高中物理必修3物理 全册全单元精选试卷练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理必修3物理 全册全单元精选试卷练习(Word 版 含答案)
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.如图所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =4.0×10-12C ,现引入第三个同种点电荷C ,
(1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置?
(2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置? 【答案】(1)见解析(2)1216
109
C -⨯ ,为负电荷 【解析】 【分析】 【详解】
(1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ AC BC F F = ∴ 1323
22
()Q Q Q Q k
k x L x =- ∴
1222
()Q Q x L x =- ∴ 4(L -x)2=x 2 ∴ x =0.2m
即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷.
(2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外.而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足;
② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡.
③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; 由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷.
设电荷C 放在距A 右侧x 处,电荷量为Q 3
对C :1323
22(0.3)Q Q Q Q k
k x x =- ∴ x =0.2m 对B :3212
22
()Q Q Q Q k k L L x =- ∴ 12316
109
Q C -=
⨯,为负电荷. 【点睛】
此题是库仑定律与力学问题的结合题;要知道如果只是让电荷C 处于平衡,只需在这点的场强为零即可,电性不限;三个电荷的平衡问题,遵循:“两同加一异”、“两大加一小”的原则.
2.如图所示,在光滑绝缘水平面上B 点的正上方O 处固定一个质点,在水平面上的A 点放另一个质点,两个质点的质量均为m ,带电量均为+Q 。
C 为AB 直线上的另一点(O 、A 、B 、C 位于同一竖直平面上),AO 间的距离为L ,AB 和BC 间的距离均为2
L
,在空间加一个水平方向的匀强电场后A 处的质点处于静止。
试问: (1)该匀强电场的场强多大?其方向如何?
(2)给A 处的质点一个指向C 点的初速度,该质点到达B 点时所受的电场力多大? (3)若初速度大小为v 0,质点到达C 点时的加速度和速度分别多大?
【答案】(1)22kQ L ,方向由A 指向C ;(2)22
736kQ L ;(3)22kQ mL 2
2
0kQ v mL
+【解析】 【分析】
(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,根据平衡条件求解。
(2)质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,根据力的合成求解 (3)根据牛顿第二定律求出加速度,根据动能定理求出C 点时速度。
【详解】
(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,
AO 间的库仑力为2
2Q F K L
=;
根据平衡条件得:sin F EQ θ=
2
sin 2F KQ
E Q L
θ=
= 方向由A 指向C
(2)该质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,
库仑力为2
2'(sin60)
Q F K L =; 水平向右的电场力F EQ "=
B 点时所受的电场力222
222
73()[](sin60)6kQ kQ F EQ L L
=+= (3)质点到达C 点时进行受力分析,根据牛顿第二定律得
2
222
sin Q K EQ F KQ L a m m mL θ+===
合. 从A 点到C 点根据动能定理得
22
1122
o EQL mv mv =
-; 22
kQ v mL
υ=+ 【点睛】
本题的关键要耐心细致地分析物体的运动过程,对物体进行受力分析,运用动能定理、牛顿第二定律进行处理。
3.如图所示,在光滑绝缘水平面上,质量为m 的均匀绝缘棒AB 长为L 、带有正电,电量为Q 且均匀分布.在水平面上O 点右侧有匀强电场,场强大小为E ,其方向为水平向左,BO 距离为x 0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:
(1)棒的B 端进入电场L /8时的加速度大小和方向; (2)棒在运动过程中的最大动能.
