苏科版八年级下册数学总复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版八年级下册数学总复习
一、选择题
1.如图,点E ,F ,G ,H 分别为四边形ABCD 四条边AB 、BC 、CD 、DA 的中点,则关于四边形EFGH ,下列说法正确的是( )
A .不是平行四边形
B .不是中心对称图形
C .一定是中心对称图形
D .当AC =BD 时,它为矩形
2.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添
加的条件不正确的是( )
A .A
B CD = B .//AD B
C C .A C ∠∠=
D .AD BC = 3.下列成语故事中所描述的事件为必然发生事件的是( ) A .水中捞月
B .瓮中捉鳖
C .拔苗助长
D .守株待兔
4.一个事件的概率不可能是( ) A .
3
2
B .1
C .
23
D .0
5.如图,E 是正方形ABCD 边AB 延长线上一点,且BD =BE ,则∠E 的大小为( )
A .15°
B .22.5°
C .30°
D .45°
6.已知关于x 的分式方程22
x m
x +-=3的解是5,则m 的值为( ) A .3 B .﹣2
C .﹣1
D .8
7.若分式4
2
x x -+的值为0,则x 的值为( ) A .0
B .-2
C .4
D .4或-2
8.下列调查中,适合普查方式的是( ) A .调查某市初中生的睡眠情况
B .调查某班级学生的身高情况
C.调查南京秦淮河的水质情况D.调查某品牌钢笔的使用寿命
9.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()
A.8 B.7 C.6 D.5
10.某种商品原价200元,连续两次降价a%后,售价为148元.下列所列方程正确的是()
A.200(1+ a%)2=148 B.200(1- a%)2=148
C.200(1- 2a%)=148 D.200(1-a2%)=148
11.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是
2.2 S=
甲, 1.8
S=

, 3.3
S=

,S a
=

,a是整数,且使得关于x的方程
2
(2)410
a x x
-+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a的取值可以是()
A.3B.2C.1D.1-
12.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA 并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()
A.9m B.12m C.8m D.10m
二、填空题
13.如图,在□ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=______.
14.在平行四边形ABCD中,对角线AC与BD相交于点O.要使四边形ABCD是正方形,
还需添加一组条件.下面给出了五组条件:①AB =AD ,且AC =BD ;②AB ⊥AD ,且AC ⊥BD ;③AB ⊥AD ,且AB =AD ;④AB =BD ,且AB ⊥BD ;⑤OB =OC ,且OB ⊥OC .其中正确的是_____(填写序号).
15.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值=___.
16.一个不透明的袋中装有3个红球,2个黑球,每个球除颜色外都相同.从中任意摸出3球,则“摸出的球至少有1个红球”是__事件.(填“必然”、“不可能”或“随机”) 17.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.
18.如图,点E 在正方形ABCD 的边CD 上,以CE 为边向正方形ABCD 外部作正方形CEFG ,O 、O′分别是两个正方形的对称中心,连接OO′.若AB =3,CE =1,则OO′=________.
19.若分式方程
21
1x m x x
-=--有增根,则m =________. 20.如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE ,设▱ABCD 的面积为S 1,四边形AEDF 的
面积为S 2,则1
2
S S 的值是_____.
21.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则
1x ,2x ,…,30x 的平均数是_________.
22.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、
AD 的中点,若 6 cm AB =,8 cm BC =则AEF 的周长=______cm .
23.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________. 24.如图,在平面直角坐标系中,四边形OBCD 是菱形,OB =OD =2,∠BOD =60°,将菱形OBCD 绕点O 旋转任意角度,得到菱形OB 1C 1D 1,则点C 1的纵坐标的最小值为_____.
三、解答题
25.如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 边于点E ,F .
(1)求证:四边形DEBF 是平行四边形; (2)当DE =DF 时,求EF 的长.
26.如图,在ABC 中,AD 是BC 边上的中线,点E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF . (1)求证:AEF ≌△DEB ;
(2)若∠BAC =90°,求证:四边形ADCF 是菱形.
