人教版勾股定理单元 易错题难题提优专项训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版勾股定理单元 易错题难题提优专项训练
一、选择题
1.如图,ABC 是等边三角形,点D .E 分别为边BC .AC 上的点,且CD AE =,点F 是BE 和AD 的交点,BG AD ⊥,垂足为点G ,已知75∠=︒BEC ,1FG =,则2AB 为( )
A .4
B .5
C .6
D .7
2.如图,在23⨯的正方形网格中,AMB ∠的度数是( )
A .22.5°
B .30°
C .45°
D .60° 3.如图,点A 的坐标是(2)2,
,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )
A .(2,0)
B .(4,0)
C .(-220)
D .(3,0) 4.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、
E 分别在AC 、BC
上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )
A .不存在
B .等于 1cm
C .等于 2 cm
D .等于 2.5 cm
5.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )
A .254cm
B .152cm
C .7cm
D .132
cm 6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )
A .0个
B .1个
C .2个
D .3个
7.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )
A .49
B .25
C .12
D .10
8.以下列各组数为边长,能构成直角三角形的是( ) A 236、、B 345C 347D 234 9.有一个直角三角形的两边长分别为3和4,则第三边的长为( )
A .5
B 7
C 5
D .57
10.下列四组数据不能作为直角三角形的三边长的是 ( )
A .6,8,10
B .5,12,13
C .3,5,6
D .2,3,5
二、填空题
11.如图,在△
中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.
12.将一副三角板按如图所示摆放成四边形ABCD ,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD =32,则AB 的长为__________.
13.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________
14.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =
13
S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.
15.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___
16.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC
上,DE=DF,若BF=4,则EF=_______
17.如图,在等边△ABC中,AB=6,AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,则BM+MN的最小值是_____.
18.如图,在△ABC中,∠C=90°,∠ABC=45°,D是BC边上的一点,BD=2,将△ACD沿直线AD翻折,点C刚好落在AB边上的点E处.若P是直线AD上的动点,则△PEB的周长的最小值是________.
的角平分线,E是AD上的动点,F 19.如图,△ABC中,AB=AC=13,BC=10,AD是BAC
是AB边上的动点,则BE+EF的最小值为_____.
20.四个全等的直角三角形按图示方式围成正方行ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM为Rt△ABM的较长直角边,AM=7EF,则正方形ABCD的面积为_______.
三、解答题
21.(1)计算:1312248233⎛
⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,
(1)求证:ABD ACE ≅;
(2)若AF 平分DAE ∠交BC 于F ,
①探究线段BD ,DF ,FC 之间的数量关系,并证明;
②若3BD =,4CF =,求AD 的长,
23.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°
(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF
①求证:△AED ≌△AFD ;
②当BE =3,CE =7时,求DE 的长;
(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.
24.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).
(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;
(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;
(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.
25.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .
(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;
②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;
(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.
26.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .
(1)根据题意用尺规作图补全图形(保留作图痕迹);
(2)设,BC m AC n ==
①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.
②若线段2AD EC =,求m n
的值.
27.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .
(1)求证:CED ADB ∠=∠;
(2)若=8AB ,=6CE . 求BC 的长 .
28.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,
①则线段BC ,DC ,EC 之间满足的等量关系式为 ;
②求证:BD 2+CD 2=2AD 2;
(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.
29.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.
(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 .
(2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.
