高考数学一轮复习 每日一题之复数的基本运算 理

合集下载

高三复数总复习知识点、经典例题、习题

高三复数总复习知识点、经典例题、习题

⾼三复数总复习知识点、经典例题、习题复数⼀.基本知识【1】复数的基本概念(1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平⽅等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部实数:当b = 0时复数a + b i 为实数虚数:当0≠b 时的复数a + b i 为虚数;纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数(2)两个复数相等的定义:00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且(3)共轭复数:z a bi =+的共轭记作z a bi =-;(4)复平⾯:建⽴直⾓坐标系来表⽰复数的平⾯叫复平⾯;z a bi =+,对应点坐标为(),p a b ;(象限的复习)(5)复数的模:对于复数z a bi =+,把z =z 的模;【2】复数的基本运算设111z a b i =+,222z a b i =+(1)加法:()()121212z z a a b b i +=+++;(2)减法:()()121212z z a a b b i -=-+-;(3)乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。

(4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-【3】复数的化简c di z a bi+=+(,a b 是均不为0的实数);的化简就是通过分母实数化的⽅法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=≠+,当c d a b=时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi+==+进⼀步建⽴⽅程求解⼆.例题分析【例1】已知()14z a b i =++-,求(1)当,a b 为何值时z 为实数(2)当,a b 为何值时z 为纯虚数(3)当,a b 为何值时z 为虚数(4)当,a b 满⾜什么条件时z 对应的点在复平⾯内的第⼆象限。