(3)棒的最大电势能.(设O 点处电势为零) 【答案】(1)/8qE m ,向右(2)0()48qE L
x + (3)0(2)6
qE x L + 【解析】 【分析】 【详解】
(1)根据牛顿第二定律,得
48QE L QE ma L -⋅=解得 8QE
a m
=,方向向右. (2)设当棒进入电场x 时,其动能达到最大,则此时棒受力平衡,有
4QE QE x L ⋅= 解得1
4
x L = 由动能定理得:
()00044()()4
2442448
K o QE QE
L
QE
QE L QE L E W x x x x x ==
==+
⨯∑+-+-+⨯
(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场, 则有:()0
042
QE QE
x L L +-=, 得 x 0=L ;()42
QE QEL
L L ε+=
= 当x 0<L ,棒不能全部进入电场,设进入电场x
根据动能定理得()00 004
2
xQE
QE L x x x +
+-
-=
解之得:x
则0 (4F QE W x ε+==
当x 0>L ,棒能全部进入电场,设进入电场x ()()0
042
QE QE
x x L QE x L +---= 得:023
x L
x += 则()()000242 4436
QE x L x L QE QE x x ε+++⋅=
==
4.如图所示,在沿水平方向的匀强电场中,有一长度l =0. 5m 的绝缘轻绳上端固定在O
点,下端系一质量21010m .-=⨯kg 、带电量8
2.010q -=⨯C 的小球(小球的大小可以忽
略)在位置B 点处于静止状态,此时轻绳与竖直方向的夹角α=37°,空气阻力不计,sin37°=0. 6,cos37°=0. 8,g =10m/s 2. (1)求该电场场强大小;
(2)在始终垂直于轻绳的外力作用下将小球从B 位置缓慢拉动到细绳竖直位置的A 点,
求外力对带电小球做的功;
(3)过B 点做一等势面交电场线于C 点(C 点未画出),使轻绳与竖直方向的夹角增大少许(不超过5°),再由静止释放,求小球从C 点第一次运动到B 点的时间,并写出分析求解过程.
【答案】(1) 63.7510E =⨯N/C (2)2
1.2510F W J -=⨯ (3)0.31t s =
【解析】 【详解】
(1)带电小球静止,受到合力等于零,电场力与重力的关系是:
tan Eq mg α=,即tan mg
E q
α=
代入数值计算得电场场强大小:63.7510/E N C =⨯
(2)小球在外力作用下从B 位置缓慢移动到A 位置过程中,根据动能定理有:
sin (cos )0F W Eql mg l l αα-+-=
所以sin tan (cos )F mg
W q mg l l q
ααα=
-- 代入数值解得电场场强大小:2
1.2510F W J -=⨯
(3)分析受力可知:小球在运动过程中,重力和电场力的合力为恒力,大小为
5
cos 4
mg F mg α=
= 类比研究单摆的方法可知,小球的运动与单摆类似,回复力由上述合力沿圆周切向的分力提供。
因为从C 到B 的角度θ很小,进一步可知回复力与相对平衡位置的位移大小成正比、方向相反,故小球的运动为简谐运动。
小球的运动可等效为在某个场强大小为5
4
g mg '=,方向与竖直方向成α角斜向右下的场中做简谐运动,其周期为
225/4
l l T g g =='故从C 到B 最短的时间1
0.10.314
t T s π=
==
5.一个质量m =30g ,带电量为-1.7×10-8C 的半径极小的小球,用丝线悬挂在某匀强的电场中,电场线水平.当小球静止时,测得悬线与竖直方向成30o ,求该电场的电场强的大小和方向?
【答案】7110/E N C =⨯,水平向右 【解析】 【分析】 【详解】
小球在电场中受重力、电场力、拉力三个力,合力为零,则知电场力的方向水平向左,而小球带负电,电场强度的方向与负电荷所受电场力方向相反,所以匀强电场场强方向水平向右.