30.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .
(1)如图1,求∠BGD 的度数;
(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;
(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =3ABCD 的
面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
结合等边三角形得性质易证△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE =15°,进而两次利用勾股定理可求解.
【详解】
∵△ABC为等边三角形
∴∠BAE=∠C=60°,AB=AC,CD=AE
∴△ABE≌△CAD(SAS)
∴∠ABE=∠CAD
∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,
∵BG⊥AD,
∴∠BGF=90°,
∴∠FBG=30°,
∵FG=1,
∴BF=2FG=2,
∵∠BEC=75°,∠BAE=60°,
∴∠ABE=∠BEC﹣∠BAE=15°,
∴∠ABG=45°,
∵BG⊥AD,
∴∠AGB=90°,
∴2222
-=-3
BF FG
21
AB2=AG2+BG2323)2=6.
故选C.
【点睛】
本题考查全等三角形的判定与性质,等边三角形的性质,勾股定理,证明△ABG 为等腰直角三角形是解题关键.
2.C
解析:C
【分析】
连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解.
【详解】
连接AB
∵22125AM =+=,22125AB =+=,221310BM =+=
∴22210AM AB BM +==
∴AMB ∆为等腰直角三角形
∴45AMB ∠=︒
故选C .
【点睛】
本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.
3.D
解析:D
【详解】
解:(1)当点P 在x 轴正半轴上,
①以OA 为腰时,
∵A 的坐标是(2,2),
∴∠AOP=45°,OA=2
∴P 的坐标是(4,0)或(220);
②以OA 为底边时,
∵点A的坐标是(2,2),
∴当点P的坐标为:(2,0)时,OP=AP;
(2)当点P在x轴负半轴上,
③以OA为腰时,
∵A的坐标是(2,2),
∴OA= 22,
∴OA=AP=22
∴P的坐标是(-22,0).
故选D.
4.C
解析:C
【分析】
当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.
【详解】
解:当C′落在AB上,点B与E重合时,AC'长度的值最小,
∵∠C=90°,AC=4cm,BC=3cm,
∴AB=5cm,
由折叠的性质知,BC′=BC=3cm,
∴AC′=AB-BC′=2cm.
故选:C.
【点睛】
本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.5.A
解析:A
【分析】
由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.
【详解】
∵四边形ABCD 是长方形,
∴∠B=∠D=900,BC=AD,
由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD
又∵∠CFE=∠AFD
∴△CFE≌△AFD
∴EF=DF
设AF=xcm ,则DF=(8-x )cm
在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm ,
222(8)6x x =-+
254
x cm = 故选择A.
【点睛】
此题是翻折问题,利用勾股定理求线段的长度.
6.D
解析:D
【解析】
分析:由四边形ABCD 与四边形EFGC 都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE 与三角形DCG 全等,利用全等三角形对应边相等即可得到BE=DG ,利用全等三角形对应角相等得到∠CBM=∠MDO ,利用等角的余角相等及直角的定义得到∠BOD 为直角,利用勾股定理求出所求式子的值即可.
详解:①∵四边形ABCD 和EFGC 都为正方形,
∴CB=CD ,CE=CG ,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE ,即∠BCE=∠DCG.
在△BCE 和△DCG 中,CB =CD ,∠BCE =∠DCG ,CE =CG ,
∴△BCE ≌△DCG ,
∴BE=DG ,
故结论①正确.
②如图所示,设BE 交DC 于点M ,交DG 于点O.
由①可知,△BCE≌△DCG,
∴∠CBE=∠CDG,即∠CBM=∠MDO.
又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,
∴BE⊥DG.
故②结论正确.
③如图所示,连接BD、EG,
由②知,BE⊥DG,
则在Rt△ODE中,DE2=OD2+OE2,
在Rt△BOG中,BG2=OG2+OB2,
在Rt△OBD中,BD2=OD2+OB2,
在Rt△OEG中,EG2=OE2+OG2,
∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.
在Rt△BCD中,BD2=BC2+CD2=2a2,
在Rt△CEG中,EG2=CG2+CE2=2b2,
∴BG2+DE2=2a2+2b2.
故③结论正确.
故选:D.
点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质. 7.C
解析:C
【解析】
试题解析:如图,∵大正方形的面积是25,
∴c2=25,
∴a2+b2=c2=25,
∵直角三角形的面积是(25-1)÷4=6,
又∵直角三角形的面积是1
2
ab=6,
∴ab=12.
故选C.
8.C
解析:C
【分析】
利用勾股定理的逆定理依次计算各项后即可解答.
【详解】
选项A ,222+≠,不能构成直角三角形;
选项B ,222+≠,不能构成直角三角形;
选项C ,222+=,能构成直角三角形;
选项D ,222+≠,不能构成直角三角形.
故选C .
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
9.D
解析:D
【分析】
分4是直角边、4是斜边,根据勾股定理计算即可.
【详解】
当4是直角边时,斜边,
当4是斜边时,另一条直角边=,
故选:D .
【点睛】
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.
10.C
解析:C
【分析】
求出两小边的平方和长边的平方,再看看是否相等即可.
【详解】
A 、62+82=102,此时三角形是直角三角形,故本选项不符合题意;
B 、52+122=132,此时三角形是直角三角形,故本选项不符合题意;
C 、32+52≠62,此时三角形不是直角三角形,故本选项符合题意;
D 、222
+=,此时三角形是直角三角形,故本选项不符合题意; 故选:C .
【点睛】
本题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形,必须满足较小两边平方的和等于最大边的平方才能做出判断.
二、填空题
11. 【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时
的值最小.连接,由对称性可知∠45°,
,∴ ∠90°.根据勾股定理可得