27.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.
摸球的次数n100
1502005008001000
摸到黑球的次数m233160*********
摸到黑球的频率m
n
0.230.210.300.260.253
(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率
是;(精确到0.01)
(2)估算袋中白球的个数.
28.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F,连接CF.
(1)求证:AF=BD.
(2)求证:四边形ADCF是菱形.
29.某中学八年级共有10个班,每班40名学生,学校对该年级学生数学学科某次学情调研测试成绩进行了抽样分析,请按要求回答下列问题:
(1)若要从全年级学生中抽取40人进行调查,你认为以下抽样方法中最合理的是.
①随机抽取一个班级的40名学生的成绩;
②在八年级学生中随机抽取40名女学生的成绩;
③在八年级10个班中每班各随机抽取4名学生的成绩.
(2)将抽取的40名学生的成绩进行分组,绘制如下成绩频数分布表:
①m=,n=;
②根据表格中的数据,请用扇形统计图表示学生成绩分布情况.
30.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.
(1)求证:BG=DE;
(2)若E为AD中点,FH=2,求菱形ABCD的周长.
31.如图,已知一次函数y=x+2的图象与x轴、y轴分别交于点A,B两点,且与反比例
函数y=m
x
的图象在第一象限交于点C,CD⊥x轴于点D,且OA=OD.
(1)求点A的坐标和m的值;
(2)点P是反比例函数y=m
x
在第一象限的图象上的动点,若S△CDP=2,求点P的坐标.
32.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.
33.如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合)连接CE,过点B作BF⊥CE于点G,交AD于点F.
(1)求证:△ABF≌△BCE;
(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;
(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.
34.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是 小时,中位数是 小时;
(2)计算被调查学生阅读时间的平均数;
(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.
35.如图1,△ABC 中,CD ⊥AB 于D ,且BD:AD:CD=2:3:4, (1)试说明△ABC 是等腰三角形; (2)已知ABC
S
=160cm²,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A
运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止,设点M 运动的时间为t(秒), ①若△DMN 的边与BC 平行,求t 的值;
②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.
36.如图,已知()()
1,0,0,3,90,30A B BAC ABC ︒

∠=∠=.
(1)求ABC ∆的面积;
(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由; (3)如果在第二象限内有一点3,
2P m ⎛⎫
⎪ ⎪⎝⎭
,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【分析】
先连接AC ,BD ,根据EF =HG =
12AC ,EH =FG =1
2
BD ,可得四边形EFGH 是平行四边形,当AC ⊥BD 时,∠EFG=90°,此时四边形EFGH 是矩形;当AC=BD 时,EF=FG=GH=HE ,此时四边形EFGH 是菱形,据此进行判断即可. 【详解】
连接AC ,BD ,如图:
∵点E 、F 、G 、H 分别为四边形ABCD 的四边AB 、BC 、CD 、DA 的中点, ∴EF =HG =
12AC ,EH =FG =1
2
BD , ∴四边形EFGH 是平行四边形,故选项A 错误; ∴四边形EFGH 一定是中心对称图形,故选项B 错误; 当AC ⊥BD 时,∠EFG =90°,此时四边形EFGH 是矩形,
当AC =BD 时,EF =FG =GH =HE ,此时四边形EFGH 是菱形,故选项D 错误; ∴四边形EFGH 可能是轴对称图形,
∴四边形EFGH 是平行四边形,四边形EFGH 一定是中心对称图形. 故选:C . 【点睛】
本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.
2.D
解析:D 【分析】
平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可. 【详解】
解:A.∵//AB CD , AB CD =
∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;
B.∵//AB CD , //AD BC
∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意; C.∵//AB CD ∴180C D ∠+∠=︒ ∵A C ∠=∠ ∴180A D +=︒∠∠ ∴//AD BC
∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;
D.若添加AD BC =不一定是平行四边形,如图:
四边形ABCD 为等腰梯形,故本选项符合题意. 故选:D 【点睛】
本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.