由图,根据平衡条件得
tan30qE mg =︒
得
tan 30mg E q
︒
=
代入解得
7110/E N C =⨯
6.如图所示,AB 为固定在竖直平面内粗糙倾斜轨道,BC 为光滑水平轨道,CD 为固定在竖直平面内的光滑圆弧轨道,且AB 与BC 通过一小段光滑弧形轨道相连,BC 与弧CD 相切。
已知AB 长为L =10m ,倾角θ=37︒,BC 长s =4m ,CD 弧的半径为R =2m ,O 为其圆心,∠COD =143︒。
整个装置处在水平向左的匀强电场中,电场强度大小为E =1×103N/C 。
一质量为m =0.4kg 、电荷量为q =+3×10 -3C 的物体从A 点以初速度v A =15m/s 沿AB 轨道开始运动。
若物体与轨道AB 间的动摩擦因数为μ=0.2,sin 37︒=0.6,cos 37︒=0.8,g =10m/s 2,物体运动过程中电荷量不变。
求:
(1)物体在AB 轨道上运动时,重力和电场力的合力对物体所做的总功; (2)物体在C 点对轨道的压力大小为多少;
(3)用物理知识计算物体能否到达D 点,若能算出通过D 点的速度;若不能说明理由。
【答案】(1)W =0(2)27N(3)物体能到达D 点 【解析】 【详解】
(1)物体所受重力和电场力的合力大小为
222332()()(0.410)(31010)N 5N F mg qE -=+=⨯+⨯⨯=
设合力F 与竖直方向的夹角为α,则
3
tan 4
qE mg α=
= 即
37α︒=
所以物体在轨道AB 上运动时,重力和电场力的合力与轨道AB 垂直,对物体做的总功为W =0;
(2) 从A →B 过程,根据受力分析可知,物体下滑过程受到的滑动摩擦力为:
f =μF N =μ(m
g cos 37︒+qE sin 37︒)
代入数据解得:
f =1N
A →C 过程,由动能定理得:
221122
C A W fL qEs mv mv --=
- 可得:222
115m /s C v =
在C 点,由重力和轨道支持力的合力提供向心力,由牛顿第二定律得:
2C
mv N mg R
-= 代入数据解得:
N =27N
(3)重力和电场力的合力为:
222332()()(0.410)(31010)N 5N F mg qE -=+=⨯+⨯⨯=
方向与竖直方向成37︒斜向左下方,所以D 点即为圆周运动中的等效最高点,物体到达D 点的最小速度设为v D ,则:
2D
v F m R
=
解得:
5m /s D v =
要到达D 点,在C 点速度至少为v ,从C →D ,由动能定理得
2211(cos37)cos3722
D mg R R qER mv mv ︒︒-+-=
-
解得:
222115m /s v =
则知v =v C ,所以物体恰能到达D 点
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.如图所示,水平面上有相距02m L =的两物体A 和B ,滑块A 的质量为2m ,电荷量为+q ,B 是质量为m 的不带电的绝缘金属滑块.空间存在有水平向左的匀强电场,场强为
0.4mg
E q
=
.已知A 与水平面间的动摩擦因数10.1μ=,B 与水平面间的动摩擦因数20.4μ=,A 与B 的碰撞为弹性正碰,且总电荷量始终不变(g 取10m/s 2).试求:
(1)A 第一次与B 碰前的速度0v 的大小; (2)A 第二次与B 碰前的速度大小; (3)A 、B 停止运动时,B 的总位移x . 【答案】(1)2m/s (2)2
m/s 3
(3)2m 【解析】 【分析】 【详解】
(1)从A 开始运动到与B 碰撞过程,由动能定理:
2
01001222
EqL mgL mv μ-⋅=⋅
解得:v 0=2m/s
(2)AB 碰撞过程,由动量守恒和能量守恒可得:
01222mv mv mv =+
22201211122222
mv mv mv ⋅=⋅+ 解得:12m/s 3v =
28
m/s 3
v =(另一组解舍掉) 两物体碰撞后电量均分,均为q/2,则B 的加速度:
22
21
22m/s 2B E q mg
qE a g m m
μμ⋅-==-=- , A 的加速度:
111
220
24A E q mg
qE a g m m
μμ⋅-⋅==-= 即B 做匀减速运动,A 做匀速运动;A 第二次与B 碰前的速度大小为12
m/s 3
v =; (3)B 做减速运动直到停止的位移:
2
21216m 23
B v x a ==
AB 第二次碰撞时:
1122222mv mv mv =+
22211222111
22222
mv mv mv ⋅=⋅+ 解得:
12112m/s 39v v == ,2212488
m/s=m/s 393
v v ==
B 再次停止时的位移2222416m 23
B v x a =
= 同理可得,第三次碰撞时,
12132322mv mv mv =+
222121323111
22222
mv mv mv ⋅=⋅+ 可得131212m/s 327v v =
=,23123488
m/s m/s 3273
v v === B 第3次停止时的位移2223616
m 23
B v x a =
= 同理推理可得,第n 次碰撞,碰撞AB 的速度分别为:
11n-112m/s 33n n v v ==(),2n 1n-1)48m/s 33
n
v v ==(
B第n次停止时的位移:
2
2
n2
16
m
23
n
n
B
v
x
a
==
则A、B停止运动时,B的总位移
123
2462
2
++
16161616
m m+m+m
3333
1
=2(1-)m
3
n
n
n
x x x x x
=+⋅⋅⋅+
=+⋅⋅⋅+
当n取无穷大时, A、B停止运动时,B的总位移2m
x=.
