据题中条件,直接分析,即可得出结果. 【详解】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果. 故选:D . 3.A 【分析】类比可得,点()000,,x y z 到平面0Ax By Cz D +++=的距离为d =,即为即可得出结果.【详解】类比可得,点()000,,x y z 到平面0Ax By Cz D +++=的距离为d =,故点()2,3,4到平面2240x y z ++-=的距离:4d ==,故选:A. 4.C 【分析】根据题意,将1n =直接代入,即可求出结果. 【详解】用数学归纳法证明:()2211111n n a a a aa a++-++++=≠-, 在验证1n =时,令1n =代入左边的代数式,得到左边11211+=++=++a a a a . 故选:C 5.B 【分析】利用优选法依次进行检测,写出4次检测的情况,得到最终从这16人中认定那名感染者需要经过4次检测. 【详解】第一次:16人分两组,每组8人,如果第一组检测结果为阳性,放行第二组,留下第一组继续检测,如果第一组检测结果为阴性,放行第一组,留下第二组继续检测;第二次:留下的8人分两组,每组4人,如果第一组检测结果为阳性,放行第二组,留下第一组继续检测,如果第一组检测结果为阴性,放行第一组,留下第二组继续检测; 第三次:留下的4人分两组,每组2人,如果第一组检测结果为阳性,放行第二组,留下第一组继续检测,如果第一组检测结果为阴性,放行第一组,留下第二组继续检测; 第四次:留下的2人分两组,每组1人,如果第一人检测结果为阳性,则第2人没有感染.如果第一组检测结果为阴性,则第2人感染.综上,最终从这16人中认定那名感染者需要经过4次检测. 故选:B 6.B 【分析】若甲预测正确,则乙和丙的预测都错误,此时甲>丙,乙<丙,甲<丙,产生矛盾;若乙预测正确,则甲和丙都错误,此时甲<丙,乙>丙,甲<丙,从而得甲<丙<乙;若丙预测正确,则甲和乙都错误,此时甲>丙,甲>乙,甲<丙,产生矛盾,由此可得结果【详解】解:若甲预测正确,则乙和丙的预测都错误,此时甲>丙,乙<丙,甲<丙,产生矛盾;若乙预测正确,则甲和丙都错误,此时甲<丙,乙>丙,甲<丙,从而得甲<丙<乙;若丙预测正确,则甲和乙都错误,此时甲>丙,甲>乙,甲<丙,产生矛盾,所以甲<丙<乙,故选:B7.A【分析】根据题意进行推理可得结果.【详解】因为甲、乙、丙都不去A地,所以只能是丁去A地,又甲、乙不去B地,所以只能是丙去B 地,又乙、丙不去D地,所以只能是甲去D地,乙去C地.故选:A【点睛】本题考查了演绎推理,属于基础题.8.B【分析】用反证法证明,需假设命题的否定.【详解】题设条件为至少有一个角不大于60,所以与之相反的条件为没有任何一个角不大于60,即三角形的内角均大于60.故选:B【点睛】本题考查反证法,重点考查命题的否定,属于基础题型.9.B【分析】分别假设甲是第一名,乙是第一名,丙是第一名,丁是第一名,四种情况,结合题中条件,进行判断,即可得出结果.若甲是第一名,则甲、乙、丙说的都不正确,丁说的正确,符合题意,故甲获得第一; 若乙是第一名,则只有乙说的正确,不符合题意;若丙为第一名,则乙丙说的不正确,甲丁说的正确,不满足题意; 若丁是第一名,则甲乙说的正确,丙丁说的不正确,不满足题意; 故选B 【点睛】本题主要考查逻辑推理,推理案例属于常考内容,属于基础题型. 10.C 【分析】将扇形的弧类比为三角形的底边,高类比为扇形的半径,问题得解. 【详解】将扇形的弧类比为三角形的底边,则高类比为扇形的半径r ,所以S 扇=12lr .故选C . 【点睛】本题主要考查了类比推理知识,对比图形的特征即可解答,属于基础题. 11.C 【分析】根据逆时针旋转确定正确选项. 【详解】由①、②、③可知,图形是逆时针方向旋转,所以第④张图形应C. 故选:C 【点睛】本小题主要考查合情推理,属于基础题. 12.A 【分析】根据对数函数的单调性判断即可. 【详解】当01a <<时,函数log a y x =为减函数,所以,在这个推理中,大前提错误.故选:A.本题考查演绎推理,属于基础题. 13.任意x ∈R ,cos 1x < 【分析】由特称命题的否定可得解. 【详解】反证法即为先假设命题的否定成立,及应先假设:任意x ∈R ,cos 1x <. 故答案为:任意x ∈R ,cos 1x <. 14.116【分析】根据题中条件,归纳得到()()222221111111...21341n n n +++++⨯-+-+<,进而可得出结果. 【详解】 因为21321112211⨯++<=+,22115221123321⨯+++<=+,22211172311234431⨯++++<=+,… 因此()()222221111111...21341n n n +++++⨯-+-+<. 所以第五个不等式应为222221111112345625111516+++++⨯+=+<. 故答案为:11615.丙 【分析】若甲说得不对,则乙、丙说得对,若乙或丙说得不对,则得出与”甲、乙、丙三人中恰有1人说得不对“矛盾,从而得到去过北京的是丙. 【详解】若甲说得不对,则乙、丙说得对,即乙一定去过上海,丙一定去过北京,甲只去过上海, 若乙或丙说得不对,则得出与”甲、乙、丙三人中恰有1人说得不对“矛盾, 故去过北京的是丙. 故答案为:丙. 【点睛】本小题主要考查简单的合情推理,属于基础题. 16.9901 【分析】根据"3235=+,337911=++,3413151719=+++",得出3m “分裂”出的奇数中最小的奇数是1()1m m -+,把100m =代入计算求值即可. 【详解】解: 3235=+,337911=++,3413151719=+++;3211=⨯+,7321,=⨯+ 13431,=⨯+∴3m “分裂”出的奇数中最小的奇数是1()1m m -+, ∴3100 “分裂”出的奇数中最小的奇数是1009919901⨯+=, 故选答案为: 9901. 【点睛】本题为中考数学题,考查学生找规律求通项的能力,属于基础题. 17.(1)21a =,323a =,412a =,(2)猜想2n a n=【分析】(1)由数列递推式运算即可得解;重点考查了归纳推理能力, (2)由前面有限项归纳通项公式即可得解. 【详解】解:(1)由数列{}n a 第一项12a =,且()11,2,3,41n n na a n n +==+,则21212a =⨯=,322133a =⨯=,4321432a =⨯=,即21a =,323a =,412a =,(2)由222a =,323a =,424a =,猜想这个数列的通项公式为2n a n=.【点睛】本题考查了数列递推式的运算,重点考查了归纳推理能力,属基础题.18.(1)11a =,212a =,314a =,112n n a -⎛⎫= ⎪⎝⎭,n N +∈;(2)见解析.【分析】 (1)先求出123,,a a a 的值,分析规律,再归纳出通项公式即可;(2)将等比数列的定义作为大前提,然后将归纳得通项公式作为小前提,数列{}n a 是等比数列则为结论.【详解】解:(1)由2n n S a +=,当1n =时,11122S a a +==,解得:11a =,当2n =时,222122S a a a +=+=,解得:212a =, 当3n =时,3332122S a a a a +=++=,解得:314a =, 由此归纳推理得:112n n a -⎛⎫= ⎪⎝⎭,n N +∈.(2)大前提:在数列{}n a 中,若1n na p a +=,p 是非零常数,则{}n a 是等比数列; 小前提:在数列{}n a 中,112n n a -⎛⎫= ⎪⎝⎭,112n n a a +=; 结论:数列{}n a 是等比数列.【点睛】 本题考查了归纳推理,重点考查了三段论,属基础题.19.(1)详见解析;(2)详见解析;(3)()()21212111*n n a a a n n a a a ⎛⎫++⋅⋅⋅+⋅++⋅⋅⋅+≥∈ ⎪⎝⎭N . 【分析】(1)对不等式()11,a b a b ⎛⎫++ ⎪⎝⎭分别使用基本不等式即可证明出()114a b a b ⎛⎫++≥ ⎪⎝⎭; (2)对不等式()111,a b c a b c ⎛⎫++++⎪⎝⎭分别使用基本不等式即可证明出 ()1119a b c a b c ⎛⎫++++≥ ⎪⎝⎭; (3)根据(1)(2)不等式的结构特征直接写出一般推广结论.【详解】(1)()114a b a b ⎛⎫++≥= ⎪⎝⎭(当且仅当a b ==1时取等号); (2)()1119a b c a b c ⎛⎫++⋅++≥= ⎪⎝⎭(当且仅当1a b c ===时取等号); (3)推广:已知1a ,2a ,…,n a +∈R 则()()21212111*n n a a a n n a a a ⎛⎫++⋅⋅⋅+⋅++⋅⋅⋅+≥∈ ⎪⎝⎭N (当且仅当121n a a a ====时取等号);【点睛】本题考查了基本不等式的应用与推广,考查了类比推理的能力.20.(1)详见解析;(2)详见解析.【分析】(1)利用综合法,将两式做差,化简整理,即可证明 (2)利用反证法,先假设原命题不成立,再推理证明,得出矛盾,即得原命题成立.【详解】(1)()()552332a b a ba b +-+ ()()532523a a b b a b =-+- ()()322322a a b b b a =-+- ()()2233a b a b =-- ()()()222a b a b a ab b =+-++因为a ,b 都是正数,所以0a b +>,220a ab b ++>又a b ≠,所以()20a b ->,所以()()()2220a b a b a ab b +-++>, 所以()()5523320a b a b a b +-+>,即552332a b a b a b +>+. (2)假设12x y +<和12y x +<都不成立,即12x y +≥和12y x+≥同时成立. 0x >且0y >,12x y ∴+≥,12y x +≥.两式相加得222x y x y ++≥+,即2x y +≤.此与已知条件2x y =>相矛盾,12x y +∴<和12y x+<中至少有一个成立. 【点睛】本题主要考查综合法和反证法证明,其中用反证法证明时,要从否定结论开始,经过正确的推理,得出矛盾,即假设不成立,原命题成立,进而得证.21.(1)(1)4f =,(2)22f =,(3)70f =(2)根据数学归纳法思想,先利用特殊值来得到参数的a,b,c 的值,然后对于解题的结果运用数学归纳法加以证明。
推理与证明测试题
![推理与证明测试题](https://img.taocdn.com/s3/m/adc033e87fd5360cba1adbfe.png)
推理与证明测试题一、选择题(本题共20道小题,每小题0分,共0分)1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理.A .②③④B .①③⑤C .②④⑤D .①⑤2.“所有金属都能导电,铁是金属,所以铁能导电,”此推理类型属于( ) A .演绎推理 B .类比推理 C .合情推理 D .归纳推理3.证明不等式(a≥2)所用的最适合的方法是( )A .综合法B .分析法C .间接证法D .合情推理法4.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( ) A .有两个内角是钝角 B .有三个内角是钝角 C .至少有两个内角是钝角D .没有一个内角是钝角5.已知21×1=2,22×1×3=3×4,23×1×3×5=4×5×6,…,以此类推,第5个等式为( )A .24×1×3×5×7=5×6×7×8B .25×1×3×5×7×9=5×6×7×8×9C .24×1×3×5×7×9=6×7×8×9×10D .25×1×3×5×7×9=6×7×8×9×106.下列三句话按“三段论”模式排列顺序正确的是( ) ①y=cosx(x∈R)是三角函数; ②三角函数是周期函数; ③y=cosx(x∈R)是周期函数. A .①②③B .②①③C .②③①D .③②①7.演绎推理“因为0'()0f x =时,x 是f(x)的极值点.而对于函数3(),'(0)0f x x f ==.所以0是函数3()f x x =的极值点. ”所得结论错误的原因是A.大前提错误B.小前提错误C.推理形式错误D.大前提和小前提都错误 8.下面几种推理过程是演绎推理的是( )A .在数列{}n a 中111111,()(2)2n n n a a a n a --==+≥,由此归纳数列{}n a 的通项公式; B .由平面三角形的性质,推测空间四面体性质;C .两条直线平行,同旁内角互补,如果A ∠和B ∠是两条平行直线的同旁内角,则180A B ∠+∠=oD .某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人。