高考数学一轮复习专题训练—复数

高考数学一轮复习专题训练—复数

复数考纲要求1.理解复数的基本概念;2.理解复数相等的充要条件;3.了解复数的代数表示法及其几何意义;4.会进行复数代数形式的四则运算;5.了解复数代数形式的加、减运算的几何意义.知识梳理1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R)的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部(i 为虚数单位). (2)分类:(3)复数相等:a +b i ⇔a =c 且b =d ((4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R).2.复数的几何意义(1)复数z =a +b i 一一对应复平面内的点Z (a ,b )(a ,b ∈R). (2)复数z =a +b i(a ,b ∈R)一一对应平面向量OZ →. 3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R. z 1±z 2=(a +b i)±(c +d i)=(a ±c )+(b ±d )i. z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(bc +ad )i.z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0). (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图所示给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.1.i 的乘方具有周期性i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *. 2.(1±i)2=±2i ,1+i 1-i =i ;1-i1+i =-i.3.复数的模与共轭复数的关系 z ·z =|z |2=|z |2. 4.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R)中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )答案 (1)× (2)× (3)√ (4)√解析 (1)虚部为b ;(2)虚数不可以比较大小.2.已知i 为虚数单位,a 为实数,复数z 满足z +3i =a +a i ,若复数z 是纯虚数,则( ) A .a =3 B .a =0 C .a ≠0 D .a <0答案 B解析 由z +3i =a +a i ,得z =a +(a -3)i.又因为复数z 是纯虚数,所以⎩⎪⎨⎪⎧a =0,a -3≠0,解得a =0.3.已知(1+2i)z =4+3i ,则z =________. 答案 2+i解析 因为z =4+3i1+2i=4+3i 1-2i 1+2i 1-2i=10-5i5=2-i ,所以z =2+i.4.(2020·北京卷)在复平面内,复数z 对应的点的坐标是(1,2),则i·z =( ) A .1+2i B .-2+i C .1-2i D .-2-i答案 B解析 z =1+2i ,∴i·z =i(1+2i)=-2+i.故选B.5.(2019·全国Ⅲ卷改编)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B .22C . 2D .2答案 C解析 法一 由(1+i)z =2i ,得z =2i1+i =1+i ,所以|z |= 2.法二 因为2i =(1+i)2,所以由(1+i)z =2i =(1+i)2,得z =1+i ,所以|z |= 2. 6.(2021·安庆一中月考)已知复数z =2i1-i3,则z 在复平面内对应的点所在的象限为第________象限. 答案 二 解析 ∵z =2i1-i3=-1-i 21-i3=-11-i=-12-i 2, ∴z =-12+i2对应的点⎝⎛⎭⎫-12,12位于第二象限.考点一 复数的相关概念1.(2020·浙江卷)已知a ∈R ,若a -1+(a -2)i(i 为虚数单位)是实数,则a =( ) A .1 B .-1C .2D .-2答案 C解析 由题可知复数的虚部为a -2,若该复数为实数,则a -2=0,即a =2.故选C. 2.(2019·全国Ⅱ卷)设z =i(2+i),则z =( ) A .1+2i B .-1+2iC .1-2iD .-1-2i答案 D解析 ∵z =i(2+i)=-1+2i ,∴z =-1-2i.故选D. 3.(2020·全国Ⅰ卷)若z =1+2i +i 3,则|z |=( ) A .0 B .1C . 2D .2答案 C解析 ∵z =1+2i +i 3=1+2i -i =1+i ,∴|z |=12+12= 2.故选C.4.(2021·西安调研)下面关于复数z =-1+i(其中i 为虚数单位)的结论正确的是( ) A.1z 对应的点在第一象限 B .|z |<|z +1| C .z 的虚部为i D .z +z <0 答案 D解析∵z=-1+i,∴1z=1-1+i=-1-i-1+i-1-i=-12-i2.则1z对应的点在第三象限,故A错误;|z|=2,|z+1|=1,故B错误;z的虚部为1,故C错误;z+z=-2<0,故D正确.感悟升华 1.复数z=a+b i(a,b∈R),其中a,b分别是它的实部和虚部.若z为实数,则虚部b=0,与实部a无关;若z为虚数,则虚部b≠0,与实部a无关;若z为纯虚数,当且仅当a=0且b≠0.2.复数z=a+b i(a,b∈R)的模记作|z|或|a+b i|,即|z|=|a+b i|=a2+b2.3.复数z=a+b i(a,b∈R)的共轭复数为z=a-b i,则z·z=|z|2=|z|2,即|z|=|z|=z·z,若z∈R,则z=z.利用上述结论,可快速、简洁地解决有关复数问题.考点二复数的几何意义【例1】(1)(2019·全国Ⅰ卷)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则() A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.x2+(y+1)2=1(2)(2020·临沂质检)已知a1-i=-1+b i,其中a,b是实数,则复数a-b i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案(1)C(2)B解析(1)由已知条件,可设z=x+y i(x,y∈R).∵|z-i|=1,∴|x+y i-i|=1,∴x2+(y-1)2=1.故选C.(2)由a1-i=-1+b i,得a =(-1+b i)(1-i)=(b -1)+(b +1)i ,∴⎩⎪⎨⎪⎧b +1=0,a =b -1,即a =-2,b =-1, ∴复数a -b i =-2+i 在复平面内对应点(-2,1),位于第二象限.感悟升华 1.复数z =a +b i(a ,b ∈R)一一对应Z (a ,b )一一对应OZ →=(a ,b ).2.由于复数、点、向量之间建立了一一对应的关系,因此解题时可运用数形结合的方法,可把复数、向量与解析几何联系在一起,使问题的解决更加直观.【训练1】 (1)若复数z =(2+a i)(a -i)在复平面内对应的点在第三象限,其中a ∈R ,i 为虚数单位,则实数a 的取值范围为( ) A .(-2,2) B .(-2,0) C .(0,2)D .[0,2)(2)(2021·郑州模拟)已知复数z 1=2-i2+i 在复平面内对应的点为A ,复数z 2在复平面内对应的点为B ,若向量AB →与虚轴垂直,则z 2的虚部为________. 答案 (1)B (2)-45解析 (1)z =(2+a i)(a -i)=3a +(a 2-2)i在复平面内对应的点在第三象限,∴⎩⎪⎨⎪⎧3a <0,a 2-2<0,解得-2<a <0.(2)z 1=2-i 2+i =2-i 22+i 2-i =35-45i ,所以A ⎝⎛⎭⎫35,-45, 设复数z 2对应的点B (x 0,y 0),则AB →=⎝⎛⎭⎫x 0-35,y 0+45, 又向量AB →与虚轴垂直,∴y 0+45=0,故z 2的虚部y 0=-45.考点三 复数的运算【例2】 (1)(2020·全国Ⅰ卷)若z =1+i ,则|z 2-2z |=( ) A .0B .1C . 2D .2(2)在数学中,记表达式ad -bc 为由⎪⎪⎪⎪⎪⎪ab cd 所确定的二阶行列式.若在复数域内,z 1=1+i ,z 2=2+i 1-i ,z 3=z 2,则当⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=12-i 时,z 4的虚部为________. 答案 (1)D (2)-2解析 (1)法一 z 2-2z =(1+i)2-2(1+i)=-2,|z 2-2z |=|-2|=2. 法二 |z 2-2z |=|(1+i)2-2(1+i)|=|(1+i)(-1+i)| =|1+i||-1+i|=2. 故选D. (2)依题意,⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=z 1z 4-z 2z 3,因为z 3=z 2,且z 2=2+i1-i =2+i1+i2=1+3i 2,所以z 2·z 3=|z 2|2=52,因此有(1+i)z 4-52=12-i ,即(1+i)z 4=3-i ,故z 4=3-i 1+i=3-i1-i2=1-2i.所以z 4的虚部是-2.感悟升华 1.复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式. 2.记住以下结论,可提高运算速度: (1)(1±i)2=±2i ;(2)1+i 1-i =i ;(3)1-i 1+i=-i ;(4)-b +a i =i(a +b i);(5)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N).【训练2】 (1)(2020·新高考山东卷)2-i1+2i=( )A .1B .-1C .iD .-i(2)(2020·全国Ⅱ卷)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________. 答案 (1)D (2)2 3 解析 (1)2-i 1+2i =2-i1-2i 1+2i1-2i=-5i5=-i.故选D.(2)法一 设z 1=a +b i(a ,b ∈R),则z 2=3-a +(1-b )i ,则⎩⎨⎧ |z 1|2=a 2+b 2=4,|z 2|2=3-a 2+1-b 2=4,即⎩⎨⎧a 2+b 2=4,3a +b =2.∴|z 1-z 2|2=(2a -3)2+(2b -1)2 =4(a 2+b 2)-4(3a +b )+4=12. 因此|z 1-z 2|=2 3.法二 设复数z 1,z 2对应的向量为a ,b , 则复数z 1+z 2,z 1-z 2对应向量为a +b ,a -b , 依题意|a |=|b |=2,|a +b |=2, 又因为|a +b |2+|a -b |2=2|a |2+2|b |2, 所以|a -b |2=12,故|z 1-z 2|=|a -b |=2 3.法三 设z 1+z 2=z =3+i ,则z 在复平面上对应的点为P (3,1),所以|z 1+z 2|=|z |=2,由平行四边形法则知OAPB 是边长为2,一条对角线也为2的菱形,则另一条对角线的长为|z 1-z 2|=2×32×2=2 3.A 级 基础巩固一、选择题1.设z =-3+2i ,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 z =-3-2i ,故z 对应的点(-3,-2)位于第三象限. 2.(2020·全国Ⅲ卷)复数11-3i 的虚部是( ) A .-310B .-110C .110D .310答案 D解析 z =11-3i =1+3i 1-3i 1+3i =110+310i ,虚部为310.故选D.3.(2020·全国Ⅱ卷)(1-i)4=( ) A .-4 B .4C .-4iD .4i答案 A解析 (1-i)4=(1-2i +i 2)2=(-2i)2=4i 2=-4.4. (2021·全国大联考)如图,复数z 1,z 2在复平面上分别对应点A ,B ,则z 1·z 2=( )A .0B .2+iC .-2-iD .-1+2i答案 C解析 由复数几何意义,知z 1=-1+2i ,z 2=i , ∴z 1·z 2=i(-1+2i)=-2-i.5.设复数z 满足|z -3|=2,z 在复平面内对应的点为M (a ,b ),则M 不可能为( ) A .(2,3) B .(3,2) C .(5,0) D .(4,1) 答案 D解析 设z =a +b i(a ,b ∈R),则z -3=(a -3)+b i , ∴(a -3)2+b 2=4,验证点M (4,1),不满足.6.(2021·河南部分重点高中联考)若复数a +|3-4i|2+i (a ∈R)是纯虚数,则a =( )A .-3B .-2C .2D .3答案 B解析 a +|3-4i|2+i =a +52-i2+i 2-i =a +2-i 为纯虚数.则a +2=0,解得a =-2.7.设2+ii +1-2i =a +b i( a ,b ∈R ,i 为虚数单位),则b -a i =( )A .-52-32iB .52-32iC.52+32i D .-52+32i答案 A解析 因为2+i i +1-2i =2+i1-i i +11-i -2i =32-52i =a +b i ,所以a =32,b =-52,因此b -a i=-52-32i.故选A.8.如图所示,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则复数z 1·z 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 由图知OA →=(-2,-1),OB →=(0,1),所以z 1=-2-i ,z 2=i ,z 1·z 2=1-2i ,所以复数z 1·z 2所对应的点为(1,-2),该点在第四象限.二、填空题9.(2020·江苏卷)已知i 是虚数单位,则复数z =(1+i)(2-i)的实部是________. 答案 3解析 z =(1+i)(2-i)=2-i +2i -i 2=3+i ,所以复数z 的实部为3.10.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为________.答案 -2+i解析 因为A (-1,2)关于直线y =-x 的对称点B (-2,1),所以向量OB →对应的复数为-2+i.11.已知复数z =1+2i 1+i +2i z ,则|z |等于________. 答案 22解析 由z =1+2i 1+i+2i z 得z =1+2i 1+i 1-2i =1+2i 3-i=1+2i 3+i 3-i 3+i =1+7i 10, 故|z |=11012+72=22. 12.已知i 为虚数单位,若复数z =1-a i 1+i(a ∈R)的实部为-3,则|z |=________,复数z 的共轭复数z =________.答案 5 -3+4i解析 因为z =1-a i 1+i =1-a i 1-i 1+i 1-i =1-a -a +1i 2的实部为-3,所以1-a 2=-3,解得a =7. 所以z =-3-4i , 故|z |=-32+-42=5,且共轭复数z =-3+4i.B 级 能力提升13.(2020·南宁模拟)已知z =3-i 1-i (其中i 为虚数单位),则z 的共轭复数z 的虚部是( ) A .-1B .-2C .1D .2 答案 A解析 ∵z =3-i 1-i =3-i 1+i 1-i 1+i=4+2i 2=2+i , ∴z =2-i ,∴z 的虚部为-1.14.(2021·哈尔滨调研)已知z 的共轭复数是z ,且|z |=z +1-2i(i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 设z =x +y i(x ,y ∈R),因为|z |=z +1-2i ,所以x 2+y 2=x -y i +1-2i =(x +1)-(y+2)i ,所以⎩⎨⎧ x 2+y 2=x +1,y +2=0,解得⎩⎪⎨⎪⎧x =32,y =-2. 所以复数z 在复平面内对应的点为⎝⎛⎭⎫32,-2,此点位于第四象限. 15.⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 答案 -1+i解析 原式=⎣⎡⎦⎤1+i 226+2+3i3+2i 32+22=i 6+6+2i +3i -65=-1+i. 16.已知复数z =x +y i(x ,y ∈R),且|z -2|=3,则y x的最大值为________. 答案 3解析 因为|z -2|=x -22+y 2=3,所以(x -2)2+y 2=3. 由图可知⎝⎛⎭⎫y x max =31= 3.。

复数的基本运算规则

复数的基本运算规则

复数的基本运算规则
1. 嘿,复数相加可简单啦!就像走路一样,实部和实部相加,虚部和虚部相加呀。

比如说,(3+2i)加上(1+4i),那就是 3+1 等于 4 作为实部,
2+4 等于 6 作为虚部,结果就是 4+6i 呀,是不是很好懂呢!
2. 哇塞,复数相减也不难呀!跟分东西似的,实部减实部,虚部减虚部哟。

像(5+3i)减去(2+1i),5 减 2 等于 3 就是实部,3 减 1 等于 2 就是虚部,就是 3+2i 嘞,这多容易呀!
3. 嘿,复数乘法有规律的哦!就好像搭积木,每个部分都要相乘再组合起来。

比如(2+i)乘以(3-i),展开后得到 6-2i+3i-i²,因为i²等于-1,所以最后就是7+i 呀,有意思吧!
4. 哇哦,复数除法可有点特别呢!要把分母有理化呀,就像给它变个魔法。

比如(3+4i)除以(1+2i),分子分母同时乘以 1-2i,经过一番计算,最后就能得到答案啦,你想不想试试呀?
5. 哎呀呀,复数的模不就是它的“大小”嘛!就像衡量一个东西有多大一样。