8.如图,xOy为竖直面内的直角坐标系,y轴正向竖直向上,空间中存在平行于xOy所在平面的匀强电场。
质量为m的不带电小球A以一定的初动能从P(0,d)点沿平行x轴方向水平抛出,并通过Q(22d,0)点。
使A带上电量为+q的电荷,仍从P点以同样的初动能沿某一方向抛出,A通过N(2d,0)点时的动能是初动能的0.5倍;若使A带上电量为-
q的电荷,还从P点以同样的初动能沿另一方向抛出,A通过M(0,-
d)点时的动能是初动能的4倍。
重力加速度为g。
求:
(1)A不带电时,到达Q点的动能;
(2)P、N两点间的电势差;
(3)电场强度的大小和方向。
【答案】(1)3mgd;(2)
2mg
q
,方向沿y轴正方向。
【解析】
【详解】
(1)小球做平抛运动,故
2
1
2
d gt
=
22dυt
=
从P到Q,由动能定理
2
1
2
Q
k
mgd E mυ
=-
解得
3
Q
k
E mgd
=
(2
)小球带电后,从P 到N ,由动能定理
000.5PN k k mgd qU E E +=-
从P 到M 由动能定理可得
0024PM k k mgd qU E E -=-
由(1)中可知,
02k E mgd =
联立以上几式可得
1
2
PN PM U U = 故O 、N 两点电势相等,场强方向为y 轴正方向,场强大小为
2NP U mg
E d q
=
=
9.如图甲所示,真空中的电极K 连续不断地发出电子(电子的初速度可忽略不计),经电压为U 0的电场加速,加速电压U 0随时间t 变化的图像如图乙所示,每个电子通过加速电场的过程时间极短,可认为该过程加速电压不变.电子被加速后由小孔S 穿出沿两个彼此靠近且正对的水平金属板A 、B 间中轴线,从左边缘射入A 、B 两板间的偏转电场,A 、B 两板长均为L =0.020m ,两板之间距离d =0.050m ,A 板的电势比B 板电势高U ,A 、B 板右側边缘到竖直放置的荧光屏P (面积足够大)之间的距离b =0.10m ,荧光屏的中心点O 与A 、B 板的中心轴线在同一永平直线上,不计电子之间的相互作用力及其所受的重力。
求: (1)求电子进入偏转电场的初速度v 0(已知电子质量为m 、电量为e ,加速电压为U 0) (2)假设电子能射出偏转电场,从偏转电场右端射出时,它在垂直于两板方向的偏转位移y 为多少(用U 0、U 、L 、d 表示);
(3)要使电子都打不到荧光屏上,A 、B 两板间所加电压U 应满足什么条件; (4)当A 、B 板间所加电压U =50V 时,电子打在荧光屏上距离中心点O 多远的范围内。
【答案】(1)0
02eU v m =2)20
4UL y dU =;(3)所加电压U 应满足至少为100V ;
(4)0.025m ~0.05m 【解析】 【分析】 【详解】
(1)电子加速过程中,根据动能定理有
2001
2
eU mv =
解得初速度
0v =
(2)偏转过程中,水平方向做匀速直线运动,有
0v t L =
垂直AB 两板方向,做匀加速直线运动,有
U Ed =
eU ma =
212
y at =
由(1)问及以上几式,解得
2
4UL y dU =
(3)要使电子都打不到屏上,应满足U 0取最大值800V 时仍有y >0.5d ,代入(2)问结果,可得:
2
00222
44?0.548000.50.05V 100V 0.2
U dy U d d U L L ⨯⨯⨯=>== 所以为使电子都打不到屏上,A 、B 两板间所加电压U 至少为100V
(4)当A 、B 板间所加电压U′=50V 时,当电子恰好从A 板右边缘射出偏转电场时 其侧移最大
max 11
0.05m 0.025m 22
y d =
=⨯= 设电子通过电场最大的偏转角为θ,设电子打在屏上距中心点的最大距离为Y max ,则
tan y v at
v v θ=
=
max max y b
Y y υυ
=+
又
max 02
y
υy t +=
L υt =
联立解得
max max max 20.05m b
Y y y L
=+
=
由第(2)问中的
2
4
UL
y
dU
=可知,在其它条件不变的情况下,U0越大y越小
所以当U0=800V时,电子通过偏转电场的侧移量最小
其最小侧移量,
222
min
00
500.2
m0.0125m
4440.05800
UL U L
y
dU dU
⨯
'
====
⨯⨯
同理可知,电子打到屏上距中心的最小距离为
min min
2
10.025m
b
Y y
L
⎛⎫
=+=
⎪
⎝⎭
故其范围为0.025m~0.05m。
10.如图所示,A为粒子源,在A和极板B间的加速电压为U1,在两水平放置的平行带电板C、D间的电压为U2,现设有质量为m,电荷量为q的质子初速度为零,从A被加速电压U1加速后水平进入竖直方向的匀强电场,平行带电板的极板的长度为L,两板间的距离为d,不计带电粒子的重力,求:
(1)带电粒子在射出B板时的速度;
(2)带电粒子在C、D极板间运动的时间;
(3)带电粒子飞出C、D电场时在竖直方向上发生的位移y.