(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(1)
![(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(1)](https://img.taocdn.com/s3/m/4562c6fe7cd184254a353560.png)
一、选择题1.甲、乙、丙、丁四位同学一起去向老师询问数学考试的成绩老师说:你们四人中有两位优秀、两位良好,我现在给乙看甲、丙的成绩,给甲看丙的成绩,给丁看乙的成绩,看后乙对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .甲可以知道四人的成绩 B .丁可以知道四人的成绩 C .甲、丁可以知道对方的成绩D .甲、丁可以知道自己的成绩2.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f xB .()f x -C .()g xD .()g x -3.在数学归纳法的递推性证明中,由假设n k =时成立推导1n k =+时成立时,()f n =1+1112321n ++⋅⋅⋅+-增加的项数是( ) A .1B .21k +C .2kD .21k -4.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确 5.已知一列数按如下规律排列,1,3,-2,5,-7,12,-19,31,…,则第9个数是( ) A .50B .42C .-50D .-426.一位数学老师在黑板上写了三个向量(,2)a m =,(1,)b n =,(4,4)c =-,其中m ,n 都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“a 与b 平行,且a 与c 垂直”,乙回答:“b 与c 平行”,丙回答:“a 与c 不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测m ,n 的值不可能为( ) A .3m =,2n = B .2m =-,1n =- C .2m =,1n =D .2m n ==-7.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++ C .11331k k -++ D .133k + 8.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,它体现了一种无限与有限的转化过程.比如在表达式11111+++中“…”即代表无限次重复,但原式却是个定值,它可以通过方程11x x +=求得152x +=,类似上述过程,则33++=( )A .1312+ B .3 C .6D .229.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12510.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+=12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -二、填空题13.已知数列{},{}n n a b 的通项公式分别为*31,2,nn n a n b n N =-=∈,将{}n a 与{}n b 中的各项混合,并按照从小到大的顺序排成一个新数列(相同元素以一个计):2,4,5,8,11,,记新的数列为{}n c ,若2021n c =,则n =___________.14.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 15.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术,得诀自诩无所阻,额上纹起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:222233=,333388=,44441515=,55552424=……则按照以上规律,若100100100100n n=,具有“穿墙术”,则n =_____. 16.已知函数()11112f x x x x =++++,由()111111f x x x x -=++-+是奇函数,可得函数()f x 的图象关于点()1,0-对称,类比这一结论,可得函数()237126x x x g x x x x +++=++++++的图象关于点___________对称. 17.甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句真话.甲说:是乙做的.乙说:不是我做的.丙说:不是我做的.则做好事的是__________.(填甲、乙、丙中的一个)18.已知函数()xf x xe =,()1'f x 是函数()f x 的导数,若()1n f x +表示()'n f x 的导数,则()2017f x =__________.19.如图,将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n (3)n ≥行的从左至右的第3个数是_____. 20.给出下列等式:;;,由以上等式推出一个一般结论: 对于=________________________.三、解答题21.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① , 1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立.22.已知数列{}n a 满足:()1(2)1n n na n a +=+-,且16(11)(211)a ==+⨯+. (Ⅰ)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (Ⅱ)试用数学归纳法证明(Ⅰ)中的猜想.23.已知函数()2231x f x x-=+. (1)计算()()13,4,3f f f ⎛⎫ ⎪⎝⎭及14f ⎛⎫⎪⎝⎭的值; (2)由(1)的结果猜想一个普遍的结论,并加以证明; (3)求值:()()()111122015232015f f f f f f ⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.24.选修4-5:不等式选讲 已知,,函数的最小值为.(1)求的值;(2)证明:与不可能同时成立.25.(本小题满分14分)若n 为正整数,试比较132n -⋅与23n +的大小,分别取1,2,3,4,5n =加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.26.数列{}n a 满足()*21n n S a n n N +=+∈.(1)计算1234,,,a a a a ,并由此猜想通项公式n a ; (2)用数学归纳法证明(1)中的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先由乙不知道自己成绩出发得知甲、丙和乙、丁都是一优秀、一良好,那么甲、丁也就结合自己看的结果知道自己成绩了. 【详解】解:乙看后不知道自己成绩,说明甲、丙必然是一优秀、一良好,则乙、丁也必然是一优秀、一良好;甲看了丙的成绩,则甲可以知道自己和丙的成绩;丁看了乙的成绩,所以丁可以知道自己和乙的成绩,故选D. 【点睛】本题考查了推理与证明,关键是找到推理的切入点.2.D解析:D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .3.C解析:C 【解析】分析:分别计算当n k =时,()1?f k = + 1112321k ++⋅⋅⋅+-,当1n k =+成立时, ()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+-,观察计算即可得到答案详解:假设n k =时成立,即()1?f k = + 1112321k ++⋅⋅⋅+- 当1n k =+成立时,()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+- ∴增加的项数是()()221212k k k k +---=故选C点睛:本题主要考查的是数学归纳法。
(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)
![(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)](https://img.taocdn.com/s3/m/b63bf3e0f18583d0496459f8.png)
一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间(s )186125160175145则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .16.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项7.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯8.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +9.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d10.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( ) A .65B .96C .104D .11211.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -12.已知 222233+=,333388+=,44441515+=,m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________.15.平面上画n 条直线,且满足任何2条直线都相交,任何3条直线不共点,则这n 条直线将平面分成__________个部分. 16.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.17.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.18.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________. 19.观察下面的数阵,则第40行最左边的数是__________.20.观察下列式子:,,,,…,根据以上规律,第个不等式是_________.三、解答题21.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 22.若10a >,11a ≠,121+=+nn na a a (n =1,2,…). (1)求证:1+≠n n a a ; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ,并用数学归纳法证明.23.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式; (2)用数学归纳法证明(1)中猜想的n S 表达式.24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.