3.B
解析:B 【解析】
试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件. 解:A 、水中捞月是不可能事件,故A 错误; B 、瓮中捉鳖是必然事件,故B 正确; C 、拔苗助长是不可能事件,故C 错误;
D、守株待兔是随机事件,故D错误;
故选B.
考点:随机事件.
4.A
解析:A
【分析】
根据概率的意义知,一件事件的发生概率最大是1,所以只有A项是错误的,即找到正确选项.
【详解】
∵必然事件的概率是1,不可能事件的概率为0,
∴B、C、D选项的概率都有可能,
∵3
2
>1,
∴A不成立.
故选:A.
【点睛】
本题主要考查了概率的定义,正确把握各事件的概率是解题的关键.
5.B
解析:B
【分析】
由四边形ABCD是正方形,推出∠ABD=45°,由∠ABD=∠E+∠BDE,BD=BE,推出∠BDE=∠E,即可求解.
【详解】
∵四边形ABCD是正方形,
∴∠ABD=45°,
∵∠ABD=∠E+∠BDE,
∵BD=BE,
∴∠BDE=∠E.
∴∠E=1
2
×45°=22.5°,
故选:B.
【点睛】
本题考查了正方形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握正方形的性质.
6.C
解析:C
【分析】
将x=5代入分式方程中进行求解即可.
【详解】
把x =5代入关于x 的分式方程
22x m x +-=3得:25352
m ⨯+=-, 解得:m =﹣1,
故选:C .
【点睛】 本题考查分式方程的解,一般直接将解代入分式方程进行求解.
7.C
解析:C
【分析】
根据分式的值为零的条件可以得到4020x x -=⎧⎨
+≠⎩
,从而求出x 的值. 【详解】 解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩
, 由40x -=,得:4x =,
由20x +≠,得:2x ≠-.
综上,得4x =,即x 的值为4.
故选:C .
【点睛】
本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题.
8.B
解析:B
【分析】
根据抽样调查和普查的特点作出判断即可.
【详解】
A 、调查某市初中生的睡眠情况,调查的对象很多,普查的意义或价值不大,应选择抽样调查,故本项错误;
B 、调查某班级学生的身高情况,调查对象较少,适宜采取普查,故本项正确;
C 、调查南京秦淮河的水质,调查范围较广,不适宜采取普查,故本项错误;
D 、调查某品牌圆珠笔芯的使用寿命,普查,破坏性较强,应采用抽样调查,此选项错误;
故选:B .
【点睛】
本题考查了普查和抽样调查的判断,掌握普查和抽样调查的特点是解题关键.
9.D
解析:D
【分析】
连接DN,根据三角形中位线定理得到EF=1
2
DN,根据题意得到当点N与点B重合时,
DN最大,根据勾股定理计算,得到答案.【详解】
连接DN,
∵点E,F分别为DM,MN的中点,
∴EF是△MND的中位线,
∴EF=1
2 DN,
∵点M,N分别为线段BC,AB上的动点,
∴当点N与点B重合时,DN最大,此时DN22
AB AD
10,
∴EF长度的最大值为:1
2
×10=5,
故选:D.
【点睛】
本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
10.B
解析:B
【分析】
根据题意可得出两次降价后的售价为200(1- a%)2,列方程即可.
【详解】
解:根据题意可得出两次降价后的售价为200(1- a%)2,
∴200(1- a%)2=148
故选:B.
【点睛】
本题主要考查增长率问题,找准题目中的等量关系是解此题的关键.
11.C
解析:C
【分析】
根据方程的根的情况得出a的取值范围,结合乙同学的成绩最稳定且a为整数即可得a得取值.
【详解】
∵关于于x 的方程2
(2)410a x x -+-=有两个不相等的实数根, ∴()=16+42>0,
a ∆-且20.a -≠ 解得:>-2a 且 2.a ≠
∵丁同学的成绩最稳定,
∴<1.8a 且0a >.