12.3【分析】
利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =
,再利用勾股定理得到222AC BC AB +=,即可求出AB .
【详解】
在Rt △ACD 中,CD=AD=32
∴226AD CD +=,
在Rt △ABC 中,∠BAC=30°, ∴12
BC AB =, ∵222AC BC AB +=, ∴222
1
6()2AB AB +=,
解得AB=3 故答案为:3
【点睛】
此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键. 135【分析】
由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =
∠BCD 可证△ACE ≌△BCD ,可得AE =BD
=3,∠ADB =90°,由勾股定理求出AB 即可得到AC 的长.
【详解】
解:如图所示,连接BD ,
∵△ACB 和△ECD 都是等腰直角三角形,
∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,
且∠ACE =∠BCD =90°-∠ACD ,
在ACE 和BCD 中,
AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩
∴△ACE ≌△BCD (SAS ),
∴AE =BD 3E =∠BDC =45°,
∴∠ADB =∠ADC+∠BDC =45°+45°=90°,
∴AB 22AD +BD =7+3=10, ∵AB=2BC ,
∴BC 2AB=5 5
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.
14.2
【分析】
根据S △PAD =13
S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.
【详解】
设△PAD 中AD 边上的高是h .
∵S △PAD =13
S 矩形ABCD ,
∴1
2
AD•h=
1
3
AD•AB,
∴h=2
3
AB=4,
∴动点P在与AD平行且与AD的距离是4的直线l上,
如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.
在Rt△ADE中,∵AD=8,AE=4+4=8,
DE=2222
8882
AE AD
+=+= ,
即PA+PD的最小值为82.
故答案82.
【点睛】
本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
15.5或13
【分析】
根据已知可得题意中的图是一个勾股图,可得S P+S Q=S K为从而易求S K.
【详解】
解:如下图所示,
若A=S P=4.B=S Q=9,C=S K,
根据勾股定理,可得
A+B=C,
∴C=13.
若A=S P=4.C=S Q=9,B=S K,
根据勾股定理,可得
A+B=C,
∴B=9-4=5.
∴S K为5或13.
故答案为:5或13.
【点睛】
本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.
16.322
或11或5或109 5
【分析】
分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.
【详解】
解:①过D作DG⊥AC,DH⊥BC,垂足为G,H
∴DG∥BC,∠CDG=∠CDH=45°
又∵D是AB的中点,
∴DG=1
2 BC
同理:DH=1
2 AC
又∵BC=AC
∴DG=DH
在Rt△DGE和Rt△DHF中
DG=DH,DE=DF
∴Rt△DGE≌Rt△DHF(HL)
∴GE=HF
又∵DG=DH,DC=DC
∴△GDC≌△FHC
∴CG=HC
∴CE=GC-GE=CH-HF=CF=AB-BF=3
22
3332
+=
②过D作DG⊥AC,DH⊥BC,垂足为G,H
∴DG∥BC,∠CDG=∠CDH=45°
又∵D 是AB 的中点, ∴DG=12BC 同理:DH=
12AC 又∵BC=AC
∴DG=DH
在Rt△DGE 和Rt△DHF 中
DG=DH,DE=DF
∴Rt△DGE≌Rt△DHF(HL )
∴GE=HF
又∵DG=DH,DC=DC
∴△GDC≌△FHC
∴CG=HC
∴CE=CF=AC+AE=AB+BF=7+4=11
∴EF=221111112+=
③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,
∴∠1+∠2=45°
∴∠EDF=2(∠1+∠2)=90°
∴△EDF 为等腰直角三角形
可证AED CFD △△≌
∴AE=CF=3,CE=BF=4
∴2222435EF CE CF =+=+=
④有第③知,EF=5,且△EDF 为等腰直角三角形,