要是有个复数 3+4i,它的模就是根号下3 ²加4 ²呀,等于 5 呢,很神奇吧!
6. 嘿哟,共轭复数就像一对双胞胎呀!实部相同,虚部互为相反数。

比如
2+3i 的共轭复数就是 2-3i,这很有趣对不对?
7. 复数的运算规则掌握了可就厉害啦!无论是解决数学问题还是实际应用中,都超级有用的呢!就像拥有了一把神奇的钥匙,可以打开好多知识的大门呀!
我的观点结论:复数的基本运算规则确实很重要,而且并不难理解和掌握呀,只要多练习,就能运用自如啦!。

数学一轮总复习复数运算篇

数学一轮总复习复数运算篇

数学一轮总复习复数运算篇数学一轮总复习复数运算篇复数是数学中的重要概念之一,在各个数学分支中都有广泛的应用。

复数运算在初中和高中阶段的数学学习中扮演着重要的角色。

本篇文章将为大家总结和复习复数运算的相关知识,帮助大家巩固理解并掌握这一概念。

一、复数的定义与表示方法复数是由实数和虚数构成的数,通常表示为z=a+bi,其中a为实部,bi为虚部。

这里的i是虚数单位,满足i²=-1。

复数既可以用代数形式表示,也可以用几何形式表示。

在代数形式中,实部和虚部都是实数,而在几何形式中,复数可以用平面上的向量表示,向量的起点是原点,终点则是复平面上对应的点。

二、复数的四则运算1. 复数的加法和减法复数的加法和减法都是按照实部与虚部分别相加和相减的规则来进行的。

例如,对于两个复数z1=a₁+b₁i 和z2=a₂+b₂i ,其加法和减法的公式分别如下:加法:z1+z2=(a₁+a₂)+(b₁+b₂)i减法:z1-z2=(a₁-a₂)+(b₁-b₂)i2. 复数的乘法复数的乘法是按照分配律和i²=-1的规则进行的。

对于两个复数z1=a₁+b₁i 和z2=a₂+b₂i,其乘法的公式如下:乘法:z1×z2=(a₁a₂-b₁b₂)+(a₁b₂+b₁a₂)i3. 复数的除法复数的除法涉及到共轭复数的概念。

对于一个复数z=a+bi,其共轭复数记作z*,根据共轭复数的定义,z*的实部与z的实部相同,而虚部的符号相反。

复数的除法公式如下:除法:z1÷z2=(a₁a₂+b₁b₂)/(a₂²+b₂²)+((b₁a₂-a₁b₂)/(a₂²+b₂²))i三、复数的乘方与开方1. 复数的乘方复数的乘方是指将一个复数连续乘以自身多次的运算。

复数的乘法规则可以推广到复数的乘方运算中。

例如,对于一个复数z=a+bi,其平方可以表示为:平方:z²=(a+bi)×(a+bi)=a²+2abi+b²i²=(a²-b²)+2abi同理,复数的立方、四次方等运算也可以按照相似的方式进行。

高考数学一轮总复习 专题30 复数的概念及运算检测 理

高考数学一轮总复习 专题30 复数的概念及运算检测 理

【2019最新】精选高考数学一轮总复习专题30 复数的概念及运算检测理本专题特别注意:1.复数四则运算2. 复数加减的几何意义3. 复数与数列的综合4.复数与二项式定理的综合问题5. 复数的模和共轭复数问题【学习目标】1.理解复数的有关概念,掌握复数相等的充要条件,并会应用.2.了解复数的代数形式的表示方法,能进行复数的代数形式的四则运算.3.了解复数代数形式的几何意义及复数的加、减法的几何意义,会简单应用.【方法总结】1.设z=a+bi(a,b∈R),利用复数相等的充要条件转化为实数问题是求解复数常用的方法.2.实数的共轭复数是它本身,两个纯虚数的积是实数.3.复数问题几何化,利用复数、复数的模、复数运算的几何意义,转化条件和结论,有效利用数和形的结合,取得事半功倍的效果.【高考模拟】一、单选题1.已知,其中是虚数单位,是复数的共轭复数,则复数()A. B. C. D.【答案】C【解析】【分析】化简原式,利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,求得复数,从而可得结果.【详解】,,故选C.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.已知是虚数单位,则复数在复平面上所对应的点的坐标为()A. B. C. D.【答案】D【解析】【分析】将复数的分子分母同乘以1+i,利用多项式的乘法分子展开,求出对应的点的坐标.【点睛】本题考查复数的代数表示法及其几何意义,复数的除法运算法则:分子、分母同乘以分母的共轭复数.3.(2017·××市一模)已知是虚数单位,则复数的共轭复数是( )A .B .C .D .【答案】A 【解析】 【分析】利用复数的除法计算后取所得结果的共轭即可. 【详解】,故所求共轭复数为,故选A.【点睛】本题考察复数的概念及其运算,是基础题.4.已知为虚数单位,复数,则下列命题为真命题的是( ) A . 的共轭复数为 B . 的虚部为-1C . 在复平面内对应的点在第一象限D .【答案】D 【解析】 【分析】先化简复数z,再判断每一个选项的真假. 【点睛】(1)本题主要考查复数的计算,考查复数的几何意义、实部虚部和模的计算,意在考查学生对这些知识的掌握水平.(2) 复数的实部是a,虚部为b ,不是bi.5.欧拉公式 (为虚数本位)是瑞士数学家欧拉发明的,将指数的定义域扩大到复数集,建立了三角函数和指数函数的联系,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数的模为( )A. B. C. 1 D.【答案】C【解析】【分析】直接由题意可得=cos+isin,再由复数模的计算公式得答案.【详解】由题意,=cos+isin,∴表示的复数的模为.故选:C.【点睛】本题以欧拉公式为背景,考查利用新定义解决问题的能力,考查了复数模的求法,属于基础题.6.若在复平面内,点所对应的复数为,则复数的虚部为()A. 12 B. 5 C. D.【答案】D【解析】【分析】先求复数z,再求复数,再求它的虚部.【点睛】(1)本题主要考查复数的运算和复数的虚部概念,意在考查学生对这些知识的掌握水平.(2) 复数的实部是a,虚部为b,不是bi.7.读了高中才知道,数绝对不止1,2,3啊,比如还有这种奇葩数,他的平方居然是负数!那么复数在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【解析】【分析】运用复数除法法则运算得到结果【详解】由题意得,在复平面内对应的点为在第一象限,故选【点睛】本题考查了复数的几何意义,根据复数除法法则进行运算化成的形式即可得到答案8.已知是虚数单位,复数是的共轭复数,复数,则下面说法正确的是()A.在复平面内对应的点落在第四象限 B.C.的虚部为1 D.【解析】【分析】利用复数的运算法则可得复数=2i﹣2,再根据复数的几何意义、虚部的定义、模的运算性质即可得出.【详解】故选:C.【点睛】本题考查了复数的运算法则、复数的几何意义、虚部的定义、模的运算性质,考查了推理能力与计算能力,属于基础题.9.设复数满足,则()A. 3 B. C. 9 D. 10【答案】A【解析】【分析】利用复数的运算法则、共轭复数的性质、模的计算公式即可得出.【详解】【点睛】本题考查了复数的运算法则、共轭复数的性质、模的计算公式,考查了推理能力与计算能力,属于基础题.10.复数等于()A. B. C. D.【解析】【分析】化简分式,分子、分母分别平方,再按照复数的除法运算法则化简可得结果.【详解】,故选:C【点睛】本题主要考查了复数代数形式的运算,是基础题.11.设为复数的共轭复数,则()A. B. C. D.【答案】A【解析】【分析】先求出,从而求出的值即可.【详解】,共轭复数,则.故选:A.【点睛】本题考查复数的运算性质以及共轭复数,是一道基础题.12.为虚数单位,则()A. B.C. D.【答案】C【解析】分析:由复数的基本运算性质,可得,其中为自然数,则,即可求解答案.点睛:本题主要考查了虚数的运算性质的应用,其中熟记虚数的运算性质,利用乘公比错误相减法求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.13.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,他将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数在复平面中位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【解析】分析:由欧拉公式,可得,结合三角函数值的符号,即可得出结论.详解:由欧拉公式,可得,因为,所以表示的复数在复平面中位于第二象限,故选B.点睛:该题考查的是有关复数对应的点在第几象限的问题,在解题的过程中,首先应用欧拉公式将复数表示出来,之后借助于三角函数值的符号求得结果.14.下列3个命题:①若,,则;②若是纯虚数,则;③若,且,则.其中真命题的个数是( )A . 0B . 1C . 2D . 3 【答案】B【解析】分析:通过举反例可判断①错误,由复数的乘法法则判断②正确,由复数的概念可判断③错误.点睛:本题以命题的真假判断为载体考查了复数的基本概念和性质,特殊值排除法常可用于此类问题的求解.15.对于任意的两个数对和,定义运算,若,则复数为 ( )A .B .C .D .【答案】D【解析】分析:利用定义,列出方程表示出,分子、分母同时乘以得到的值.详解:因为, 又 所以 所以故选:D.点睛:本题是新定义的问题,解题的关键是理解新定义,将问题转化为熟悉的问题来解决.16.已知复数满足,则等于( )A. B. C. D.【答案】C【解析】分析:由题可知,表示平行四边形的相邻两边,表示平行四边形的一条对角线,求另一条一条对角线的长.点睛:本题考查复数加减法的几何意义,余弦定理等,属中档题.17.定义运算,若复数满足,则()A. B. C. D.【答案】D【解析】分析:先根据定义运算化简求出复数z,再求详解:由题得iz+z=-2,所以(1+i)z=-2,所以,所以,故答案为:D.点睛:(1)本题主要考查复数的运算和共轭复数,意在考查学生对这些知识的掌握水平.(2)复数的共轭复数18.欧拉公式(为虚数单位),是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,若将表示的复数记为,则的值为()A. B. C. D.【答案】A【解析】分析:由欧拉公式可求得,再由复数代数形式的乘法运算化简得结论.详解:,,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.19.对于复数,给出下列三个运算式子:(1),(2),(3).其中正确的个数是()A. B. C. D.【答案】D【解析】分析:根据复数的几何意义可得(1)正确;根据复数模的公式计算可得到(2)正确;根据复数乘法运算法则可判断(3)正确,从而可得结果.点睛:本题主要考查复数模的公式、复数的几何意义、复数乘法的运算法则,意在考查基础知识掌握的熟练程度,以及综合运用所学知识解决问题的能力,属于难题.20.为虚数单位,则()A. B.C. D.【答案】C【解析】分析:由复数的基本运算得到,即,即可求解答案.详解:由复数的运算可知,,则,所以,故选C.点睛:本题主要考查了虚数的运算性质的应用,其中熟记虚数的运算性质,得到式子的计算规律是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.21.(1)设集合,,,且,求实数的取值范围.(2)设,是两个复数,已知,,且是纯虚数,求.【答案】(1) .(2)或.【解析】【分析】(1)移项通分,直接利用分式不等式的解法化简集合,然后对分三种情况讨论,分别利用包含关系列不等式求解即可;(2)设,由,可得,由是纯虚数,可得,联立求解即可的结果.【详解】(2)解:设,∵,∴+b2=2√2,即,①又,且是纯虚数,∴②,由①②得,.∴或.【点睛】本题主要考查集合的子集,以及复数的基本运算与基本概念,属于中档题. 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.22.已知【答案】【解析】【分析】把z1、z2代入关系式,化简即可【详解】【点睛】复数的运算,难点是乘除法法则,设,则,.23.已知复数其中i为虚数单位.Ⅰ当实数m取何值时,复数z是纯虚数;Ⅱ若复数z在复平面上对应的点位于第四象限,求实数m的取值范围.【答案】(1)(2)【解析】分析:,利用纯虚数的定义,由,解出即可得出.利用复数的几何意义,由题意得,解出即可得出.点睛:本题考查了复数的有关知识、不等式的解法、几何意义,考查了推理能力与计算能力,属于中档题.24.已知复数满足: 求的值【答案】【解析】分析:利用复数的运算法则、模的计算公式、复数相等即可得出.详解:设,而即则点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.25.已知,,为实数.(1)若,求;(2)若,求实数,的值.【答案】(1);(2)-3,2【解析】分析:(1)利用复数乘法的运算法则以及共轭复数的定义化简,利用复数模的公式求解即可;(2)利用复数除法的运算法则将,化为,由复数相等的性质可得,从而可得结果.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分26.已知复数.实数取什么值时,是(1)实数?(2)虚数?(3)纯虚数?【答案】(1) 当时,为实数.(2) 当时,为虚数.(3) 不存在实数使得为纯虚数.【解析】分析:根据复数的有关概念建立等量关系关系即可.详解:(1)若复数是实数则,即,即a=6.点睛:本题主要考查复数的有关概念,根据实部和虚部的对应关系是解决本题的关键.27.设为虚数单位,为正整数,(1)证明:;(2),利用(1)的结论计算。