则a=1.
故答案选:C.
【点睛】
本题主要考查了方差的意义理解,结合一元二次方程的根的判别式进行求解.
12.A
解析:A
【分析】
根据三角形的中位线定理解答即可.
【详解】
解:∵A 、B 分别是CD 、CE 的中点,DE =18m ,
∴AB =12
DE =9m , 故选:A .
【点睛】
本题考查了三角形的中位线定理:三角形的中位线平行于第三边并且等于第三边的一半.
二、填空题
13.3
【解析】
【详解】
∵四边形ABCD 是平行四边形,
∴BC=AD=6,
∵点E. F 分别是BD 、CD 的中点,
故答案为3.
【点睛】
三角形的中位线平行于第三边而且等于第三边的一半.
解析:3
【解析】
【详解】
∵四边形ABCD 是平行四边形,
∴BC =AD =6,
∵点E. F 分别是BD 、CD 的中点,
116 3.22
EF BC ∴==⨯= 故答案为3.
【点睛】
三角形的中位线平行于第三边而且等于第三边的一半.
14.①②③⑤
【分析】
】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.
【详解】
∵四边形ABCD 是平行四边形,AB =AD ,
∴四边形ABCD 是菱形,
又∵AC =BD ,
∴四边形ABCD 是正方
解析:①②③⑤
【分析】
】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.
【详解】
∵四边形ABCD 是平行四边形,AB =AD ,
∴四边形ABCD 是菱形,
又∵AC =BD ,
∴四边形ABCD 是正方形,①正确;
∵四边形ABCD 是平行四边形,AB ⊥AD ,
∴四边形ABCD 是矩形,
又∵AC ⊥BD ,
∴四边形ABCD 是正方形,②正确;
∵四边形ABCD 是平行四边形,AB ⊥AD ,
∴四边形ABCD 是矩形,
又∵AB =AD ,
∴四边形ABCD 是正方形,③正确;
④AB =BD ,且AB ⊥BD ,无法得出四边形ABCD 是正方形,故④错误;
∵四边形ABCD 是平行四边形,OB =OC ,
∴四边形ABCD 是矩形,
又∵OB ⊥OC ,
∴四边形ABCD 是正方形,⑤正确;
故答案为:①②③⑤.
【点睛】
本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键. 15.【分析】
作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.
【详解】

解析:【分析】
作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.
【详解】
解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,
∵四边形ABCD是菱形,
∴AC⊥BD,∠QBP=∠MBP,
即Q在AB上,
∵MQ⊥BD,
∴AC∥MQ,
∵M为BC中点,
∴Q为AB中点,
∵N为CD中点,四边形ABCD是菱形,
∴BQ∥CD,BQ=CN,
∴四边形BQNC是平行四边形,
∴NQ=BC,
∵四边形ABCD是菱形,
∴CP=1
2AC=3,BP=
1
2
BD=4,
在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,
∴MP+NP=QP+NP=QN=5,
故答案为5
【点睛】
本题考查轴对称-最短路线问题;菱形的性质.
16.必然
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
∵红球和黑球除颜色外其余都相同且黑球只有2个,
∴从中任意摸出3球,至少有一个为红球,
即事件“摸出的球至少有1个红球”是
解析:必然
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
∵红球和黑球除颜色外其余都相同且黑球只有2个,
∴从中任意摸出3球,至少有一个为红球,
即事件“摸出的球至少有1个红球”是必然事件,
故答案为:必然.
【点睛】
本题考查了必然事件的定义,正确理解必然事件,不可能事件,随机事件的概念是解题关键.
17.65
【分析】
根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.
【详解】
解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,
又∵∠
解析:65
【分析】
根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.