【答案】(1)1
2qU
m
(2)
1
2
m
L
qU
(3)
2
2
1
4
U L
U d
【解析】
试题分析:(1)由动能定理得:W=qU1 =
则
(2)离子在偏转电场中运动的时间t
L =
(3)设粒子在离开偏转电场时纵向偏移量为y
综合解得
考点:带电粒子在电场中的运动
【名师点睛】本题关键明确粒子的运动性质,对应直线加速过程,根据动能定理列式;对于类似平抛运动过程,根据类似平抛运动的分运动公式列式求解;不难.
11.如图所示,在E =1.0×103 V/m 的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN 与一水平绝缘轨道MN 在N 点平滑相接,半圆形轨道平面与电场线平行,其半径R =0.5m ,N 为半圆形轨道最低点,P 为QN 圆弧的中点,一带负电q =1.0×10-3 C 的小滑块质量m =0.1kg ,与水平轨道间的动摩擦因数 μ=0.5,位于N 点右侧M 处,NM 的距离长1m 。
小滑块现以初速度v 0向左运动,恰能通过圆轨道的最高点Q 点,已知g =10 m/s 2,试求:
(1) 小滑块离开Q 点时的速度Q v 的大小? (2) 小滑块离开Q 点后,落在MN 轨道何处? (3) 小滑块的初速度v 0的大小? 【答案】10m/s (2)1m (3) 70m/s 【解析】 【详解】
(1)小滑块在Q 点受力有:
mg +qE =2Q v m
R
,
解得:10Q v = (2)通过Q 点后做类平抛:
20F a m
=
=合
m/s 2 21
22
y R at ==,
Q x v t =,
解得:x =1m
(3)小滑块从M 到Q 点过程中,由动能定理得:
-mg ·
2R -qE ·2R -μ(mg +qE )x =12
mv Q 2-2
012mv
联立方程组,解得:v 070m/s.