复数的基本运算及其几何解释

复数的基本运算及其几何解释

复数的基本运算及其几何解释复数是由实部和虚部组成的数,可以表示为a+bi的形式,其中a为实部,bi为虚部,i为虚数单位。

本文将介绍复数的基本运算,包括加法、减法、乘法和除法,并给出其几何解释。

一、复数的加法和减法复数的加法和减法与实数的加法和减法类似。

假设有两个复数z1 = a1 + b1i和z2 = a2 + b2i,它们的和z3 = z1 + z2可通过将实部相加、虚部相加得到:z3 = (a1 + a2) + (b1 + b2)i。

同样,它们的差z4 = z1 - z2可通过将实部相减、虚部相减得到:z4 = (a1 - a2) + (b1 - b2)i。

复数的加法和减法也可以通过几何图形解释。

在复平面上,可以将复数看作是平面上的向量。

实部相当于向量在x轴上的投影,虚部相当于向量在y轴上的投影。

因此,复数z1和z2的和z3就是相应向量的和,差z4就是相应向量的差。

二、复数的乘法复数的乘法可以通过分配律进行计算。

假设有两个复数z1 = a1 + b1i和z2 = a2 + b2i,它们的乘积z5 = z1 * z2可表示为:z5 = (a1a2 -b1b2) + (a1b2 + a2b1)i。

复数的乘法也可以通过几何图形解释。

在复平面上,两个复数相乘相当于它们对应的向量的模长相乘,且角度相加。

具体来说,复数z1 = |z1| * e^(iθ1)和z2 = |z2| * e^(iθ2)的乘积z5 = |z1| * |z2| * e^(i(θ1+θ2))。

三、复数的除法复数的除法可以通过乘以共轭数的倒数来实现。

假设有两个复数z1 = a1 + b1i和z2 = a2 + b2i,它们的商z6 = z1 / z2可表示为:z6 = (a1a2 + b1b2) / (a2^2 + b2^2) + ((a2b1 - a1b2) / (a2^2 + b2^2)) * i。

复数的除法也可以通过几何图形解释。

复数知识点总结-高三数学一轮复习

复数知识点总结-高三数学一轮复习

知识点总结3 复数一.复数的相关概念及运算法则1.虚数单位:i ,规定i 2=−1;复数的代数形式:z =a +b i(a ,b ∈R ),a 叫实部,b 叫虚部2.复数z =a +b i(a ,b ∈R )的分类① z 是实数⇔b =0;② z 是虚数⇔b ≠0;③ z 是纯虚数⇔a =0且b ≠0.3.共轭复数:复数z =a +b i(a ,b ∈R )的共轭复数z =a -b i.4.复数的模:复数z =a +b i(a ,b ∈R )的模|z |=|a +bi |=√a 2+b 2.5.复数相等的充要条件:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).特别地,a +b i =0⇔a =0且b =0(a ,b ∈R ).6.复数的运算法则加减法:(a +b i)±(c +d i)=(a ±c )+(b ±d )i ;乘法:(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ;除法:(a +b i)÷(c +d i)=22ac bd c d +++22bc-a d c d +i(c +d i ≠0).(,,,)a b c d R ∈其中 [来源:] 二.复数的几何意义1.复数(,)z a bi a b R =+∈与复平面上的点(,)Z a b 一一对应,2.复数(,)z a bi a b R =+∈对应平面向量OZ ;3.复平面内实轴上的点表示实数,除原点外虚轴上的点表示虚数,各象限内的点都表示复数.4.复数(,)z a bi a b R =+∈的模||z 表示复平面内的点(,)z a b 到原点的距离.三.复数的几个常见结论1.(1±i)2=±2i.2.11i i +-=i ,11i i-+=-i. 3.虚数单位的周期T =4 即:i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈Z ).4.z ∙z ̅=|z |2=a 2+b 2;。