【详解】
解:由旋转的性质可得:AB=AE,∠BAC=∠EAF,
又∵∠B=70°,
∴∠BAE=180°-2×70°=40°,
∵∠BAC=∠EAF,
∴∠BAE=∠FAG=40°,
∵△ABC≌△AEF,
∴∠F=∠C=25°,
∴∠FGC=∠FAG+∠F=40°+25°=65°,
故答案为:65.
【点睛】
本题考查了旋转的性质,把握对应相等的关系是解题关键.
18.【分析】
先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.
【详解】
过点O作BG的平行线,过点O
解析:5
【分析】
先过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,构造直角三角形,再根据正方形的性质得出OH和O′H的长,再利用勾股定理即可求解.
【详解】
过点O作BG的平行线,过点O′作AB的平行线,两平行线交于点H,如图:
∵AB长为3,CE长为1,点O和点O′为正方形中心,
∴OH=1
2
×(3+1)=2,
O′H=1
2
×(3-1)=
1
2
×2=1,
∴在直角三角形OHO′中:22
2+15
【点睛】
本题考查了正方形的性质和勾股定理,作出直角三角形是解题关键.19.-1
【分析】
首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.
【详解】
解:解方程可得:x=m+2,
根据方程有增根,
则x=1,
即m+2=1,
解得:m=-1.
故答案为:-1

解析:-1
【分析】
首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.
【详解】
解:解方程可得:x=m+2,
根据方程有增根,
则x=1,
即m+2=1,
解得:m=-1.
故答案为:-1
【点睛】
本题考查分式方程的增根,掌握增根的概念是本题的解题关键.
20.2
【分析】
首先由ASA 可证明:△BCE≌△ADF;由平行四边形的性质可知:S△BEC+S△AED =S ▱ABCD ,进而可求出的值.
【详解】
∵四边形ABCD 是平行四边形,
∴AD=BC ,AD∥B
解析:2
【分析】
首先由ASA 可证明:△BCE ≌△ADF ;由平行四边形的性质可知:S △BEC +S △AED =12
S ▱ABCD ,进而可求出12
S S 的值. 【详解】
∵四边形ABCD 是平行四边形,
∴AD =BC ,AD ∥BC ,
∴∠ABC +∠BAD =180°,
∵AF ∥BE ,
∴∠EBA +∠BAF =180°,
∴∠CBE =∠DAF ,
同理得∠BCE =∠ADF ,
在△BCE 和△ADF 中,
CBE DAF BC AD
BCE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△BCE ≌△ADF (ASA ),
∴S △BCE =S △ADF ,
∵点E 在▱ABCD 内部,
∴S △BEC +S △AED =12
S ▱ABCD , ∴S 四边形AEDF =S △ADF +S △AED =S △BEC +S △AED =
12S ▱ABCD , ∵▱ABCD 的面积为S 1,四边形AEDF 的面积为S 2, ∴12
S S =2, 故答案为:2.
【点睛】
此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.
21.【分析】
利用平均数的定义,利用数据x1,x2,…,x10的平均数为a ,x11,x12,…,x30的平均数为b ,可求出x1+x2+…+x10=10a,
x11+x12+…+x30=20b,进而即可求 解析:1(1020)30
a b + 【分析】
利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.
【详解】
解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,
因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,
∴x 1,x 2,…,x 30的平均数=()1102030
a b +
故答案为:
1(1020)30
a b +. 【点睛】 本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.
22.9
【解析】
【分析】
【详解】
在中, ,
∵点、分别是、 的中点,
∴是的中位线, , , ,
∴的周长,
故答案为:9.
解析:9
【解析】
【分析】
【详解】
在Rt ABC 中,10AC cm == ,
∵点E 、F 分别是AO 、AD 的中点,
∴EF 是AOD △的中位线,
12141452E F O D B D A C ====,11422AF AD BC cm === ,115242
AE AO AC === , ∴AEF 的周长9AE AF EF cm =++=,
故答案为:9.
23.【分析】
根据平均数的计算公式,可得,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.
【详解】
解:∵一组数据的平均数为6,众数为5,
∴中至少有一个是 解析:83
【分析】
根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个
5,则另一个就是6,通过方差的计算公式计算即可.