12.如图,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.2m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小
E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度0v 沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞,甲乙两球碰撞后,乙恰能通过轨道的最高点D 。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程中甲不带电,乙电荷无转移)求: (1)乙在轨道上的首次落点到B 点的距离; (2)碰撞前甲球的速度0v 。
【答案】(1)0.4m x =;(2)025m/s v = 【解析】 【分析】
(1)根据乙球恰能通过轨道的最高点,根据牛顿第二定律求出乙球在D 点的速度,离开D 点后做类平抛运动,根据牛顿第二定律求出竖直方向上的加速度,从而求出竖直方向上运动的时间,根据水平方向做匀速直线运动求出水平位移。
(2)因为甲乙发生弹性碰撞,根据动量守恒、机械能守恒求出碰后乙的速度,结合动能定理求出甲的初速度。
【详解】
(1)在乙恰能通过轨道最高点的情况下,设乙到达最高点速度为D v ,乙离开D 点到达水平轨道的时间为t ,乙的落点到B 点的距离为x ,则
2D v m mg qE R
=+ 乙球离开D 点后做类平抛运动,竖直方向
212()2mg qE R t m +=
水平方向
D x v t =
联立解得
0.4m x =
(2)设碰撞后甲、乙的速度分别为v 甲、v 乙,根据动量守恒定律和机械能守恒定律有
0mv mv mv =+甲乙,222
0111222
mv mv mv =+甲乙
联立得
0=v v 乙
由动能定理得
22
112222
D mg R q
E R mv mv -⋅-⋅=-乙
联立解得
05()25m/s mg Eq R
v m
+=
=
三、必修第3册 电路及其应用实验题易错题培优(难)
13.某同学将一个量程为0~1mA 、内阻未知的电流表G 改装为量程为0~3V 的电压表V 。
他先测量该电流表G 的内阻R g ,再进行改装,然后把改装的电压表与标准电压表进行校准并进行误差分析。
实验室准备的仪器有: 电源E (电动势为4.5V ,内阻约1.2Ω)
滑动变阻器R 1(最大阻值为5000Ω,允许通过的最大电流约为0.02A ) 滑动变阻器R 2(最大阻值为20Ω,允许通过的最大电流约为1.0A ) 电阻箱R (最大阻值为999.9Ω,允许通过的最大电流约为0.2A ) 标准电压表0V (最大量程为3.0V ,内阻约为4000Ω) 开关两个,导线若干 他的操作过程如下:
(1)先按如图(a)所示的电路,测量电流表G 的内阻R g ,其步骤为:
①将滑动变阻器R 1调到最大,保持开关K 2断开,闭合开关K 1,再调节滑动变阻器R 1,使电流表G 的指针指在满刻度I g 处。
②保持滑动变阻器R 1的阻值不变,再闭合开关K 2,调节电阻箱R 的阻值使电流表G 的指针指在满刻度的一半处,即
1
2
g I I =
, 此时电阻箱上示数如图(b)所示,则电流表G 的内阻R g =__Ω。
(2)他根据所测出的电流表G 内阻R g 的值,通过计算后,在表头G 上串联一个电阻R ,就将电流表G 改装成量程0~3V 的电压表V ,如图(c)所示,则这个定值电阻的阻值为R =__Ω。
(3)他再用标准电压表V 0对改装的电压表进行校准,要求电压能从0到最大值之间逐一进行
校准,试在图(d)的方框中补全校准电路图,并标出所选用器材的符号,其中改装的电压表和标准电压表已画出。
(______________)
(4)由于电流表G 内阻R g 的测量值____(填“小于”或“大于”)真实值,改装电压表V 时串联电阻R 的阻值_____(填“偏大”或“偏小”),因此在校准过程中,改装的电压表的示数总比标准表的示数______(填“偏大”或“偏小”)。
【答案】105.0Ω 2895Ω 小于 偏大 偏小
【解析】 【分析】
根据题目中给出的提示,以及电表的改装知识进行解答。
【详解】
(1)[1]电阻箱的读数为
105.0ΩK R =,