ED=DF=52
2
,可证△E CF
E DE
''

∽,
222
3
y x
+=
5252
x
=
+
综上可得:
422
5
x=
∴222
2
E F DE DF DE
'''''
=+=
109
5
E F''=
【点睛】
本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.
17.7
【解析】
【分析】
通过作辅助线转化BM,MN的值,从而找出其最小值求解.
【详解】
解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE,如图所示:
∵等边△ABC的边长为6,AN=2,
∴BN=AC﹣AN=6﹣2=4,
∴BE=EN=AN=2,
又∵AD是BC边上的中线,∴DE是△BCN的中位线,∴CN=2DE,CN∥DE,
又∵N为AE的中点,
∴M为AD的中点,
∴MN是△ADE的中位线,∴DE=2MN,
∴CN=2DE=4MN,
∴CM=3
4 CN.
在直角△CDM中,CD=1
2
BC=3,DM=
1
2
AD=
33,
∴CM=223
7 2
CD MD
+=,
∴CN=43
727 32
⨯=.
∵BM+MN=CN,
∴BM+MN的最小值为27.
故答案是:27.
【点睛】
考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.
18.222
+
【分析】
连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.
【详解】
如图,
连接CE,交AD于M,
∵沿AD折叠C和E重合,
∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,
∴AD垂直平分CE,即C和E关于AD对称,BD=2,
∴CD=DE=2,
∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是
BE+PE+PB=BE+CD+DB=BC+BE,
∵∠DEA=90°,
∴∠DEB=90°,
∵∠ABC=45°,
∴∠B=45°,
∵DE=2,
∴BE=2,
即BC=2+2,
∴△PEB的周长的最小值是BC+BE=2+2+2=2+22.
故答案为2+22.
【点睛】
本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置.
19.120 13
【解析】
∵AB=AC,AD是角平分线,
∴AD⊥BC,BD=CD,
∴B点,C点关于AD对称,
如图,过C作CF⊥AB于F,交AD于E,
则CF=BE+FF的最小值,
根据勾股定理得,AD=12,
利用等面积法得:AB⋅CF=BC⋅AD,
∴CF=BC AD
AB

=
1012
13

=
120
13
故答案为120 13
.
点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF⊥AB时,CF有最小值是解题的关键.
20.32
【分析】
由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.
【详解】
解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +
由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,
∵AM EF ,
2,,a a ∴== ∵正方形EFGH 的面积为4,
∴24b =,
∴正方形ABCD 的面积=2224+832.a b b ==
故答案为32.
【点睛】
本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.
三、解答题
21.(1)4
23
;(2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,
【分析】
(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;
(2)先根据绝对值,偶次方、算术平方根的非负性求出a 、b 、c 的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.
【详解】
解:(1)⎛÷ ⎝

=÷ =423
; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,
理由是:
∵a 、b 、c
满足2|a (c 0-=,
∴a ﹣
=0,
﹣b =0,c
0,
∴a =
,b =
,c



∴以a 、b 、c 为边能组成三角形,
∵a =
,b =
,c
∴a 2+b 2=c 2,
∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,
则此三角形的面积是
12