高考数学一轮总复习复数的运算与复数方程的解法与复数函数的性质

高考数学一轮总复习复数的运算与复数方程的解法与复数函数的性质

高考数学一轮总复习复数的运算与复数方程的解法与复数函数的性质复数是数学中的一个重要概念,它包括实部和虚部。

在高考数学中,复数的运算、复数方程的解法以及复数函数的性质都是经常出现的考点。

本文将对这三个内容进行详细的讲解。

一、复数的运算复数的运算主要包括加减法、乘法和除法。

复数的加减法就是将实部与实部相加减,虚部与虚部相加减。

例如,(2+3i)+(4+5i)=6+8i,(4-2i)-(3+5i)=1-7i。

复数的乘法是将实部与实部相乘然后减去虚部与虚部相乘。

例如,(2+3i)*(4+5i)=7+22i,(4-2i)*(3+5i)=26+10i。

复数的除法需要将分母有理化,将分子与分母乘以共轭复数,再进行简化。

例如,(2+3i)/(4+5i)=(23-2i)/41。

二、复数方程的解法复数方程是指方程中含有未知数的复数解的方程。

对于一元一次复数方程a+bi=0,解析解为x=-b/a。

对于一元二次复数方程ax^2+bx+c=0,可以使用求根公式进行求解。

其中,根的公式为x1,x2=(-b±√(b^2-4ac))/(2a)。

若b^2-4ac>0,则方程有两个不相等的实根;若b^2-4ac=0,则方程有两个相等的实根;若b^2-4ac<0,则方程有两个共轭复数根。

三、复数函数的性质复数函数是指函数自变量或者函数取值是复数的函数。

复数函数的性质主要包括奇偶性、周期性和双曲线。

对于函数f(x),若f(-x)=f(x),则称函数f(x)为偶函数;若f(-x)=-f(x),则称函数f(x)为奇函数。

对于周期性,复数函数f(x)的周期是指存在常数T>0,使得f(x+T)=f(x)成立。

对于双曲线,复数函数f(x)的双曲线是指将复平面看作坐标平面后,函数的图像在复平面上的表示为双曲线。

总结:高考数学中关于复数的运算、复数方程的解法以及复数函数的性质都是需要掌握的重要知识点。

掌握了复数的运算规则,能够灵活运用加减法、乘法和除法进行计算。

高考数学一轮总复习 专题30 复数的概念及运算 理

高考数学一轮总复习 专题30 复数的概念及运算 理
∴z=2-5 i+|2-i-2|=5(25+i)+1=3+i, 又实系数方程虚根成对出现即 3-i 是另一个根, ∴z+-z =6,z-z =10, ∴所求的一个一元二次方程可以是 x2-6x+10=0.
〔备选题〕例5设关于 x 的方程是 x2-(tan θ+i)x -(2+i)=0.
(1)若方程有实数根,求锐角 θ 和实数根; π
.
【解析】(1)∵z=zz212=22(1-1+3ii)2=45(-3+i), ∴z=zz221在复平面上对应的点位于第二象限. (2)设 z=ai(a≠0),则有(2-i)·ai=4-2bi,即 a+2ai
=4-2bi,即 a=4,2a=-2b,解得 b=-4. 故选 C.
(3)
z1

z2

3 a+5
A.-2
B.2
C.-4
D.4
(3)复数 z1=a+3 5+(10-a2)i,z2=1-2 a+(2a-5)i,
若 z1+z2 是实数,则实数 a 的值为__3__. (4)复数 z1=3+4i,z2=0,z3=c+(2c-6)i 在复
平面内对应的点分别为 A、B、C,若∠BAC 是钝角,
则实数 c 的取值范围为 4119,9∪(9,+∞)
所以m2 =1 且m2 =n,解得 m=2,n=1,
所以 m+ni=2+i,故选 C.
(3)∵(1+ai)2=-1+bi,∴1-a2+2ai=-1+bi,
∴21a-=ab2=,-1,∴ab==2
2,2 或ab==--2
2, 2,
∴|a+bi|= a2+b2= 2+8= 10.
(4)①|z1×z22|=|z1||z22|=|z1||z2|2=8. ②z1×z22是虚部为正数的纯虚数,∴z1×z22=8i, z22 = 38+i i=8i( 43-i)=2+2 3i.设复数 z2=a+bi(a, b∈R),∴a2-b2+2abi=2+2 3i, a22a-b=b22=23,,解之 得ab= =1 3,或ab= =- -1.3, ∴z2=±( 3+i).

2024届高考数学第一轮专项复习——复数的概念与运算 教学PPT课件

2024届高考数学第一轮专项复习——复数的概念与运算 教学PPT课件
(+i)(−i)
; =


2
+i
(+i)(−i)

1
1 2
1 2
+ 2
i( c + d i≠0),即 =

.
2
2
2
2





|2|
2
2 2
返回目录
(2) 复数加法的运算定律
复数的加法满足交换律、结合律,即对任意 z 1, z 2, z 3∈C,有 z 1+ z 2
( m ∈R,i是虚数单位).
(1) 若 z 为纯虚数,求实数 m 的值.
− − = ,
解:(1) 若 z 为纯虚数,则
解得 m =-1.所以实
− ≠ ,
数 m 的值为-1.
返回目录
(2) 当 m =2时,复数 (1+i)是关于 x 的方程2 x 2+ px + q =0的一
4. 复数是纯虚数的充要条件:① z = a + b i是纯虚数⇔ a =0且 b ≠0
( a , b ∈R);② z = a + b i是纯虚数⇔ z + =0( z ≠0);③ z = a
+ b i是纯虚数⇔ z 2<0.
5. 实系数一元二次方程 ax 2+ bx + c =0( a ≠0)的两个复数根互为共轭
= ,
− + = ,

解得
= .
− = ,
返回目录
总结提炼
与复数概念有关的问题主要考查以下几点
(1) 复数的实部与虚部;(2) 复数的分类;(3) 复数的共轭
复数.
返回目录
[对点训练]
若 z 1, z 2为复数,则“ z 1- z 2是纯虚数”是“ z 1, z 2互为共轭复数”的

高考数学一轮总复习复数与复数方程

高考数学一轮总复习复数与复数方程

高考数学一轮总复习复数与复数方程复数是数学中一个非常重要的概念,广泛应用于各个领域。

在高考数学中,复数与复数方程也是一个必考的内容。

本文将对高考数学一轮总复习的复数与复数方程进行详细的论述。

1. 复数的基本概念复数是由实部和虚部构成的数。

一般表示为z=a+bi,其中a和b 分别为实数,i为虚数单位,满足i^2=-1。

实部为a,虚部为bi。

复数集合由实数集合和虚数单位i组成,记作C。

2. 复数的表示形式复数可以用代数形式、三角形式和指数形式表示。

- 代数形式:z=a+bi,其中a和b为实数。

- 三角形式:z=r(cosθ+isinθ),其中r为模长,θ为辐角。

- 指数形式:z=re^(iθ),其中e为自然对数的底。

3. 复数的运算法则复数的加法、减法、乘法和除法具有相应的运算法则。

- 加法和减法:分别将实部和虚部相加或相减。

- 乘法:将实部相乘后减去虚部相乘的结果。

- 除法:将实部和虚部同时除以一个复数的模长。

4. 复数方程的求解方法复数方程是指方程中含有复数的未知数,并且方程的解也是复数。

对于一元一次复数方程,可通过将方程分为实部和虚部的部分来求解。

对于一元二次复数方程,可通过配方法和解二次方程的方法来求解。

5. 复数的图形表示复数可以在平面直角坐标系上表示为一个点,该点的坐标为复数的实部和虚部。

复数的模长表示该点到坐标原点的距离,辐角表示点与正实轴之间的角度。

复数的图形表示有助于理解复数的性质和进行复数运算。

6. 复数在实际问题中的应用复数在实际问题中有广泛的应用,例如在交流电路、振动问题、信号处理等领域。

通过将实际问题转化为复数形式,可以简化问题的计算和分析过程,提高问题的解决效率。

综上所述,复数与复数方程是高考数学中的重要内容之一。

掌握了复数的基本概念、表示形式、运算法则和求解方法,能够理解复数的图形表示和在实际问题中的应用。

希望本文对你的复习有所帮助,祝你在高考数学中取得优异的成绩!。

复数几何意义及运算知识点讲解+例题讲解(含解析)

复数几何意义及运算知识点讲解+例题讲解(含解析)