电流表的内阻为
g 105.0ΩR =;
(2)[2]由电压表的改装原理可知:
()g g g g g 112895Ωg U U
R n R R R I R I ⎛⎫=-=-=-= ⎪ ⎪⎝⎭
;
(3)[3]要求电压从0到最大值之间逐一进行校准,因此应采用分压法,滑动变阻器选用
2R ,标准电压表和改装电压表应并联。
电路图如图所示:
;
(4)[4][5][6]用半偏法测电流表内阻g R 时,由于电阻箱R 的连入使得电路总电流变大,致使
g R 的测量值偏小,这样在改装电压表时串联电阻
()g g 1U
R n R R I
=-=
-, 其阻值偏大,使得校准时通过其电流值偏小,故改装的电压表示数小于标准表的示数。
【点睛】
电表的改装及校准。
14.温度传感器的核心部分是一个热敏电阻。
某课外活动小组的同学在学习了伏安法测电阻之后,利用所学知识来测量由某种金属制成的热敏电阻的阻值。
可供选择的实验器材如下:
A.直流电源,电动势E=6V,内阻不计;
B.毫安表A1,量程为600mA,内阻约为0.5Ω;
C.毫安表A2,量程为10mA,内阻R A=100Ω;
D.定值电阻R0=400Ω;
E.滑动变阻器R=5Ω;
F.被测热敏电阻R t,开关、导线若干。
(1)实验要求能够在0~5V范围内,比较准确地对热敏电阻的阻值R t进行测量,请在图甲的方框中设计实验电路______。
(2)某次测量中,闭合开关S,记下毫安表A1的示数I1和毫安表A2的示数I2,则计算热敏电阻阻值的表达式为R t=______(用题给的物理量符号表示)。
(3)该小组的同学利用图甲电路,按照正确的实验操作步骤,作出的I2-I1图象如图乙所示,由图可知,该热敏电阻的阻值随毫安表A2的示数的增大而____(填“增大”“减小”或“不变”)。
(4)该小组的同学通过查阅资料得知该热敏电阻的阻值随温度的变化关系如图丙所示。
将该热敏电阻接入如图丁所示电路,电路中电源电压恒为9V,内阻不计,理想电流表示数为0.7A,定值电阻R1=30Ω,则由以上信息可求出定值电阻R2的阻值为______Ω,此时该金属热敏电阻的温度为______℃。
【答案】
()
2A0
12
I R R
I I
+
-
增大 17.5 55
【解析】
【分析】
【详解】
(1)[1].题目中没有电压表,可用已知内阻的电流表A2与定值电阻R0串联构成量程为
()0.01(100400)V=5V
g A
U I R R
=+=⨯+的电压表;滑动变阻器用分压电路,电路如
图:
(2)[2].由电流可知
()2A 012
t I R R R I I +-=
(3)[3].根据()
2A 012
t I R R R I I +-=
可得
21
A 1
1t
I R R R I +=
+ 则该热敏电阻的阻值随毫安表A 2的示数的增大,斜率A 0
1
1t
R R R ++ 变大,可知R t 变大。
(4)[4][5].通过R 1的电流
11
0.3A U
I R =
= 则通过R 2和R t 的电流为0.4A ;由I 2-I 1图像可知,I 2=4mA ,此时R t 两端电压为2V ,则R 2两端电压为7V ,则
27
17.50.4
R =
Ω=Ω 2
50.4t R =
Ω=Ω 根据R t -t 图像可知
14153
t R t =
+ 解得
t=55℃
15.某同学利用图甲电路测量自来水的电阻率,其中内径均匀的圆柱形玻璃管侧壁连接一细管,细管上加有阀门K 以控制管内自来水的水量,玻璃管两端接有导电活塞(活塞电阻可忽略),右侧活塞固定,左侧活塞可自由移动,实验器材还有: 电源(电动势约为2 V ,内阻不可忽略)
两个完全相同的电流表A 1、A 2(量程为3 mA ,内阻不计)
电阻箱R(最大阻值9 999 Ω)
定值电阻R0(可供选择的阻值有100 Ω、1 kΩ、10 kΩ)
开关S,导线若干,刻度尺.
实验步骤如下:
A.测得圆柱形玻璃管内径d=20 mm
B.向玻璃管内注自来水,并用刻度尺测量水柱长度L
C.连接好电路,闭合开关S,调整电阻箱阻值,读出电流表A1、A2示数分别记为I1、I2,记录电阻箱的阻值R
D.改变玻璃管内水柱长度,多次重复实验步骤B、C,记录每一次水柱长度L和电阻箱阻值R
E.断开S,整理好器材
(1)为了较好的完成该实验,定值电阻R0应选________.