. 【点睛】
此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.
22.(1)见详解(2)①结论:222BD FC DF +=
,证明见详解②
【分析】
(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;
(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.
【详解】
解:(1)∵AE AD ⊥
∴90DAC CAE ∠+∠=︒
∵90BAC ∠=︒
∴90DAC BAD ∠+∠=︒
∴BAD CAE ∠=∠
∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
∴ABD △≌ACE △()SAS
(2)①结论:2
22BD FC DF +=
证明:连接EF ,如图:
∵ABD △≌ACE △
∴B ACE ∠=∠,BD CE =
∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒
∴222FC CE EF +=
∴222FC BD EF +=
∵AF 平分DAE ∠
∴DAF EAF ∠=∠
∴在DAF △和EAF △中
AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩
∴DAF △≌EAF △()SAS
∴DF EF =
∴222FC BD DF +=
即2
22BD FC DF +=
②过点A 作AG BC ⊥于点G ,如图:
∵由①可知222223425DF BD FC =+=+=
∴5DF =
∴35412BC BD DF FC =++=++=
∵AB AC =,AG BC ⊥ ∴1112622
BG AG BC ===⨯= ∴633DG BG BD =-=-=
∴在Rt ADG 中,AD ===
故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②【点睛】
本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.
23.(1)①见解析;②DE =
297;(2)DE 的值为 【分析】
(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;
(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.
【详解】
(1)①如图1中,
∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,
∴△BAE ≌△CAF ,
∴AE =AF ,∠BAE =∠CAF ,
∵∠BAC =90°,∠EAD =45°,
∴∠CAD +∠BAE =∠CAD +∠CAF =45°,
∴∠DAE =∠DAF ,
∵DA =DA ,AE =AF ,
∴△AED ≌△AFD (SAS );
②如图1中,设DE =x ,则CD =7﹣x .
∵AB =AC ,∠BAC =90°,
∴∠B =∠ACB =45°,
∵∠ABE =∠ACF =45°,
∴∠DCF =90°,
∵△AED ≌△AFD (SAS ),
∴DE =DF =x ,
∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,
∴x 2=(7﹣x )2+32,
∴x =297
, ∴DE =297
; (2)∵BD =3,BC =9,
∴分两种情况如下:
①当点E 在线段BC 上时,如图2中,连接BE .
∵∠BAC =∠EAD =90°,
∴∠EAB =∠DAC ,
∵AE =AD ,AB =AC ,
∴△EAB ≌△DAC (SAS ),
∴∠ABE =∠C =∠ABC =45°,EB =CD =9-3=6,
∴∠EBD =90°,
∴DE 2=BE 2+BD 2=62+32=45,
∴DE =35; ②当点D 在CB 的延长线上时,如图3中,连接BE .
同理可证△DBE 是直角三角形,EB =CD =3+9=12,DB =3,
∴DE 2=EB 2+BD 2=144+9=153,
∴DE =317,
综上所述,DE 的值为35或317.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.
24.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194
时,△BCP 为等腰三角形. 【分析】
(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;
(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC
上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12
t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作
PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程
2234352
t --=
⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,
4AC cm ∴=, (1)设存在点P ,使得PA PB =,
此时2PA PB t ==,42PC t =-,
在Rt PCB 中,222PC CB PB +=,
即:222(42)3(2)t t -+=, 解得:2516
t =, ∴当2516
t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,
此时72BP t =-,24PE PC t ==-,541BE =-=,
在Rt BEP 中,222PE BE BP +=,
即:222(24)1(72)t t -+=-,
解得:83
t =, 当6t =时,点P 与A 重合,也符合条件,
∴当83
t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,
当P 在AC 上时,BCP 为等腰三角形,
PC BC ∴=,即423t -=,
12
t ∴=, 当P 在AB 上时,BCP 为等腰三角形,
CP PB =①,点P 在BC 的垂直平分线上,
如图2,过P 作PE BC ⊥于E ,
1322BE BC ∴=
=, 12PB AB ∴=,即52342t --=,解得:194
t =, PB BC =②,即2343t --=,
解得:5t =,
PC BC =③,如图3,过C 作CF AB ⊥于F ,
12
BF BP ∴=, 90ACB ∠=︒,
由射影定理得;2BC BF AB =⋅,
即2234352
t --=⨯, 解得:5310t =
, ∴当15319,5,2104
t =或时,BCP 为等腰三角形. 【点睛】
本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.
25.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析
【分析】
(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明
△ACD≌△BCF;
②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;
(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.
【详解】
解:(1)①证明:由旋转可得CF=CD,∠DCF=90°
∵∠ACD=90°
∴∠ACD=∠BCF
又∵AC=BC
∴△ACD≌△BCF
②证明:连接EF,