依次计算数列114⎛⎫-⎪⎝⎭,111149⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭,1111114916⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11111111491625⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,的前4项的值,由此猜想21111111111491625(1)n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N )的结果,并用数学归纳法加以证明.26.设a ,b 均为正数,且ab .证明:(1)664224a b a b a b +>+(2)a b a b b a+>+【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.3.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++<∴a ,b ,c 中至少有一个数不小于13故选B.6.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.7.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.8.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n -; 由n=k ,末项为121k-到n=k+1,末项为11121212k k k+=--+, ∴应增加的项数为2k . 故选C .9.A解析:A【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.10.C解析:C 【解析】可以通过列表归纳分析得到;16边形有2+3+4+…+14=2=104条对角线. 故选C .11.B解析:B 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49, 则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.14.217【分析】根据题意类比36的所有正约数之和的方法分析100的所有正约数之和为(1+2+221+5+52)计算可得答案【详解】根据题意由36的所有正约数之和的方法:100的所有正约数之和可按如下方解析:217 【分析】根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+22)(1+5+52),计算可得答案. 【详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52, 所以100的所有正约数之和为(1+2+22)(1+5+52)=217. 可求得100的所有正约数之和为217; 故答案为:217. 【点睛】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.15.【解析】分析:根据几何图形列出前面几项根据归纳推理和数列中的累加法即可得到结果详解:1条直线将平面分成2个部分即2条直线将平面分成4个部分即3条直线将平面分为7个部分即4条直线将平面分为11个部分即解析:(1)12n n ++ 【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。
高中数学第二章推理与证明单元综合测试新人教版选修22
![高中数学第二章推理与证明单元综合测试新人教版选修22](https://img.taocdn.com/s3/m/a5ad2aeabb68a98270fefa37.png)
【名师一号】 高中数学 第二章 推理与证明单元综合测试 新人教版选修2-2(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合标题问题要求的)1.若实数a ,b 满足b >a >0,且a +b =1,则下列四个数最大的是( ) A .a 2+b 2B .2ab C.12 D .a答案 A2.下面用“三段论”形式写出的演练推理:因为指数函数y =a x(a >0,且a ≠1)在(0,+∞)上是增函数,y =(12)x 是指数函数,所以y =(12)x在(0,+∞)上是增函数.该结论显然是错误的,其原因是( ) A .大前提错误 B .小前提错误 C .推理形式错误D .以上都可能解析 大前提是:指数函数y =a x(a >0,且a ≠1)在(0,+∞)上是增函数,这是错误的. 答案 A3.设a ,b ,c 都是非零实数,则关于a ,bc ,ac ,-b 四个数,有以下说法: ①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数. 则说法中正确的个数有( ) A .0 B .1 C .2D .3解析 可用反证法推出①,②不正确,因此③正确. 答案 B4.下面使用类比推理正确的是( )A .“若a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B .“(a +b )·c =ac +bc ”类比推出“(a ·b )·c =ac ·bc ”C .“(a +b )·c =ac +bc ”类比推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类比推出“(a +b )n=a n+b n” 解析 由类比出的结果应正确知选C. 答案 C5.在证明命题“对于任意角θ,cos 4θ-sin 4θ=cos2θ”的过程:cos 4θ-sin 4θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)=cos 2θ-sin 2θ=cos2θ中应用了( )A .分析法B .综合法C .分析法和综合法综合使用D .间接证法 答案 B6.已知f (x )=sin(x +1)π3-3cos(x +1)π3,则f (1)+f (2)+f (3)+…+f (2021)=( )A .2 3 B. 3 C .- 3D .0解析 ∵f (x )=2[12sin(x +1)π3-32cos(x +1)π3]=2sin π3x ,∴周期T =6,且f (1)+f (2)+…+f (6)=2(32+32+0-32-32+0)=0,∴f (2021)=f (6×335+1)=f (1)=2sin π3= 3.答案 B7.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,且n >1),由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项数为( )A .2k-1 B .2k+1 C .2k -1D .2k解析 当n =k +1时,左边=1+12+13+…+12k -1+12k +12k +1+…+12k +1-1,所以增加的项数为(2k +1-1)-2k +1=2k +1-2k =2k.答案 D8.若数列{a n }是等比数列,则数列{a n +a n +1}( ) A .必然是等比数列 B .必然是等差数列C .可能是等比数列也可能是等差数列D .必然不是等比数列解析 设等比数列{a n }的公比为q ,则a n +a n +1=a n (1+q ).∴当q ≠-1时,{a n +a n +1}必然是等比数列;当q =-1时,a n +a n +1=0,此时为等差数列. 答案 C9.如果a ,b 为非零实数,则不等式1a >1b成立的充要条件是( )A .a >b 且ab <0B .a <b 且ab >0C .a >b ,ab <0或ab >0D .a 2b -ab 2<0解析 ∵ab ≠0,∴1a >1b ⇔1a -1b >0⇔b -a ab>0⇔(b -a )ab >0⇔ab 2-a 2b >0⇔a 2b -ab 2<0.答案 D10.由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,按照“三段论”推理出一个结论,则这个结论是( )A .平行四边形的对角线相等B .正方形的对角线相等C .正方形是平行四边形D .以上都不是解析 大前提②,小前提③,结论①. 答案 B 11.观察下表:1 2 3 4……第一行 2 3 4 5……第二行 3 4 5 6……第三行 4 5 6 7……第四行 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮第一列 第二列 第三列 第四列按照数表所反映的规律,第n 行第n 列交叉点上的数应为( ) A .2n -1 B .2n +1 C .n 2-1D .n 2解析 观察数表可知,第n 行第n 列交叉点上的数依次为1,3,5,7,…,2n -1. 答案 A12.对于任意的两个实数对(a ,b )和(c ,d ),规定:(a ,b )=(c ,d )当且仅当a =c ,b =d ;运算“⊗”为:(a ,b )⊗(c ,d )=(ac -bd ,bc +ad );运算“⊕”为:(a ,b )⊕(c ,d )=(a +c ,b +d ).设p ,q ∈R ,若(1,2)⊗(p ,q )=(5,0),则(1,2)⊕(p ,q )等于( )A .(4,0)B .(2,0)C .(0,2)D .(0,-4)解析 由(1,2)⊗(p ,q )=(5,0),得⎩⎪⎨⎪⎧p -2q =5,2p +q =0⇒⎩⎪⎨⎪⎧p =1,q =-2.所以(1,2)⊕(p ,q )=(1,2)⊕(1,-2)=(2,0). 答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.已知a >0,b >0,m =lga +b2,n =lga +b2,则m ,n 的大小关系是________.解析 ab >0⇒ab >0⇒a +b +2ab >a +b ⇒(a +b )2>(a +b )2⇒a +b >a +b ⇒a +b2>a +b2⇒lga +b2>lga +b2.答案 m >n14.在正三角形中,设它的内切圆的半径为r ,容易求得正三角形的周长C (r )=63r ,面积S (r )=33r 2,发现S ′(r )=C (r ).这是平面几何中的一个重要发现.请用类比推理的方式猜测对空间正四面体存在的类似结论为________.解析 设正四面体的棱长为a ,内切球的半径为r ,利用等积变形易求得正四面体的高h =4r .由棱长a ,高h 和底面三角形外接圆的半径构成直角三角形,得a 2=(4r )2+⎝⎛⎭⎪⎫33a 2,解得a =26r .于是正四面体的概况积S (r )=4×12×(26r )2×sin60°=243r 2,体积V (r )=13×12×(26r )2×sin 60°×4r =83r 3,所以V ′(r )=243r 2=S (r ). 答案 V ′(r )=S (r ) 15.观察下列等式: 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 …照此规律,第n 个等式为________________.解析 分n 为奇数、偶数两种情况.第n 个等式的左边为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和(12-22)+(32-42)+…+[(n -1)2-n 2]=-[3+7+…+(2n -1)]=-n n +12.当n 为奇数时,(12-22)+(32-42)+…+[(n -1)2-n 2]+n 2=-n n -12+n 2=n n +12.综上,第n 个等式:12-22+32-…+(-1)n -1n 2=-1n +12n (n +1).答案 12-22+32-…+(-1)n -1n 2=-1n +12n (n +1)16.对于平面几何中的命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以获得命题:“_________________________________________”.答案 如果两个二面角的两个半平面分别对应垂直,那么这两个二面角相等或互补 三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知0<a <1,求证:1a +41-a ≥9.