(2)玻璃管内水柱的电阻R x的表达式R x=________(用R0、R、I1、I2表示)
(3)若在上述步骤C中每次调整电阻箱阻值,使电流表A1、A2示数均相等,利用记录的多组水柱长度L和对应的电阻箱阻值R的数据,绘制出如图乙所示的R-L关系图像,则自来水的电阻率ρ=________ Ω·m(保留两位有效数字),在用本实验方法测电阻率实验中,若电流表内阻不能忽略,则自来水电阻率测量值与上述测量值相比将________(选填“偏大”“不变”或“偏小”)
【答案】1000Ω
()
10
2
I R R
I
+
16,不变
【解析】
【分析】
【详解】
(1)定值电阻所在支路最小电阻约为1
1max
E3
R=1000
0.003
I
=Ω=Ω
总;电阻箱R(最大阻值为9999Ω),为测多组实验数据,定值电阻R0应选1KΏ;
电阻箱与R0、A2串联,再与水柱、A1并联,所以有201
()
x
I R R I R
+=,玻璃管内水柱电阻
R x的表达式20
1
()
x
I R R
R
I
+
=
(2)由电阻定律可以知道
20
2
21
()
4
()
2
x
I R R
L L L
R
d
s d I
ρρρ
π
π
+
====
,则有
2
0 2
1
4
R=I
L
R
d I
ρ
π
-,根据题意可知,电流表A
1,A2示数均相等,则有0
2
4
R=L R
d
ρ
π
-,由图可得
33
4
22
4410(1)10
510
1010
k
d
ρ
π-
⨯--⨯
===⨯
⨯
电阻率
224
3.140.02510
16
44
d k
m
π
ρ
⨯⨯⨯
===Ω
(3)电流表内阻不能忽略,则有2210
2
1
4
R=-r
I
L r R
d I
ρ
π
+-,电阻率为2
4
d k
π
ρ=保持不变.
16.某物理兴趣小组要精确测定一个额定电压为3 V的节能灯正常工作时的电阻.已知该灯正常工作时的电阻约为500 Ω.实验室提供的器材有:
A.电流表A(量程2 mA,内阻R A=15 Ω)
B.定值电阻R1=1 985 Ω
C.滑动变阻器R(0~10 Ω)
D.电压表V(量程12 V,内阻R V=1 kΩ)
E.蓄电池E(电动势为12 V,内阻r很小)
F.开关S一个,导线若干
(1)要精确测定节能灯正常工作时的电阻应采用下面电路图中的________.
(2)选择正确的电路进行实验,若电压表的示数用U表示,电流表的示数用I表示,写出测量节能灯电阻的表达式R x=________________(用题目中给出的相应字母表示).
(3)为了测出节能灯正常工作时的电阻,电流表的示数必须调为I=__________mA,若此时电压表的读数U=7.6 V,则节能灯正常工作时的电阻为________Ω.
【答案】C
()
1
V A
V
IR R R
U IR
+
-
1.5 492
【解析】
【详解】
(1)因节能灯正常工作时的电压为3 V,比电压表的量程小得多,不能用电压表直接测节能
灯的工作电压,节能灯正常工作时的电流
I=
3
=
500
U
R
A=6 mA,大于电流表量程,所以不
能用电流表直接测通过节能灯的电流,因电压表允许通过的最大电流为12 mA,电流表与定值电阻串联后的电压达4 V,所以可将电压表当做电流表使用,电流表与定值电阻串联当电压表使用,由相关量的关系可知电压表V应采用外接方式,又由于滑动变阻器的阻值远小于待测电阻,所以滑动变阻器要接成分压式,正确的电路图是C.
(2)由电路结构及欧姆定律可知R x=
1
()
A
V
I R R
U
I
R
+
-
=1
()
V A
V
IR R R
U IR
+
-
.
(3)因节能灯正常工作时的电压为3 V,此时对应的电流表示数为I=1.5 mA,将U和I代入表达式可得节能灯正常工作时的电阻为492 Ω.
【点睛】
本题的难点在于电流表的量程偏小,无法测电流,电压表的量程偏大,测量电压偏大,最后需通过改装,用电流表测电压,电压表测电流.
17.某实验小组欲描绘小灯泡的伏安特性曲线,实验仪器如下:
A.小灯泡(额定电压为3V,额定功率为1. 5W))
B.电流表1
A(满偏电流为10mA,内阻r1=100Ω)
C.电流表2
A(量程为0. 6A,内阻r2=0. 5Ω);
D.滑动变阻器1R(0~20Ω,额定电流为2A)
E.滑动变阻器2
R(0~1000Ω,额定电流为0. 5A)
F.定值电阻3
R(5Ω)
G.定值电阻4
R(200Ω)
H.电源(3V、内阻可忽略)
I.开关、导线若干.
(1)由于所给的仪器中没有电压表,需要把以上电流表_________进行适当的改装,将其与定值电阻_________串联改装成3V的电压表. (均填仪器前的字母序号)
(2)要使小灯泡两端电压从零开始变化,则滑动变阻器应选_________. (填仪器前的字母序号)
(3)按实验要求完成方框内实验电路图______。