复数几何意义及运算一、知识梳理1.复数的有关概念2.复数的几何意义复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即(1)复数z=a+b i复平面内的点Z(a,b)(a,b∈R).(2)复数z=a+b i(a,b∈R)平面向量OZ→.3.复数的运算设z1=a+b i,z2=c+d i(a,b,c,d∈R),则(1)加法:z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i;(2)减法:z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+b i)·(c+d i)=(ac-bd)+(ad+bc)i;(4)除法:z1z2=a+b ic+d i=(a+b i)(c-d i)(c+d i)(c-d i)=ac +bd +(bc -ad )i c 2+d 2(c +d i ≠0).小结:1.i 的乘方具有周期性i n=⎩⎨⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系 z ·z -=|z |2=|z -|2. 3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )解析 (1)虚部为b ;(2)虚数不可以比较大小. 答案 (1)× (2)× (3)√ (4)√2.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1B.2C.1或2D.-1解析 依题意,有⎩⎨⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.答案 B3.复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i解析 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i. 答案 C4.(2017·全国Ⅱ卷)3+i 1+i =( )A.1+2iB.1-2iC.2+iD.2-i解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 答案 D5.(2018·北京卷)在复平面内,复数11-i的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.答案 D6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 解析 ∵z =-1+i ,则z 2=-2i ,∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 答案 -1考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( ) A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( ) A.2-i B.2+i C.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i为纯虚数,则实数a 的值为( ) A.1B.0C.-12D.-1解析 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i 1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 答案 (1)D (2)D (3)D【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i(2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1解析 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B. (2)∵1-i =2+a i1+i,∴2+a i =(1-i)(1+i)=2, 解得a =0.故选C. 答案 (1)B (2)C考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i对应的点关于实轴对称,则z =( ) A.1+i B.-1-i C.-1+iD.1-i解析 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D. 答案 (1)D (2)D【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ→对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i解析 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D.答案 (1)D (2)D考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D.2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 解析 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2 =i 6+6+2i +3i -65=-1+i.答案 (1)D (2)C (3)C (4)-1+i【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i 5B.2+i 5C.1-2i 5D.1+2i 5(3)设z =1+i(i 是虚数单位),则z 2-2z =( ) A.1+3i B.1-3i C.-1+3iD.-1-3i解析 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z =2i -(1-i)=-1+3i.故选C.答案 (1)D (2)D (3)C三、课后练习1.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i(i 是虚数单位),则b =( )A.-2B.-1C.1D.2解析 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i13,a ∈R ,所以6+3b13=0⇒b =-2,故选A. 答案 A2.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析 由复数z =(x 2-4)+(x +2)i 为纯虚数, 得⎩⎨⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B. 答案 B3.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2解析 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i2=i ,1-i 1+i =-i ,∴⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.答案 B4.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85 C.|z |=3D.z 在复平面内对应的点在第一象限 解析 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5, ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D. 答案 D。

复数基础知识及其运算规律

复数基础知识及其运算规律

复数基础知识及其运算规律一、复数的概念1.复数的定义:复数是由实数和虚数构成的数,一般形式为a+bi,其中a和b分别为实数,i为虚数单位,满足i^2=-1。

2.复数的分类:a)纯虚数:实部为0的复数,如i、-i等;b)实数:虚部为0的复数,如2、-3等;c)混合数:实部和虚部都不为0的复数,如1+2i、-3-4i等。

二、复数的表示方法1.代数表示法:用a+bi的形式表示复数;2.极坐标表示法:用r(cosθ+isinθ)的形式表示复数,其中r为模长,θ为辐角。

三、复数的运算规律1.加减法:a)(a+bi) + (c+di) = (a+c) + (b+d)i;b)(a+bi) - (c+di) = (a-c) + (b-d)i。

c)(a+bi)(c+di) = (ac-bd) + (ad+bc)i;d)特殊情形:两个纯虚数相乘,结果为实数;e)单位根的乘法:i^k,其中k为整数。

f)(a+bi)/(c+di) = [(ac+bd)/(c2+d2)] + [(bc-ad)/(c2+d2)]i。

g)(a+bi)^2 = (a2-b2) + 2abi;h)(a+bi)3、(a+bi)4等,可以利用乘方公式进行展开。

2.共轭复数:a)若复数为a+bi,则它的共轭复数为a-bi;b)共轭复数具有以下性质:两数相加为实数,两数相乘为实数。

四、复数的性质1.模长:表示复数在复平面上的长度,公式为|a+bi| = √(a2+b2);2.辐角:表示复数在复平面上与实轴的夹角,公式为θ = arctan(b/a),其中a≠0;3.复数的平方等于1的解:i、-1、1+i、1-i等;4.复数的平方等于-1的解:i、-i等;5.复数的平方等于k(k为非零实数)的解:±√k、±i√k等。

五、复数在实际应用中的例子1.信号处理:在通信系统中,信号往往可以表示为复数形式,如调制解调器中的正弦波信号;2.物理学:在电磁学、量子力学等领域,复数用于描述物理量,如电流、电压、波函数等;3.工程学:在电子工程、控制理论等领域,复数用于分析电路、系统稳定性等。