证法1 (分析法) ∵0<a <1,∴1-a >0, ∴要证1a +41-a ≥9,只需证1-a +4a ≥9a (1-a ), 即证1+3a ≥9a (1-a ), 即证9a 2-6a +1≥0, 即证(3a -1)2≥0, 上式显然成立. ∴原命题成立. 证法2 (综合法) ∵(3a -1)2≥0, 即9a 2-6a +1≥0, ∴1+3a ≥9a (1-a ). ∵0<a <1, ∴1+3aa 1-a ≥9,即1-a +4aa 1-a≥9,即1a +41-a≥9.证法3 (反证法) 假设1a +41-a <9,即1a +41-a -9<0, 即1-a +4a -9a 1-aa 1-a<0,即9a 2-6a +1a 1-a <0, 即3a -12a 1-a<0,而0<a <1,∴a (1-a )>0,∴(3a -1)2<0,与(3a -1)2≥0相矛盾, ∴原命题成立.18.(12分)下列推理是否正确?若不正确,指犯错误之处. (1) 求证:四边形的内角和等于360°.证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2) 已知2和3都是无理数,试证:2+3也是无理数.证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.(3) 已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2+2x +5-m 2=0无实根.证明:假设方程x 2+2x +5-m 2=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2-4),∵-2<m <-12,∴14<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2=0无实根. 解 (1) 犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形. (2) 使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和纷歧定是无理数,因此原题的真实性仍无法判定.(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有效到假设的结论,也没有推出矛盾,所以不是反证法.19.(12分)已知数列{a n }和{b n }是公比不相等的两个等比数列,c n =a n +b n . 求证:数列{c n }不是等比数列.证明 假设{c n }是等比数列,则c 1,c 2,c 3成等比数列.设{a n },{b n }的公比分别为p和q ,且p ≠q ,则a 2=a 1p ,a 3=a 1p 2,b 2=b 1q ,b 3=b 1q 2.∵c 1,c 2,c 3成等比数列,∴c 22=c 1·c 3, 即(a 2+b 2)2=(a 1+b 1)(a 3+b 3). ∴(a 1p +b 1q )2=(a 1+b 1)(a 1p 2+b 1q 2). ∴2a 1b 1pq =a 1b 1p 2+a 1b 1q 2. ∴2pq =p 2+q 2,∴(p -q )2=0. ∴p =q 与已知p ≠q 矛盾. ∴数列{c n }不是等比数列. 20.(12分)证明:若a >0,则 a 2+1a 2-2≥a +1a-2.证明 ∵a >0,要证 a 2+1a 2-2≥a +1a-2,只需证 a 2+1a 2+2≥a +1a +2,只需证(a 2+1a 2+2)2≥(a +1a+2)2, 即证a 2+1a2+4+4a 2+1a 2≥a 2+1a 2+4+22(a +1a),即证a 2+1a 2≥22(a +1a),即证a 2+1a 2≥12(a 2+1a 2+2),即证a 2+1a2≥2,即证(a -1a)2≥0,该不等式显然成立. ∴a 2+1a 2-2≥a +1a-2.21.(12分)如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.解(1)证明:∵P,Q分别为AE,AB的中点,∴PQ∥EB,又DC∥EB.∴PQ∥DC,而PQ⊄平面ACD,DC⊂平面ACD,∴PQ∥平面ACD.(2)如图,连接CQ,DP,∵Q为AB的中点,且AC=BC,∴CQ⊥AB.∵DC⊥平面ABC,EB∥DC,∴EB⊥平面ABC. ∴CQ⊥EB,故CQ⊥平面ABE.由(1)知,PQ∥DC,又PQ=12EB=DC,∴四边形CQPD为平行四边形.∴DP⊥平面ABE.故∠DAP为AD与平面ABE所成角.在Rt△DAP中,AD=5,DP=1,∴sin∠DAP=55.因此AD 与平面ABE 所成角的正弦值为55. 22.(12分)已知f (x )=bx +1ax +12(x ≠-1a,a >0),且f (1)=log 162,f (-2)=1.(1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =(1-f (1))(1-f (2))…(1-f (n )),试求x 1,x 2,x 3,x 4; (3)猜想{x n }的通项公式,并用数学归纳法证明.解 (1) 把f (1)=log 162=14,f (-2)=1,代入函数表达式得⎩⎪⎨⎪⎧b +1a +12=14,-2b +11-2a2=1,即⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1,解得⎩⎪⎨⎪⎧a =1,b =0,(舍去a =-13<0),∴f (x )=1x +12(x ≠-1).(2) x 1=1-f (1)=1-14=34,x 2=(1-f (1))(1-f (2))=34×(1-19)=23, x 3=23(1-f (3))=23×(1-116)=58, x 4=58×(1-125)=35.(3) 由(2)知,x 1=34,x 2=23=46,x 3=58,x 4=35=610,…,由此可以猜想x n =n +22n +2.证明:①当n =1时,∵x 1=34,而1+221+1=34,∴猜想成立.②假设当n =k (k ∈N *)时,x n =n +22n +1成立, 即x k =k +22k +1,则n =k +1时, x k +1=(1-f (1))(1-f (2))…(1-f (k ))·(1-f (k +1)) =x k ·(1-f (k +1))=k+22k+1·[1-1k+1+12]=k+22k+1·k+1k+3k+22=12·k+3k+2=k+1+22[k+1+1].∴当n=k+1时,猜想也成立,按照①②可知,对一切n∈N*,猜想x n=n+22n+1都成立.。
高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题
![高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题](https://img.taocdn.com/s3/m/abe85a277275a417866fb84ae45c3b3567ecddb8.png)
第二章 推理与证明(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.证明:n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式子等于( ) A.1 B.1+12C.1+12+13D.1+12+13+14解析:选D.n =2时中间式子的最后一项为14,所以中间式子为1+12+13+14.2.用反证法证明命题:“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A.假设|f (1)|,|f (2)|,|f (3)|都不小于12B.假设|f (1)|,|f (2)|,|f (3)|都小于12C.假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D.假设|f (1)|,|f (2)|,|f (3)|至多有一个小于12解析:选B.“|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”.3.设x >0,则不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +axn ≥n +1,则a=( )A.2nB.2nC.n 2D.n n解析:选D.结合已知的三个不等式可以发现第二个加数的分子是分母x 的指数的指数次方,可得a =n n.4.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误解析:选A.f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.5.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)解析:选D.由n =k 到n =k +1时,左边需要添加的项是11+2+3+…+(k +1)=2(k +1)(k +2).故选D.6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A.a -b >0B.a -c <0C.(a -b )(a -c )>0D.(a -b )(a -c )<0解析:选C.要证明 b 2-ac <3a ,只需证b 2-ac <3a 2,只需证(a +c )2-ac <3a 2,只需证-2a 2+ac +c 2<0,即证2a 2-ac -c 2>0,即证(a -c )(2a +c )>0,即证(a -c )(a -b )>0.7.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形解析:选C.因为sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°,所以△ABC 是等腰直角三角形.8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A.大于0B.等于0C.小于0D.正负都可能解析:选A.f (x )为奇函数,也是增函数,因此由a +b >0可得a >-b ,所以f (a )>f (-b ),即f (a )>-f (b ),于是f (a )+f (b )>0,同理,f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.9.我们把平面中的结论“到定点的距离等于定长的点的轨迹是圆”拓展至空间中为“到定点的距离等于定长的点的轨迹是球”,类似可得:已知A (-1,0,0),B (1,0,0),则点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹描述正确的是( )A.以A ,B 为焦点的双曲线绕轴旋转而成的旋转曲面B.以A ,B 为焦点的椭球体C.以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面D.以上都不对解析:选C.在平面中,点集{P (x ,y )||PA |-|PB |=1}是以A ,B 为焦点的双曲线的一支,点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹是以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面,故选C.10.我国古代数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是高,“幂”是截面积.意思是:如果两个等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,区域①是一个形状不规则的封闭图形,区域②是一个上底长为1、下底长为2的梯形,且当实数t 取[0,3]上的任意值时,直线y =t 被区域①和区域②所截得的两线段长总相等,则区域①的面积为( )A.4B.92 C.5D.112解析:选B.根据题意,由祖暅原理分析可得①的面积等于②的面积,又②是一个上底长为1、下底长为2的梯形,所以①的面积为(1+2)×32=92.11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.二、填空题:本题共4小题,每小题5分.13.