【详解】
解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,
∴,x y 中至少有一个是5,
∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166
x y +++++=, ∴11x y +=,
∴,x y 中一个是5,另一个是6, ∴这组数据的方差为()()()()()22222846256661
[]676963
-+-+-+-+-=; 故答案为
83
. 【点睛】 本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.
24.【分析】
连接OC ,过点C 作CE ⊥x 轴于E ,由直角三角形的性质可求BE =BC =1,CE =,由勾股定理可求OC 的长,据此进一步分析即可求解.
【详解】
如图,连接OC ,过点C 作CE ⊥x 轴于点E ,
解析:23-
【分析】
连接OC ,过点C 作CE ⊥x 轴于E ,由直角三角形的性质可求BE =
12
BC =1,CE =3,由勾股定理可求OC 的长,据此进一步分析即可求解.
【详解】
如图,连接OC ,过点C 作CE ⊥x 轴于点E ,
∵四边形OBCD 是菱形,
∴OD ∥BC ,
∴∠BOD =∠CBE =60°,
∵CE ⊥OE ,
∴BE =12
BC =1,CE
∴OC ==
∴当点C 1在y 轴上时,点C 1
的纵坐标有最小值为-,
故答案为:-
【点睛】
本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键.
三、解答题
25.(1)见解析;(2)
152
【分析】
(1)由矩形的性质得到AB ∥CD ,再根据平行线的性质得到∠DFO=∠BEO 再证明
△DOF ≌△BOE ,根据全等三角形的性质得到DF=BE ,从而得到四边形BEDF 是平行四边形;
(2)先证明四边形BEDF 是菱形,再得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理求解即可.
【详解】
(1)证明:∵四边形ABCD 是矩形,
∴AB ∥CD ,
∴∠DFO =∠BEO .
在△DOF 和△BOE 中 DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩
=== , ∴△DOF ≌△BOE(AAS ).
∴DF =BE .
又∵DF ∥BE ,∴四边形BEDF 是平行四边形.
(2)解:∵DE =DF ,四边形BEDF 是平行四边形,
∴四边形BEDF 是菱形.
∴DE =BE ,EF ⊥BD ,OE =OF .
设AE =x ,则DE =BE =8-x ,
在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2,
∴x 2+62=(8-x)2.解得x =
74. ∴DE =8-74=254.
在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2,
∴BD=10.
∴OD=1
2
BD=5.
在Rt△DOE中,根据勾股定理,有DE2-OD2=OE2,
∴OE=15
4

∴EF=2OE=15
2

【点睛】
考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.
26.(1)见解析;(2)见解析
【分析】
(1)由AF∥BC得∠AFE=∠EBD,继而结合∠AEF=∠DEB、AE=DE即可判定全等;(2)根据平行四边形的判定和性质以及菱形的判定证明即可.
【详解】
证明:(1)∵E是AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,
∵∠AEF=∠DEB,
∴△AEF≌△DEB;
(2)∵△AEF≌△DEB,
∴AF=DB,
∵AD是BC边上的中线,
∴DC=DB,
∴AF=DC,
∵AF∥DC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,AD是BC边上的中线,
∴AD=DC,
∴□ADCF是菱形.
【点睛】
此题主要考查了平行四边形的判定以及全等三角形的判定与性质、菱形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.
27.(1)0.25;(2)3个.
【分析】
(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;
(2)列用概率公式列出方程求解即可.
【详解】
解:(1)251÷1000=0.251;
∵大量重复试验事件发生的频率逐渐稳定到0.25附近,
∴估计从袋中摸出一个球是黑球的概率是0.25;
(2)设袋中白球为x 个,
11x
+=0.25,解得x =3. 答:估计袋中有3个白球,
故答案为:(1)0.25;(2)3个.
【点睛】
本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
28.(1)见解析;(2)见解析.