新高考数学一轮复习考点知识专题讲解与练习 22 复数

新高考数学一轮复习考点知识专题讲解与练习 22 复数

新高考数学一轮复习考点知识专题讲解与练习考点知识总结22复数高考概览高考在本考点的常考题型为选择题,分值为5分,低难度考纲研读1.理解复数的基本概念2.理解复数相等的充要条件3.了解复数的代数表示法及其几何意义4.会进行复数代数形式的四则运算5.了解复数代数形式的加、减运算的几何意义一、基础小题1.(-1+i)(2i+1)=()A.1-i B.1+i C.-3-i D.-3+i答案C解析由题意,得(-1+i)(2i+1)=-2i-1-2+i=-3-i.故选C.2.复数z=21+i(i为虚数单位)在复平面上对应的点的坐标为()A.(1,1) B.(1,-1)C.(-1,1) D.(-1,-1)答案B解析 z =21+i =2(1-i )(1+i )(1-i )=1-i ,故复数z =21+i 在复平面内对应的点的坐标是(1,-1).故选B.3.已知复数z =(1+a i)(1-2i)(a ∈R )为纯虚数,则实数a =( ) A .2 B .-2 C.12 D .-12 答案 D解析 z =(1+2a )+(a -2)i ,由已知得1+2a =0且a -2≠0,解得a =-12.故选D. 4.若复数z =1-i ,则⎪⎪⎪⎪⎪⎪z 1-z =( )A .1 B. 2 C .2 2 D .4 答案 B解析 由z =1-i ,得z 1-z =1-i i =-1-i ,则⎪⎪⎪⎪⎪⎪z 1-z =|-1-i|= 2.5.已知复数z =i +i 2022,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 ∵i +i 2022=-1+i ,∴i +i 2022在复平面内对应的点的坐标为(-1,1),该点在第二象限.故选B.6.若复数z =i1+i (i 为虚数单位),则z z -=( )A.12i B .-14 C.14 D.12解析 解法一:∵z =i 1+i =i (1-i )2=1+i 2=12+12i ,∴z -=12-12i ,∴z z -=⎝ ⎛⎭⎪⎫12+12i ⎝ ⎛⎭⎪⎫12-12i =12.故选D. 解法二:∵z =i 1+i ,∴|z |=1|1+i|=22,∴z z -=|z |2=12.故选D.7. 如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,若z 1=zz 2,则z 的共轭复数z -=( )A.12+32iB.12-32I C .-12+32i D .-12-32i 答案 A解析 由题图可知z 1=1+2i ,z 2=-1+i ,所以z =z 1z 2=1+2i-1+i =(1+2i )(-1-i )(-1+i )(-1-i )=1-3i2,所以z -=12+32i.故选A.8.设复数z 满足|z -1+i|=1,z 在复平面内对应的点为P (x ,y ),则点P 的轨迹方程为( )A .(x +1)2+y 2=1B .(x -1)2+y 2=1C .x 2+(y -1)2=1D .(x -1)2+(y +1)2=1解析 由题意得z =x +y i ,则由|z -1+i|=1得|(x -1)+(y +1)i|=1,即(x -1)2+(y +1)2=1,则(x -1)2+(y +1)2=1.故选D.9.(多选)设z 1,z 2,z 3为复数,z 1≠0,下列命题中正确的是( ) A .若|z 2|=|z 3|,则z 2=±z 3 B .若z 1z 2=z 1z 3,则z 2=z 3 C .若z -2=z 3,则|z 1z 2|=|z 1z 3| D .若z 1z 2=|z 1|2,则z 1=z 2 答案 BC解析 由复数模的概念可知,|z 2|=|z 3|不能得到z 2=±z 3,例如z 2=1+i ,z 3=1-i ,A 错误;由z 1z 2=z 1z 3可得z 1(z 2-z 3)=0,因为z 1≠0,所以z 2-z 3=0,即z 2=z 3,B 正确;因为|z 1z 2|=|z 1||z 2|,|z 1z 3|=|z 1||z 3|,而z -2=z 3,所以|z -2|=|z 3|=|z 2|,所以|z 1z 2|=|z 1z 3|,C 正确;取z 1=1+i ,z 2=1-i ,显然满足z 1z 2=|z 1|2,但z 1≠z 2,D 错误.故选BC.10.(多选)欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.下列结论正确的是( )答案 ACD⎝ ⎛⎭⎪⎫22,22位于第一象限,正确;对于D ,e n πi =cos n π+isin n π,当n 为奇数时,e n πi=-1,|e n πi |=1,当n 为偶数时,e n πi =1,|e n πi |=1,故e n πi 的模为1,正确.故选ACD.二、高考小题11.(2022·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .2+i B .2-i C .1-i D .1+i 答案 D解析 由题意可得,z =21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i.故选D. 12.(2022·新高考Ⅱ卷)复数2-i1-3i 在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 A解析 2-i 1-3i=(2-i )(1+3i )10=5+5i 10=1+i2,所以该复数在复平面内对应的点为⎝ ⎛⎭⎪⎫12,12,该点在第一象限.故选A. 13.(2022·新高考Ⅰ卷)已知z =2-i ,则z (z -+i)=( ) A .6-2i B .4-2i C .6+2i D .4+2i 答案 C解析 z (z -+i)=(2-i)(2+i +i)=(2-i)(2+2i)=4+4i -2i -2i 2=6+2i.故选C. 14.(2022·浙江高考)已知a ∈R ,(1+a i)i =3+i(i 为虚数单位),则a =( ) A .-1 B .1 C .-3 D .3 答案 C解析 解法一:因为(1+a i)i =-a +i =3+i ,所以-a =3,解得a =-3.故选C. 解法二:因为(1+a i)i =3+i ,所以1+a i =3+ii=1-3i ,所以a =-3.故选C. 15.(2022·全国甲卷)已知(1-i)2z =3+2i ,则z =( ) A .-1-32i B .-1+32i C .-32+i D .-32-i 答案 B解析 由(1-i)2z =3+2i ,得z =3+2i (1-i )2=3+2i -2i=3i -22=-1+32i.故选B. 16.(2022·全国乙卷)设2(z +z -)+3(z -z -)=4+6i ,则z =( ) A .1-2i B .1+2i C .1+i D .1-i答案 C解析 设z =a +b i(a ,b ∈R ),则z -=a -b i,2(z +z -)+3(z -z -)=4a +6b i =4+6i ,所以a =1,b =1,所以z =1+i.17.(2022·全国Ⅰ卷)若z =1+i ,则|z 2-2z |=( ) A .0 B .1 C. 2 D .2 答案 D解析 z 2=(1+i)2=2i ,则z 2-2z =2i -2(1+i)=-2,故|z 2-2z |=|-2|=2.故选D. 18.(2022·全国Ⅲ卷)复数11-3i 的虚部是( )A .-310B .-110 C.110 D.310 答案 D解析 因为11-3i =1+3i (1-3i )(1+3i )=110+310i ,所以复数11-3i的虚部为310.故选D.19.(2022·天津高考)i 是虚数单位,复数9+2i2+i=________. 答案 4-i 解析9+2i 2+i =(9+2i )(2-i )(2+i )(2-i )=20-5i5=4-i. 20.(2022·全国Ⅱ卷)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.答案 23解析 解法一:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,∵|z 1|=|z 2|=2,∴a 2+b 2=4,c 2+d 2=4,∵z 1+z 2=a +b i +c +d i =3+i ,∴a +c =3,b +d =1,∴(a +c )2+(b +d )2=a 2+c 2+2ac +b 2+d 2+2bd =4,∴2ac +2bd =-4,∵z 1-z 2=a +b i -(c +d i)=a -c +(b -d )i ,∴|z 1-z 2|=(a -c )2+(b -d )2 = a 2+c 2-2ac +b 2+d 2-2bd =a 2+b 2+c 2+d 2-(2ac +2bd )=4+4-(-4)=2 3.解法二:∵|z 1|=|z 2|=2,可设z 1=2cos θ+2sin θ·i ,z 2=2cos α+2sin α·i ,∴z 1+z 2=2(cos θ+cos α)+2(sin θ+sin α)i =3+i ,∴⎩⎨⎧2(cos θ+cos α)=3,2(sin θ+sin α)=1.两式平方作和,得4(2+2cos θcos α+2sin θsin α)=4,化简得cos θcos α+sin θsin α=-12.∴|z 1-z 2|=|2(cos θ-cos α)+2(sin θ-sin α)·i| =4(cos θ-cos α)2+4(sin θ-sin α)2=8-8(cos θcos α+sin θsin α)=8+4=2 3. 三、模拟小题21.(2022·山西五市联考)已知复数z 满足2z(1+i )2=1-i ,其中i 为虚数单位,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 由题意得z =(1-i )(1+i )22=(1-i)i =1+i ,即z 在复平面内所对应的点为(1,1),在第一象限.故选A.22.(2022·福州三中高三质量检测二)已知复数z =(1+2i)·i 2022,则z -=( ) A .-2-i B .-2+I C .2-i D .2+i 答案 A解析 z =(1+2i)·i2022=(1+2i)i =-2+i ,所以z -=-2-i.故选A.23.(2022·山东青岛自主检测)若复数z 1,z 2在复平面内对应的点关于虚轴对称,且z 1=2-i ,则复数z 1z 2=( )A .-1B .1C .-35+45i D.35-45i 答案 C解析 依题意可得z 2=-2-i ,所以z 1z 2=2-i -2-i =(2-i )(-2+i )5=-35+45i.故选C. 24.(2022·广东茂名五校第三次联合考试)已知(a +b i)(1-i)=2+i(a ,b ∈R ),则ab =( )A .-34B .-32 C.34 D.32 答案 C解析 因为(a +b i)(1-i)=(a +b )+(b -a )i ,所以⎩⎨⎧a +b =2,b -a =1,解得a =12,b =32,从而ab =34.故选C.25.(多选)(2022·湖北高三月考)设z 1,z 2是复数,则( ) A.z 1-z 2=z -1-z -2 B .若z 1z 2∈R ,则z 1=z -2 C .若|z 1-z 2|=0,则z -1=z -2D .若z 21+z 22=0,则z 1=z 2=0答案 AC解析 设z 1=a +b i ,z 2=x +y i ,a ,b ,x ,y ∈R ,z 1-z 2=(a -x )+(b -y )i =(a -x )-(b -y )i =a -b i -(x -y i)=z -1-z -2,A 成立;|z 1-z 2|=|(a -x )+(b -y )i|=0,则(a -x )2+(b -y )2=0,所以a =x ,b =y ,从而z 1=z 2,所以z -1=z -2,C 成立;对于B ,取z 1=i ,z 2=2i ,满足z 1z 2∈R ,但结论不成立;对于D ,取z 1=i ,z 2=1,满足z 21+z 22=0,但结论不成立.故选AC.26.(多选)(2022·江苏淮安高三入学考试)已知复数z =(m 2-1)+(m -3)(m -1)i(m ∈R ),则下列说法正确的是( )A .若m =0,则共轭复数z -=1-3i B .若复数z =2,则m =3 C .若复数z 为纯虚数,则m =±111 / 11 D .若m =0,则4+2z +z 2=0答案 BD解析 对于A ,m =0时,z =-1+3i ,则z -=-1-3i ,故A 错误;对于B ,若复数z =2,则满足⎩⎨⎧ m 2-1=2,(m -3)(m -1)=0,解得m =3,故B 正确;对于C ,若复数z 为纯虚数,则满足⎩⎨⎧m 2-1=0,(m -3)(m -1)≠0,解得m =-1,故C 错误;对于D ,若m =0,则z =-1+3i ,4+2z +z 2=4+2(-1+3i)+(-1+3i)2=0,故D 正确.故选BD.。