补充下列证明过程: 要证a 2+b 2+c 2≥ab +bc +ac (a ,b ,c ∈R ),即证,即证W. 因为a ,b ,c 为实数,上式显然成立,故命题结论成立. 答案:2(a 2+b 2+c 2)≥2ab +2bc +2ac (a -b )2+(b -c )2+(a -c )2≥014.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为W.解析:因为当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),所以函数f (x )=(5-12)x为减函数.故由f (m )>f (n )得m <n .答案:m <n15.有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是W.解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一X ,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为W. 11 1212 131613 14112112141512013012015…解析:由“第n 行有n 个数且两端的数均为1n ”可知,第7行第1个数为17,由“每个数是它下一行左右相邻两数的和”可知,第7行第2个数为16-17=142.同理易知,第7行第3个数为130-142=1105,第7行第4个数为160-1105=1140.答案:1140三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)定义在[-1,1]上的奇函数f (x ),当a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0.证明:函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直.证明:假设函数f (x )的图象上存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直,则A ,B 两点的纵坐标相同.设它们的横坐标分别为x 1和x 2,x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)=f (x 2). 又f (x )是奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)[x 1+(-x 2)].又由题意,得f (x 1)+f (-x 2)x 1+(-x 2)>0,且x 1+(-x 2)<0,所以f (x 1)+f (-x 2)<0,即f (x 1)-f (x 2)<0, 这与f (x 1)=f (x 2)矛盾,故假设不成立,即函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直. 18.(本小题满分12分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角,所以0°<A +B <180°.所以A +B =45°.19.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab . 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<(c 2-ab )2, 只需证a 2-2ac +c 2<c 2-ab ,即证2ac >a 2+ab ,因为a >0,所以只需证2c >a +b .因为2c >a +b 已知, 所以原不等式成立.20.(本小题满分12分)如图,在直三棱柱ABC A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1)因为ABC A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AD ⊂平面ABC ,所以CC 1⊥AD .因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点, 所以A 1F ⊥B 1C 1,因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1. 由(1)知AD ⊥平面BCC 1B 1, 所以A 1F ∥AD .因为AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .21.(本小题满分12分)设函数f (x )=x 3+11+x ,x ∈[0,1].证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由第一问得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想. 解:(1)易求得a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *)证明:①当n =1时,a 1=1-0=1,命题成立. ②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立, 则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫a k +1ak=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以,a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时,命题成立. 由①②知,n ∈N *时,a n =n -n -1.。
(人教版)高中数学选修2-2检测第2章 推理与证明2.3 Word版含答案
![(人教版)高中数学选修2-2检测第2章 推理与证明2.3 Word版含答案](https://img.taocdn.com/s3/m/263e7f3803d8ce2f006623f4.png)
第二章一、选择题(每小题分,共分).用数学归纳法证明“+++…++=(≠)”.在验证=时,左端计算所得项为( ) .+.++.+++.++++解析:将=代入+得,故选.答案:.用数学归纳法证明(+)(+)…(+)=···…·(-)(∈),从=推导到=+时,左边需要增乘的代数式为( )+.(+) .+..解析:当=时,等式左端为(+)(+)·…·(+),当=+时,等式左端为(++)(++)…(+)(++)(+),∴从=推导到=+时,左边需增乘的式子为(+).答案:.若命题()(∈*)=(∈*)时命题成立,则有=+时命题成立.现知命题对=(∈*)时命题成立.则有( ).命题对所有正整数都成立.命题对小于的正整数不成立,对大于或等于的正整数都成立.命题对小于的正整数成立与否不能确定,对大于或等于的正整数都成立.以上说法都不正确解析:由题意知=时命题成立能推出=+时命题成立,由=+时命题成立,又推出=+时命题也成立…,所以对大于或等于的正整数命题都成立,而对小于的正整数命题是否成立不确定.答案:.棱柱有()个对角面,则(+)棱柱的对角面个数(+)为(≥,∈*)( ).()+-.()++.()+.()+-解析:三棱柱有个对角面,四棱柱有个对角面(+=+(-));五棱柱有个对角面(+=+(-));六棱柱有个对角面(+=+(-)).猜想:若棱柱有()个对角面,则(+)棱柱有()+-个对角面.答案:二、填空题(每小题分,共分).用数学归纳法证明“对于足够大的自然数,总有>”时,验证第一步不等式成立所取的第一个值最小应当是.解析:∵=>=<,∴填.答案:.用数学归纳法证明:+++…+-=-(∈*)的过程如下:()当=时,左边=,右边=-=,等式成立.()假设当=(∈*)时等式成立,即+++…+-=-,则当=+时,+++…+-+==+-.所以当=+时等式也成立.由此可知对于任何∈*,等式都成立.上述证明的错误是.解析:本题在由=成立,证=+成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符.答案:未用归纳假设三、解答题(每小题分,共分).用数学归纳法证明:-+-+…+-=++…+(∈+).证明:()当=时,左边=-==右边,等式成立.()假设当=时等式成立,即-+-+…+-=++…+.当=+时,-+-+…+-+-=++…++-=+…+++,即当=+时等式也成立.由()和(),知等式对所有∈+都成立..用数学归纳法证明+≤+++…+≤+(∈*).证明:()当=时,左式=+,右式=+,∴≤+≤,命题成立.()假设当=(∈*)时命题成立,即+≤+++…+≤+,则当=+时,+++…++++…+>++·=+.又+++…++++…+<++·=+(+),即=+时,命题成立.由()和()可知,命题对所有∈*都成立.☆☆☆(分)是否存在一个等差数列{},使得对任何自然数,等式+++…+=(+)(+)都成立,并证明你的结论.解析:将=分别代入等式得方程组:。
(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试(包含答案解析)
![(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试(包含答案解析)](https://img.taocdn.com/s3/m/d4ff73530029bd64793e2c1b.png)
一、选择题1.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( ) A .12B .11C .10D .92.设ABC ∆的三边长分别为a ,b ,c ,面积为S ,内切圆半径为r ,则()12S r a b c =++.类比这个结论可知:四面体S ABC -的四个面的面积分别为1S ,2S ,3S ,4S ,体积为V ,内切球半径为R ,则V =( )A .()1234R S S S S +++B .()123412R S S S S +++ C .()123413R S S S S +++ D .()123414R S S S S +++ 3.设a R ∈,则三个数2,2,23a a a a +++( ) A .都大于13B .都小于13C .至少有一个不大于13D .至少有一个不小于134.命题“若,x y >则()()()()332222x y x y x yx xy y -+=--+”的证明过程:“要证明()()()()332222x y x y x y x xy y -+=--+, 即证()()()()()3322.x y x y x y x y x xy y -+=-+-+因为,x y >即证()()3322x y x y x xy y +=+-+,即证33322223,x y x x y xy x y xy y +=-++-+ 即证3333,x y x y +=+因为上式成立,故原等式成立应用了( ) A .分析法B .综合法C .综合法与分析法结合使用D .演绎法5.用数学归纳法证明“l+2+3+…+n 3=632n n +,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1 B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++6.在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3++=m n p r b b b bB .3++=m n p r b b b b C .3=m n p r b b b bD .3m n p r b b b b =7.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球8.在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( ) A .12B .14C .16D .189.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12510.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁11.