由①知△ACD≌△BCF
∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD
∴∠EBF=90°
∴EF2=BE2+BF2,
∴EF2=BE2+AD2
又∵∠ACB=∠DCF=90°,∠CDE=45°
∴∠FCE=∠DCE=45°
又∵CD=CF,CE=CE
∴△DCE≌△FCE
∴EF=DE
∴DE2= AD2+BE2
⑵DE2=EB2+AD2+EB·AD
理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,
∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD
∵AC=BC,∠ACB=60°
∴∠CAB=∠CBA =60°
∴∠ABE=120°,∠EBF=60°,∠BFG=30°
∴BG=1
2
BF,
3
∵∠ACB=60°,∠DCE=30°,
∴∠ACD+∠BCE=30°,
∴∠ECF=∠FCB+∠BCE=30°
∵CD=CF ,CE=CE
∴△ECF ≌△ECD
∴EF=ED
在Rt △EFG 中,EF 2=FG 2+EG 2
又∵EG=EB+BG
∴EG=EB+12BF , ∴EF 2=(EB+12BF )2+(32
BF )2 ∴DE 2= (EB+
12AD )2+(32AD )2 ∴DE 2= EB 2+AD 2+EB ·AD
【点睛】
本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.
26.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②
512
m n = 【分析】
(1)根据题意,利用尺规作图画出图形即可;
(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;
②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.
【详解】
(1)解:作图,如图所示:
(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.
理由如下:依题意得, BD BC m ==,
在Rt ABC 中,90ACB ∠=︒
222BC AC AB ∴=+
AB =
AD AB BD m ∴=-=
222AD m AD n ∴+-
)()
2
2222m m m n m n =++-
22222222m n m m n =+-+-
0=;
∴线段AD 的长度是方程22 20x mx n +-=的一个根
②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =
2233
AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=
222BC AC AB ∴+=
2
2223m n n m ⎛⎫+=+ ⎪⎝⎭
22224493m n n mn m +=++ 25493
n mn = 512
m n ∴= 【点睛】
本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.
27.(1)见解析;(2)BC =.
【分析】
(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.
(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.
【详解】
(1)证明:∵AB AD =,=60A ∠︒,
∴△ABD 是等边三角形.
∴60ADB ∠=︒.
∵CE ∥AB ,
∴60CED A ∠=∠=︒.
∴CED ADB ∠=∠.
(2)解:连接AC 交BD 于点O ,
∵AB AD =,BC DC =,
∴AC 垂直平分BD .
∴30BAO DAO ∠=∠=︒.
∵△ABD 是等边三角形,8AB =
∴8AD BD AB ===,
∴4BO OD ==.
∵CE ∥AB ,
∴ACE BAO ∠=∠.
∴6AE CE ==, 2DE AD AE =-=.
∵60CED ADB ∠=∠=︒.
∴60EFD ∠=︒.
∴△EDF 是等边三角形.
∴2EF DF DE ===,
∴4CF CE EF =-=,2OF OD DF =-=.
在Rt △COF 中,
∴2223
=-=.
OC CF OF
在Rt△BOC中,
∴2222
=+=+=.
BC BO OC
4(23)27
【点睛】
本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.
28.(1)①BC=DC+EC,理由见解析;②证明见解析;(2)6.
【解析】
【分析】
(1)证明△BAD≌△CAE,根据全等三角形的性质解答;
(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;
(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.
【详解】
(1)①解:BC=DC+EC,理由如下:
∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=EC,
∴BC=DC+BD=DC+EC,;
故答案为:BC=DC+EC;
②证明:∵Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
由(1)得,△BAD≌△CAE,
∴BD=CE,∠ACE=∠B=45°,
∴∠DCE=∠ACB+∠ACE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,
又AD=AE,
∴BD2+CD2=2AD2;
(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD与△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=CE=9,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE===6,
∵∠DAE=90°,
∴AD=AE=DE=6.
【点睛】
本題是四边形综合题目,考查的是全等三角形的判定和性质、等直角三角形的性质、勾股定理、直角三角形的判定等知识:本题综合性强,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.
29.(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.
【解析】
【分析】
(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE =AF,即可得出结论;
(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;
(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF =60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF 内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x
=3﹣即可.
【详解】
(1)解:△AEF是等边三角形,理由如下:
连接AC,如图1所示:
∵四边形ABCD是菱形,
∴AB=BC=AD,∠B=∠D,
∵∠ABC=60°,
∴∠BAD=120°,△ABC是等边三角形,
∴AC=AB,
∵点E是线段CB的中点,
∴AE⊥BC,
∴∠BAE=30°,
∵∠EAF=60°,
∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,
在△BAE和△DAF中,