复数运算公式大全及性质

复数运算公式大全及性质

复数运算公式大全及性质
复数的运算公式包括加法运算、乘法运算、除法运算等等,接下来分享有关复数运算公式的具体内容。

供参考。

复数运算公式
(1)加法运算:设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。

(2)乘法运算:设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。

其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。

两个复数的积仍然是一个复数。

(3)除法运算:复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。

复数的性质
1.共轭复数所对应的点关于实轴对称。

2.两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。

3.在复平面上,表示两个共轭复数的点关于X轴对称。

复数的运算律
加法交换律:z1+z2=z2+z1
乘法交换律:z1×z2=z2×z1
加法结合律:(z1+z2)+z3=z1+(z2+z3)
乘法结合律:(z1×z2)×z3=z1×(z2×z3)
分配律:z1×(z2+z3)=z1×z2+z1×z3。

复数的基本概念和运算

复数的基本概念和运算

• 向量表示
–模
| z | r x2 y2
– 幅角 q Argz arg z 2k
q0 arg z, q0
z=0时辐角不确定
y
q
O
• 三角表示: z r(cosq i sinq )
• 指数表示: z reiq eiq cosq i sinq
z x iy ( x,y )
复平面内,下列各式连续:
w zn
多项 式:w= P(z) a0 a1z L an zn
有理式:w= P(z) 在Q(z) 0 Q(z)
9
3、导数 导数定义形式与实变相同,求导法则与实变相同。
w
f (z)
定义在区域D内,z0
D,如果
lim
z 0
f (z0 z) z
f (z0 )
存在,称 f (z)在z0 可导
x
P
z=x+iy x
2
y
辐角主值公式: arc tg y
2
x2
2
1
q0
x
3
4
arc
tg
y x
当 x 0, y 0 (1,4象限) 0
arc
tg
y x
当 x 0, y ( 0 2象限)
q0
arg
z
arc tg
y x
当 x 0, y ( 0 3象限)
2
当 x 0, y 0(y轴上) 0
3.乘幂与幂函数:ab、zb
乘幂 ab ebLna.
由于 Lna ln a i(arg a 2k ) 是多值的, 因而ab 也是多值的.
(1) b 为整数:
a e e e e b bLna b[ln a i(arga2k )]

根据高中数学复数定理总结:复数的运算与表示方式

根据高中数学复数定理总结:复数的运算与表示方式

根据高中数学复数定理总结:复数的运算与表示方式1. 复数的定义与表示方式复数是由实部和虚部组成的数。

通常情况下,可以用 a+bi 的形式来表示一个复数,其中 a 是实部,b 是虚部,i 是虚数单位,满足 i^2 = -1。

例如,复数 z 可以表示为 z = a + bi。

2. 复数的运算规则2.1 复数的加法与减法复数的加法和减法可以分别通过实部和虚部的运算来进行。

具体规则如下:- 加法:将实部和虚部分别相加。

- 减法:将实部和虚部分别相减。

例如,给定两个复数 z1 = a + bi 和 z2 = c + di,它们的和为 z1 + z2 = (a + c) + (b + d)i,差为 z1 - z2 = (a - c) + (b - d)i。

2.2 复数的乘法与除法复数的乘法和除法可以通过展开公式来进行。

具体规则如下:- 乘法:实部相乘减去虚部相乘,并将实部与虚部相乘后再相加。

- 除法:将被除数与除数的共轭复数相乘,再除以除数的模的平方。

例如,给定两个复数 z1 = a + bi 和 z2 = c + di,它们的乘积为z1 \* z2 = (ac - bd) + (ad + bc)i,商为 z1 / z2 = [(ac + bd) / (c^2 + d^2)] + [(bc - ad) / (c^2 + d^2)]i。

3. 复数的共轭与模3.1 复数的共轭一个复数的共轭是指保持实部不变,虚部取相反数的复数。

共轭复数可以通过改变虚部的符号来得到。

例如,给定一个复数 z = a + bi,则它的共轭为 z* = a - bi。

3.2 复数的模一个复数的模是指将实部和虚部的平方和的平方根。

模可以表示复数到原点的距离。

例如,给定一个复数 z = a + bi,则它的模为|z| = √(a^2 + b^2)。

总结复数的运算与表示方式包括复数的加法、减法、乘法和除法。

复数的加法和减法可以通过实部和虚部运算得到,乘法和除法可以通过展开公式或共轭复数得到。

东北师大附中高考数学第一轮复习 复数的基本概念与运算(文理)

东北师大附中高考数学第一轮复习 复数的基本概念与运算(文理)

东北师大附中高考数学第一轮复习 复数的基本概念与运算(文理)一、知识梳理:(阅读选修1-2,50页-54页,选修2-2,101页-116页) 1、复数的有关概念 (1)复数的概念形如a+bi(a,b ∈R)的数叫做复数,其中a,b 分别是它的实部和虚部。

若b=0,则a+bi 为实数,若b ≠0,则a+bi 为虚数,若a=0且b ≠0,则a+bi 为纯虚数。

(2)复数相等:a+bi=c+di ⇔a=c 且b=d(a,b,c,d ∈R).(3)共轭复数:a+bi 与c+di 共轭⇔a=c ,b=-d(a,b,c,d ∈R).。

(4)复平面建立直角坐标系来表示复数的平面,叫做复平面。

X 轴叫做实轴,y 轴叫做虚轴。

实轴上的点表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。

(5)复数的模 向量的模r 叫做复数z=a+bi 的模,记叙|z|或|a+bi|,即|z|=|a+bi|=22a b +。

2、复数的几何意义(1)复数z=a+bi ←−−−→一一对应复平面内的点Z (a,b )(a,b ∈R); (2)复数z=a+bi ←−−−→一一对应平面向量(a,b ∈R )。

3、复数的运算(1)复数的加、减、乘、除运算法则 设z 1=a+bi,z 2=c+di(a,b,c,d ∈R),则①加法:z 1+ z 2=(a+bi )+(c+di )=(a+c)+(b+d)i;②减法:z 1- z 2=(a+bi )-(c+di )=(a-c)+(b-d)i; ③乘法:z 1· z 2=( a+bi)·(c+di)=(ac-bd)+(ad+bc)i; ④除法:1222()()()()(0)()()z a bi a bi c di ac bd bc ad i c di z c di c di c di c d ++-++-===+≠++-+ (2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何1z 、2z 、3z ∈C ,有1z +2z =2z +1z ,(1z +2z )+3z =1z +(2z +3z )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数的基本运算
高考频度:★★★★★难易程度:★☆☆☆☆
典例在线
(2017年高考浙江卷)已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b +=,ab =.
【参考答案】5,2
【试题解析】由题意可得222i 34i a b ab -+=+,则2232a b ab ⎧-=⎨=⎩,解得2241a b ⎧=⎨=⎩
,则225,2a b ab +==. 【解题必备】(1)本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)()()i,(,,,)a b c d ac bd ad bc a b c d ++=-++∈R .其次要熟
悉复数相关基本概念,如复数i(,)a b a b +∈R 的实部为a 、虚部为b a ,b )、共轭为i a b -等.
(2)复数的加法、减法、乘法运算可以类比多项式运算;复数除法运算的关键是分子、分母同乘以分母的共轭复数转化为复数的乘法运算,注意要把i 的幂化成最简形式.
(3)记住以下结论,可提高运算速度:①2(i i )12±=±;②1i i 1i +=-;③1i i 1i -=-+;④i i i a b b a +=-;⑤4i 1n =,41i i n +=,42i 1n +=-,43i i n +=-,即i 的整数次幂的运算具有周期性,周期为4. 学霸推荐
1.已知复数z 满足(34i)25z +=,则z =
A .34i -
B .34i +
C .34i --
D .34i -+
2,则复数z 的共轭复数是 A .1i +
B .1i -
C D 3.下面是关于复数2i z =-的四个命题:1p :5z =;2p :234i z =-;3p :z 的共轭复数为2i -+;
4p :z 的虚部为1-,其中真命题为
A .2p ,3p
B .1p ,2p
C .2p ,4p
D .3p ,4p
1.【答案】A 【解析】由题意2525(34i)25(34i)34i 3+4i (3+4i)(34i)25
z --=
===--,故选A . 2.【答案】D
3.【答案】C
1-,所以24,p p 是真命题,则应选C.。

相关文档
最新文档