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( )A .aB .bC .cD .d12.利用反证法证明“若220x y +=,则0x =且0y =”时,下列假设正确的是( ) A .0x ≠且0y ≠ B .0x =且0y ≠ C .0x ≠或0y ≠D .0x =或0y =二、填空题13.记I 为虚数集,设,,,a b R x y I ∈∈,则下列类比所得的结论正确的是__________.①由·a b R ∈,类比得·x y I ∈ ②由20a ≥,类比得20x ≥③由()2222a b a ab b +=++,类比得()2222x y x xy y +=++ ④由0,a b a b +>>-,类比得0,x y x y +>>-14.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成.通过观察可以发现第10个图形中火柴棒的根数是 ________.15.已知数列{}n a 为等差数列,则有12320a a a -+= 1234330a a a a -+-= 123454640a a a a a -+-+=类似上三行,第四行的结论为________________.16.学校建议孩子们周末去幸福广场看银杏叶,舒缓高三学习压力,返校后甲、乙、丙、丁四位同学被问及情况.甲说:“我没去”;乙说:“丁去了”;丙说:“乙去了”;丁说:“我没去”.班主任了解到这四位同学中只有一位同学去了幸福广场,但只有一位说了假话,则去了幸福广场的这位同学是_______.17.在平面内,点,,P A B 三点共线的充要条件是:对于平面内任一点O ,有且只有一对实数,x y ,满足向量关系式OP xOA yOB =+,且1x y +=.类比以上结论,可得到在空间中,,,,P A B C 四点共面的充要条件是:对于平面内任一点O ,有且只有一对实数,,x y z 满足向量关系式__________.18.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________.19.已知,,a b c 为三条不同的直线,给出如下两个命题:①若,a b b c ⊥⊥,则//a c ;②若//,a b b c ⊥,则a c ⊥.试类比以上某个命题,写出一个正确的命题:设,,αβγ为三个不同的平面,__________.20.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.三、解答题21.已知函数2()1f x x =-,数列{}n a 的前n 项和为n S ,且满足2425()n n S n n f a +=+. (1)求1234,,,a a a a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.22.已知函数3()sin (,,1)1xf x a b a b R a x =+-∈>+的图象过点()0,1-. 求证:(1)函数()f x 在(1,)-+∞上为增函数; (2)函数()f x 没有负零点.23.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()nN ∈. 24.已知正项数列{}n a 中,11a =且1111,.n n n na a n N a a *++-=+∈ (1)分别计算出234,,a a a 的值,然后猜想数列{}n a 的通项公式; (2)用数学归纳法证明你的猜想. 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 26.正项数列{}n a 的前n 项和n S 满足1n a n =-. (Ⅰ)求1a ,2a ,3a ;(Ⅱ)猜想{}n a 的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,可列出树形图,逐步列举,即可得到答案. 【详解】由题意,列出树形图,如图所示由树形图可知,不可能是计算结果的最小数是11,故选B.【点睛】本题主要考查了简单的合情推理,以及树形图的应用,其中解答中认真分析题意,列出树形图,结合树形图求解是解答的关键,着重考查了推理与论证能力,属于基础题.2.C解析:C 【解析】分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.详解:设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为1234123411111()33333A BCD V S R S R S R S R S S S S R -=+++=+++ 故答案为:C.点睛:(1)本题主要考查类比推理和几何体体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力.(2)类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).3.D解析:D 【解析】分析:由题意结合反证法即可确定题中的结论. 详解:不妨假设2,2,23a a a a +++都小于13, 由不等式的性质可知:()()()22231a a a a +++++<,事实上:()()()2223aa a a +++++245a a =++ ()2211a =++≥,与假设矛盾,故假设不成立,即2,2,23a a a a +++至少有一个不小于13. 本题选择D 选项.点睛:本题主要考查不等式的性质,反证法及其应用等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A 【解析】分析:由题意结合分析法的定义可知题中的证明方法应用了分析法. 详解:题中的证明方法为执果索因,这是典型的分析法, 即原等式成立应用了分析法. 本题选择A 选项.点睛:本题主要考查分析法的特征及其应用,意在考查学生的转化能力和知识应用能力.5.B解析:B 【解析】分析:当项数从n k =到1n k =+时,等式左边变化的项可利用两个式子相减得到。
人教新课标版数学高二人教数学B版选修2-2练习第二章《推理与证明》测试
![人教新课标版数学高二人教数学B版选修2-2练习第二章《推理与证明》测试](https://img.taocdn.com/s3/m/00c9c910bb4cf7ec4bfed0ca.png)
章末质量评估(二)(时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是().A.合情推理就是正确的推理B.合情推理就是归纳推理C.归纳推理是从一般到特殊的推理过程D.类比推理是从特殊到特殊的推理过程答案 D2.若f(n)=1+12+13+…+12n+1(n∈N*),则当n=2时,f(n)是().A.1+12 B.15C.1+12+13+14+15D.非以上答案解析∵f(n)=1+12+13+…+12n+1,分子是1,分母为1,2,3,…,2n+1,故当n=2时,f(2)=1+12+…+12×2+1=1+12+13+14+15.答案 C3.凡自然数是整数,4是自然数,所以4是整数.以上三段论推理().A.正确B.推理形式不正确C.两个“自然数”概念不一致D.“两个整数”概念不一致解析三段论中的大前提,小前提及推理形式都是正确的.答案 A4.用反证法证明命题“如果a >b ,那么3a >3b ”时,假设的内容应是( ).A.3a =3bB.3a <3bC.3a =3b ,且3a <3b D.3a =3b 或3a <3b答案 D5.下面几种推理是合情推理的是( ).①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分; ④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°. A .①② B .①③④ C .①②④D .②④ 解析 ①是类比,②④是归纳推理. 答案 C6.已知命题1+2+22+…+2n -1=2n -1及其证明:(1)当n =1时,左边=1,右边=21-1=1,所以等式成立;(2)假设n =k 时等式成立,即1+2+22+…+2k -1=2k -1成立,则当n =k +1时,1+2+22+…+2k -1+2k =1-2k +11-2=2k +1-1,所以n =k +1时等式也成立.由(1)(2)知,对任意的正整数n 等式都成立. 判断以上评述( ).A .命题、推理都正确B .命题正确、推理不正确C .命题不正确、推理正确D .命题、推理都不正确解析 推理不正确,错在证明n =k +1时,没用假设n =k 的结论,命题由等比数列求和公式知正确,故选B. 答案 B7.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中的白色地面砖有( ).A .4n -2块B .4n +2块C .3n +3块D .3n -3块解析 法一 第1个图案中有6块白色地面砖,第二个图案中有10块,第三个图案中有14块,归纳为:第n 个图案中有4n +2块.法二 验n =1时,A 、D 选项不为6,排除.验n =2时,C 选项不为10,排除.故选B. 答案 B8.观察下列数表规律则从数2 012到2 013的箭头方向是( )A.2 012↑→ B .→2 012↑C.2 012↓→ D .→2 012↓解析 图下行偶数是首项为4,公差为4的等差数列,且2 012=4×503,故2 012在下行,又因为在下行偶数的箭头为a ↓n →,故选C. 答案 C9.用数学归纳法证明“5n-2n能被3整除”的第二步中,n=k+1时,为了使用假设,应将5k+1-2k+1变形为().A.(5k-2k)+4×5k-2k B.5(5k-2k)+3×2kC.(5-2)(5k-2k) D.2(5k-2k)-3×5k解析5k+1-2k+1=5k·5-2k·2=5k·5-2k·5+2k·5-2k·2=5(5k-2k)+3·2k.答案 B10.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是().①各棱长相等,同一顶点上的任两条棱的夹角相等;②各个面是全等的正三角形,相邻的两个面所成的二面角相等;③各个面都是全等的正三角形,同一顶点的任两条棱的夹角相等;④各棱长相等,相邻两个面所成的二面角相等.A.①④B.①②C.①②③D.③解析类比推理原则是:类比前后保持类比规则的一致性,而③④违背了这一规则,①②符合.答案 B11.设P=1log211+1log311+1log411+1log511,则().A.0<P<1 B.1<P<2C.2<P<3 D.3<P<4解析P=log112+log113+log114+log115=log11120,1=log1111<log11120<log11121=2,即1<P<2.答案 B12.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不能等于()A .f (1)+2f (1)+…+nf (1)B .f ⎣⎢⎡⎦⎥⎤n (n +1)2 C .n (n +1)D .n (n +1)f (1)解析 由f (x +y )=f (x )+f (y )且f (1)=2知,f (2)=f (1)+f (1)=2f (1),f (3)=f (2)+f (1)=3f (1),…,f (n )=nf (1).∴f (1)+f (2)+…+f (n )=f (1)+2f (1)+…+nf (1)=n (n +1)2×2=n (n +1).或f (1)+f (2)+…+f (n )=f (1+2+3+…+n )=f ⎣⎢⎡⎦⎥⎤n (n +1)2. 答案 D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,则可以猜想:当n ≥2时,有________.解析 左边为n 项和:1+122+132+…+1n 2,右边为分式,易知n ≥2时为2n -1n . 答案 1+122+132+…+1n 2<2n -1n14.若三角形内切圆半径为r ,三边长分别为a 、b 、c ,则三角形的面积S =12r (a +b +c ),根据类比思想,若四面体内切球半径为R ,其四个面的面积分别为S 1、S 2、S 3、S 4,则四面体的体积V =________.解析 由类比推理,以球心为顶点,四个面分别为底,将四面体分割为4个棱锥,得证.