∴△BAE≌△DAF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形;
故答案为:等边三角形;
(2)证明:连接AC,如图2所示:
同(1)得:△ABC是等边三角形,
∴∠BAC=∠ACB=60°,AB=AC,
∵∠EAF=60°,
∴∠BAE=∠CAF,
∵∠BCD=∠BAD=120°,
∴∠ACF=60°=∠B,
在△BAE和△CAF中,

∴△BAE≌△CAF(ASA),
∴BE=CF;
(3)解:同(1)得:△ABC和△ACD是等边三角形,∴AB=AC,∠BAC=∠ACB=∠ACD=60°,
∴∠ACF=120°,
∵∠ABC=60°,
∴∠ABE=120°=∠ACF,
∵∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,

∴△BAE≌△CAF(ASA),
∴BE=CF,AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,
∴∠AEB=45°,
∴∠CEF=∠AEF﹣∠AEB=15°,
作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:
则GE=GF,∠FGH=30°,
∴FG=2FH,GH=FH,
∵∠FCH=∠ACF﹣∠ACB=60°,
∴∠CFH=30°,
∴CF =2CH,FH=CH,
设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,
∵BC=AB=4,
∴CE=BC+BE=4+2x,
∴EH=4+x=2x+3x,
解得:x=﹣1,
∴FH=x=3﹣,
即点F到BC的距离为3﹣.
【点睛】
本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.
30.(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=3
【解析】
【分析】
(1)只要证明△DAE ≌△BDF ,推出∠ADE=∠DBF ,由
∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
(2)如图3中,延长GE 到M ,使得GM=GB ,连接BD 、CG .由△MBD ≌△GBC ,推出DM=GC ,∠M=∠CGB=60°,由CH ⊥BG ,推出∠GCH=30°,推出CG=2GH ,由
CG=DM=DG+GM=DG+GB ,即可证明2GH=DG+GB ;
(3)解直角三角形求出BC 即可解决问题;
【详解】
(1)解:如图1﹣1中,
∵四边形ABCD 是菱形,
∴AD =AB ,
∵∠A =60°,
∴△ABD 是等边三角形,
∴AB =DB ,∠A =∠FDB =60°,
在△DAE 和△BDF 中,
AD BD A BDF AE DF =⎧⎪∠=∠⎨⎪=⎩

∴△DAE ≌△BDF ,
∴∠ADE =∠DBF ,
∵∠EGB =∠GDB+∠GBD =∠GDB+∠ADE =60°,
∴∠BGD =180°﹣∠BGE =120°.
(2)证明:如图1﹣2中,延长GE 到M ,使得GM =GB ,连接CG .
∵∠MGB =60°,GM =GB ,
∴△GMB 是等边三角形,
∴∠MBG =∠DBC =60°,
∴∠MBD =∠GBC ,
在△MBD 和△GBC 中,
MB GB MBD GBC BD BC =⎧⎪∠=∠⎨⎪=⎩

∴△MBD ≌△GBC ,
∴DM =GC ,∠M =∠CGB =60°,
∵CH ⊥BG ,
∴∠GCH =30°,
∴CG =2GH ,
∵CG =DM =DG+GM =DG+GB ,
∴2GH =DG+GB .
(3)如图1﹣2中,由(2)可知,在Rt △CGH 中,CH =
GCH =30°,
∴tan30°=
GH CH
, ∴GH =4,
∵BG =6,
∴BH =2, 在Rt △BCH 中,BC
=
∵△ABD ,△BDC 都是等边三角形,
∴S 四边形ABCD =2•S △BCD =
×
(2=
. 【点睛】
本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。

相关文档
最新文档