【分析】
(1)由“AAS”可证△AFE ≌△DBE ,从而得AF=BD
(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF 是平行四边形,由直角三角形的性质的AD =DC ,即可证明四边形ADCF 是菱形.
【详解】
(1)∵AF ∥BC ,
∴∠AFE=∠DBE
∵△ABC 是直角三角形,AD 是BC 边上的中线,E 是AD 的中点,
∴AE=DE ,BD=CD
在△AFE 和△DBE 中,
AFE DBE AEF BED AE DE ∠∠⎧⎪∠∠⎨⎪⎩
===,
∴△AFE ≌△DBE (AAS ))
∴AF=BD
(2)由(1)知,AF=BD ,且BD=CD ,
∴AF=CD ,且AF ∥BC ,
∴四边形ADCF 是平行四边形
∵∠BAC=90°,D 是BC 的中点,
∴AD =12
BC =DC ∴四边形ADCF 是菱形
【点睛】
本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质.证明AD =DC 是解题的关键.
29.(1)③;(2)①16,0.2;②见解析
【分析】
(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,所以可得出答案;
(2)①用40减去A 类,C 类和D 类的频数,即可得到m 值,用C 类的频数除以40即可得到n 值;
②根据频数分布表画出扇形统计图即可.
【详解】
(1)若要从全年级学生中抽取一个40人的样本,在全年级10个班中各随机抽取4名学生比较合理,
故答案为:③;
(2)①m=40-12-8-4=16, n=840
=0.2; ②扇形统计图如下:

【点睛】
本题考查了数据的整理和应用,由图表获取数据是解题关键.
30.(1)详见解析;(2)8
【分析】
(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得
GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;
(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.
【详解】
(1)∵四边形EFGH 是矩形
,//FG HE EH FG ∴=
GFH EHF ∴∠=∠
180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠
BFG DHE ∴∠=∠
∵四边形ABCD 是菱形
//AD BC ∴
GBF EDH ∴∠=∠
在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩
()BGF DEH AAS ∴∆≅∆
BG DE ∴=;
(2)如图,连接EG
∵四边形EFGH 是矩形,2FH =
2EG FH ∴==
∵四边形ABCD 是菱形
,//AD BC AD BC ∴=
∵E 为AD 中点
AE DE ∴=
BG DE =
,//AE BG AE BG ∴=
∴四边形ABGE 是平行四边形
2AB EG ∴==
∴菱形ABCD 的周长为248⨯=
故菱形ABCD 的周长为8.
【点睛】
本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.
31.(1)(-2,0);8 (2)(1,8)或(3,83

【分析】
(1)根据待定系数法就可以求出函数的解析式;
(2)1||2
CDP P C S CD x x =
⨯⨯-△,即可求解. 【详解】 解:(1)对于一次函数2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为(2,0)-、(0,2),
OA OD =,故点(2,0)D ,
则点C 的横坐标为2,当2x =时,24y x =+=,故点(2,4)C ,
将点C 的坐标代入反比例函数表达式得:42m =
, 解得:8m =,
故点A 的坐标为(2,0)-,8m =;
(2)1142222
CDP P C P S CD x x x =⨯⨯-=⨯⨯-=, 解得:3P x =或1,
故点P 的坐标为(1,8)或8(3,)3

【点睛】
本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.
32.见解析
【分析】
由平行四边形的性质得AD ∥BC ,根据平行线的性质证明∠E =∠F ,角边角证明
△AFG ≌△CEH ,其性质得AG =CH ,进而可证明BG =DH .
【详解】
BG =DH ,理由如下:
∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AD =BC ,∠A =∠C ,AB =DC ,
∴∠E =∠F ,
又∵BE =DF ,AF =AD +DF ,CE =CB +BE ,
∴AF =CE ,
在△CEH 和△AFG 中, A C AF CE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△AFG ≌△CEH (ASA ),
∴AG =CH ,
∴BG =DH .
【点睛】。

相关文档
最新文档