答案 13R (S 1+S 2+S 3+S 4)15.在△ABC 中,D 为BC 的中点,则AD →=12( AB →+AC →),将命题类比到三棱锥中去得到一个类比的命题为___________________________.答案 在三棱锥A -BCD 中,G 为△BCD 的重心,则AG →=13·(AB →+AC →+AD →) 16.在数列{a n }中,a 1=1,且S n 、S n +1、2S 1成等差数列(S n 表示数列{a n }的前n 项和),则S 2、S 3、S 4分别为__________,由此猜想S n =________. 解析 由S n ,S n +1,2S 1成等差数列, 得2S n +1=S n +2S 1, ∵S 1=a 1=1,∴2S n +1=S n +2.令n =1,则2S 2=S 1+2=1+2=3⇒S 2=32, 同理分别令n =2,n =3, 可求得S 3=74,S 4=158.由S 1=1=21-120,S 2=32=22-121, S 3=74=23-122,S 4=158=24-123,猜想S n =2n -12n -1.答案 32,74,158 2n -12n -1三、解答题(本大题共4小题,共40分.解答时应写出必要的文字说明、证明过 程或演算步骤)17.(10分)设S n =11×2+12×3+13×4+…+1n ×(n +1),写出S 1,S 2,S 3,S 4的值,归纳并猜想出结果. 解 当n =1,2,3,4时, 计算得原式的值分别为: S 1=12,S 2=23,S 3=34,S 4=45.观察这4个结果都是分数,每个分数的分子与项数对应,且分子比分母恰好小1.归纳猜想:S n =nn +1.证明 ∵11×2=1-12,12×3=12-13,…,1n ×(n +1)=1n -1n +1.∴S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1. 18.(10分)先解答(1),再通过类比解答(2). (1)求证:tan ⎝ ⎛⎭⎪⎫x +π4=1+tan x1-tan x ;(2)设x ∈R 且f (x +1)=1+f (x )1-f (x ),试问f (x )是周期函数吗?证明你的结论. (1)证明 tan ⎝ ⎛⎭⎪⎫x +π4=tan x +tan π41-tan x tanπ4=1+tan x 1-tan x;(2)解 f (x )是以4为一个周期的周期函数.证明如下: ∵f (x +2)=f ((x +1)+1)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ),∴f (x +4)=f ((x +2)+2)=-1f (x +2)=f (x ), ∴f (x )是周期函数.19.(10分)若a 1>0、a 1≠1,a n +1=2a n1+a n(n =1,2,…,)(1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2、a 3、a 4、a 5的值,观察并归纳出这个数列的通项公式a n ;(3)证明:存在不等于零的常数p ,使⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +p a n 是等比数列,并求出公比q 的值.(1)证明 (采用反证法).假设a n +1=a n ,即2a n1+a n =a n ,解得a n =0,1.从而a n =a n -1=……=a 1=0,1,与题设a 1>0,a 1≠1相矛盾, ∴假设错误. 故a n +1≠a n 成立.(2)解 a 1=12、a 2=23、a 3=45、a 4=89、a 5=1617,a n =2n -12n -1+1.(3)证明 因为a n +1+p a n +1=(2+p )a n +p 2a n ,又a n +1+p a n +1=a n +pa n ·q ,所以(2+p -2q )a n+p (1-2q )=0,因为上式是关于变量a n 的恒等式, 故可解得q =12、p =-1.20.(10分)已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n(n ∈N *)且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. (1)解 由P 1的坐标为(1,-1)知a 1=1,b 1=-1. ∴b 2=b 11-4a 21=13,a 2=a 1·b 2=13. ∴点P 2的坐标为⎝ ⎛⎭⎪⎫13,13.∴直线l 的方程为2x +y =1.(2)证明 ①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ∈N *,k ≥1)时,2a k +b k =1成立. 则2a k +1+b k +1=2a k b k +1+b k +1=b k1-4a2k(2a k+1)=b k1-2a k=1-2a k1-2a k=1.∴n=k+1时,命题也成立.由①②知,对n∈N*,都有2a n+b n=1,即点P n在直线l上.。
(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试(答案解析)(1)
![(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试(答案解析)(1)](https://img.taocdn.com/s3/m/3fed84b669eae009591becd7.png)
一、选择题1.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .2453 2.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .1993.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f xB .()f x -C .()g xD .()g x -4.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2 D .至少有一个大于25.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =( ) A .271 B .272C .273D .2746.设k 1111S k 1k 2k 32k=+++⋯++++,则1k S +=( ) A .()k 1S 2k 1++B .()k 11S 2k 12k 1++++ C .()k 11S 2k 12k 1+-++ D .()k 11S 2k 12k 1+-++7.下列类比推理正确的是( )A .把()a b c +与x y a +类比,则有x y x y a a a +=+B .把()a a b +与()a a b ⋅+类比,则有()2a ab a a b ⋅+=+⋅C .把()nabc 与)n x y z (++类比,则有)n n n n x y z x y z ++=++( D .把()ab c 与()a b c ⋅⋅类比,则有()()a b c c a b ⋅⋅=⋅⋅8.用数学归纳法证明“l+2+3+…+n 3=632n n +,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1 B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++9.(河南省南阳市第一中学2018届高三第十四次考试)某校有A ,B ,C ,D 四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖.在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下: 甲说:“A 、B 同时获奖”; 乙说:“B 、D 不可能同时获奖”; 丙说:“C 获奖”;丁说:“A 、C 至少一件获奖”.如果以上四位同学中有且只有二位同学的预测是正确的,则获奖的作品是 A .作品A 与作品B B .作品B 与作品C C .作品C 与作品DD .作品A 与作品D10.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .206411.在平面直角坐标系中,方程1x ya b+=表示在x 轴、y 轴上的截距分别为,a b 的直线,类比到空间直角坐标系中,在x 轴、y 轴、z 轴上的截距分别为(),,0a b c abc ≠的平面方程为( ) A .1x y z a b c++= B .1x y z ab bc ca++= C .1xy yz zx ab bc ca++= D .1ax by cz ++=12.已知 222233+=,333388+=,44441515+=,m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 14.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成.通过观察可以发现第10个图形中火柴棒的根数是 ________.15.“开心辞典”中有这样一个问题:给出一组数,要你根据规律填出后面的第几个数.现给出一组数:11315,,,,228432---,…,则第8个数可以是__________.16.将自然数1,2,3,4,…排成数阵(如右图所示),在2处转第一个弯,在3处转第二个弯,在5处转第三个弯,…,则转第100个弯处的数是______.17.现有这么一列数,2,32,54,78,( ),1332,1764,…,按照规律,( )中的数应为__________.18.在数列{a n }中,a 1=2,a n +1=31nn a a + (n ∈N *),可以猜测数列通项a n 的表达式为________.19.已知数列{}n a 的前n 项和为n S ,且11n S n =+ , n *∈N . 算出数列的前4项的值后,猜想该数列的通项公式是__________.20.用反证法证明“,a b N ∈,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,应假设_______.三、解答题21.设数列{}n x 各项均为正数,且满足()22221222,n x x x n n n N ++++=+∈,(1)求数列{}n x 的通项公式n x ; (2)已知122311113n n x x x x x x ++++=+++,求n ;(3)试用数学归纳法证明:2122312(1)1n n x x x x x x n +⎡⎤+++<+-⎣⎦.22.已知{}n a 是等差数列,{}n b 是等比数列,11331542,,a b a b a a b ===+=.设,n n n n c a b S =是数列{}n c 的前n 项和.(1)求,n n a b ;(2)试用数学归纳法证明:18(34)2n n S n +=+-⋅.23.已知数列{}n a 中,12a a =.()2122,n n a a a n n a *-=-≥∈N . (1)写出2a 、3a 、4a ;(2)猜想n a 的表达式,并用数学归纳法证明.24.设f (x )=3ax 2+2bx+c ,若a+b+c=0,f (0)>0,f (1)>0,求证:a >0且﹣2<<﹣1.25.当*n N ∈时,111111234212n S n n=-+-++--,11111232n T n n n n=+++++++ (Ⅰ)求1S ,2S ,1T ,2T ;(Ⅱ)猜想n S 与n T 的关系,并用数学归纳法证明. 26.已知f (x )22x=+f (0)+f (1),f (﹣1)+f (2),f (﹣2)+f (3),然后归纳猜想一般性结论,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.2.C解析:C 【详解】 由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=, 294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.3.D解析:D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .4.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.A解析:A 【分析】观察图形,发现,第一个图案中有一个正六边形,第二个图案中有7个正六边形;… 根据这个规律,即可确定第10个图案中正六边形的个数. 【详解】由图可知,()11f =,()212667f =+⨯-=, ()()312362619f =++⨯-⨯=, ()()212362619f =++⨯-⨯=,()()4123463637f =+++⨯-⨯=,…()()101234...10696271.f =+++++⨯-⨯=故选A. 【点睛】此类题要能够结合图形,发现规律:当2n ≥时,()()()161.f n f n n --=-6.C解析:C 【解析】分析:由题意将k 替换为1k +,然后和k S 比较即可. 详解:由题意将k 替换为1k +,据此可得:()()()()1111111121321k S k k k k +=+++++++++++()111123421k k k k =++++++++()11111123422121k k k k k k =+++++++++++ ()111111111234221211k k k k k k k k =+++++++-+++++++ ()1111111123422121k k k k k k k =++++++-++++++ ()112121k S k k =+-++. 本题选择C 选项.点睛:本题主要考查数学归纳法中由k 到k +1的计算方法,意在考查学生的转化能力和计算求解能力.7.B解析:B 【解析】分析:由题意逐一考查所给命题的真假即可. 详解:逐一考查所给命题的真假:A . 由指数的运算法则可得x y x y a a a +=,原命题错误;B . 由向量的运算法则可知:()2a ab a a b ⋅+=+⋅,原命题正确; C . 由多项式的运算法则可知)n n n n x y z x y z ++≠++(,原命题错误; D . 由平面向量数量积的性质可知()()a b c c a b ⋅⋅≠⋅⋅,原命题错误; 本题选择B 选项.点睛:本题主要考查类比推理及其应用等知识,意在考查学生的转化能力和计算求解能力.8.B解析:B 【解析】分析:当项数从n k =到1n k =+时,等式左边变化的项可利用两个式子相减得到。
(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(有答案解析)(3)
![(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(有答案解析)(3)](https://img.taocdn.com/s3/m/ecdbae25360cba1aa911da9e.png)
一、选择题1.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .24532.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点()3,4A -,且法向量为(1,2)n =-的直线(点法式)方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上方法,在空间直角坐标系中,经过点()1,2,3A ,且法向量为(1,2,1)m =--的平面的方程为( ) A .220x y z +--= B .220x y z ---= C .220x y z ++-=D .220x y z +++=3.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲B .乙C .丙D .丁4.2018年暑假期间哈六中在第5届全国模拟联合国大会中获得最佳组织奖,其中甲、乙、丙、丁中有一人获个人杰出代表奖,记者采访时,甲说:我不是杰出个人;乙说:丁是杰出个人;丙说:乙获得了杰出个人;丁说:我不是杰出个人,若他们中只有一人说了假话,则获得杰出个人称号的是( ) A .甲B .乙C .丙D .丁5.用反证法证明命题①:“已知332p q +=,求证:2p q +≤”时,可假设“2p q +>”;命题②:“若24x =,则2x =-或2x =”时,可假设“2x ≠-或2x ≠”.以下结论正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确6.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()2f x '=,12()2f x '=,*1())2n n f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x +B .(cos sin )x e x x -C .(cos sin )x e x x -+D .(cos sin )x e x x --7.一位数学老师在黑板上写了三个向量(,2)a m =,(1,)b n =,(4,4)c =-,其中m ,n 都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“a 与b 平行,且a 与c 垂直”,乙回答:“b 与c 平行”,丙回答:“a 与c 不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测m ,n 的值不可能为( ) A .3m =,2n =B .2m =-,1n =-C .2m =,1n =D .2m n ==-8.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球9.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了10.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( ) A .65B .96C .104D .11211.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队 B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变 12.在平面直角坐标系中,方程1x ya b+=表示在x 轴、y 轴上的截距分别为,a b 的直线,类比到空间直角坐标系中,在x 轴、y 轴、z 轴上的截距分别为(),,0a b c abc ≠的平面方程为( ) A .1x y z a b c++= B .1x y z ab bc ca++= C .1xy yz zx ab bc ca++= D .1ax by cz ++=二、填空题13.已知f (x )=21xx +(x >0),若f 1(x )=f (x ),f n +1=f (f n (x )),n ∈N *,则猜想f 2020(x )=_____.14.对于自然数方幂和()12k k k k S n n =+++(n *∈N ,k *∈N ),1(1)()2n n S n +=,2222()12S n n =+++,求和方法如下:23﹣13=3+3+1, 33﹣23=3×22+3×2+1, ……(n +1)3﹣n 3=3n 2+3n +1,将上面各式左右两边分别,就会有(n +1)3﹣13=23()S n +13()S n +n ,解得2()S n =16n (n +1)(2n +1),类比以上过程可以求得54324()A B C D E F S n n n n n n =+++++,A ,B ,C ,D ,E ,F ∈R 且与n 无关,则A +F 的值为_______. 15.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.16.“开心辞典”中有这样一个问题:给出一组数,要你根据规律填出后面的第几个数.现给出一组数:11315,,,,228432---,…,则第8个数可以是__________.17.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.18.用数学归纳法证明某命题时,左式为(n 为正偶数),从“n=2k”到“n=2k+2”左边需增加的代数式为________. 19.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.20.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn=nm”类比得到“•=•”;②“(m+n )t=mt+nt”类比得到“(+)•=•+•”; ③“t≠0,mt=nt ⇒m=n”类比得到“≠0,•=•⇒=”; ④“|m•n|=|m|•|n|”类比得到“|•|=||•||”.以上类比得到的正确结论的序号是 _________ (写出所有正确结论的序号).三、解答题21.若10a >,11a ≠,121+=+nn na a a (n =1,2,…). (1)求证:1+≠n n a a ; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ,并用数学归纳法证明.22.已知数列{}n a 满足12a =,11nn na a a +=+. (1)计算2a ,3a ,4a ;(2)猜测n a 的表达式,并用数学归纳法证明. 23.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.24.已知数列()1111,,,,,1223341n n ⨯⨯⨯+,(1)先计算前几项和123,,,S S S 并猜想前n 项和n S 的表达式; (2)用数学归纳法证明n S 的表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
3sin 30cos 60sin 30cos604++=
202000
3sin 20cos 50sin 20cos504
++=
2
2
3sin 15cos 45sin15cos 454
++=
,
分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.
17、(10分)已知正数c b a ,,成等差数列,且公差0 d ,求证:c
b a ,,不可能是等差数列。
18、(14分)已知数列{a n }满足S n +a n =2n +1, (1) 写出a 1, a 2, a 3,并推测a n 的表达式; (2) 用数学归纳法证明所得的结论。
高二数学选修2-2《推理与证明测试题》答案
一、选择题: DCABB CABBB
二、填空题: 11、14 12、
13、
14、 5 ;
三、解答题:本大题共6题,共58分。
15、猜想:4
3)30cos(sin )30(cos sin 22=++++ αααα 证明:
000
2
2
1cos21cos(602)sin(302)sin30sin cos (30)sin cos(30)222
ααααααα-+++-++++=++
00cos(602)cos2111[sin(302)]222ααα+-=+++-000
2sin(302)sin30111[sin(302)]
222
αα-+=+++- 00
3113sin(302)sin(302)αα=-+++= 16、证明:要证原不等式成立,
只需证(6+7)2>(22+5)2, 即证402422>。
∵上式显然成立, ∴原不等式成立.
17、可以用反证法---略
18、解: (1) a 1=23, a 2=47, a 3=815
,
猜测 a n =2-n 2
1
(2) ①由(1)已得当n =1时,命题成立;
②假设n =k 时,命题成立,即 a k =2-k 2
1
,
当n =k +1时, a 1+a 2+……+a k +a k +1+a k +1=2(k +1)+1, 且a 1+a 2+……+a k =2k +1-a k ∴2k +1-a k +2a k +1=2(k +1)+1=2k +3,
∴2a k +1=2+2-k 21, a k +1=2-12
1
+k ,
即当n =k +1时,命题成立.
根据①②得n ∈N + , a n =2-n 2
1
都成立。