上海洞泾学校七年级数学上册第三单元《一元一次方程》检测卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.下列用代数式表示正确的是( ) A .a 是一个数的8倍,则这个数是8a B .2x 比一个数大5,则这个数是2x +5
C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元
D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元
2.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )
A .3251x x +-和3933x x ---
B .358x x ++和31212x x -+-
C .335x x -++和341x x -+-
D .3732x x -+-和2x --
3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100 B .﹣100x 100 C .101x 100 D .﹣101x 100 4.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1
B .﹣2x 2+5x+1
C .8x 2﹣5x+1
D .8x 2+13x ﹣1
5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入
410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是
( ) A .-7
B .-1
C .5
D .11
6.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,
337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )
A .43
B .44
C .45
D .55
7.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1
B .5y 3-3y 2-2y -6
C .5y 3+3y 2-2y -1
D .5y 3-3y 2-2y -1
8.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )
A .射线OA 上
B .射线OB 上
C .射线OC 上
D .射线OD 上
9.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .
2
m n
+ B .
mn
m n
+ C .
2mn
m n
+ D .
m n
n
m + 10.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )
A .
B .
C .
D .
11.下列判断中错误的个数有( )
(1)2
3a bc 与2
bca -不是同类项; (2)25
m n
不是整式;
(3)单项式32x y -的系数是-1; (4)22
35x y xy -+是二次三项式.
A .4个
B .3个
C .2个
D .1个 12.一个多项式与221a a -+的和是32a -,则这个多项式为( )
A .253a a -+
B .253a a -+-
C .2513a a --
D .21a a -+-
二、填空题
13.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.
14.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-1
2
,则这个二次三项式为________________________.
15.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.
16.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)
…………
17.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
18.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而
23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式
子表示出来:______. 19.列式表示:
(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______; (2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______; (3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.
20.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.
三、解答题
21.先化简,再求值: ()()()()2
4222x x y x y x y x y -++---,其中2x =-, 12
y
. 22.已知230x y ++-=,求15
2423
x y xy --+的值. 23.观察下列各式:
13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2; 13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;
13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2; ∴13+23+33+43+53=(______ )2= ______ . 根据以上规律填空:
(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.
(2)猜想:113+123+133+143+153= ______ .
24.若关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值. 25.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中
99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成
123.89b =,结果也正确,为什么?
26.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【分析】
根据题中叙述列出代数式即可判断. 【详解】
A 、a 是一个数的8倍,则这个数是
8
a
,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;
C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;
D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意; 故选:D . 【点睛】
本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.
2.C
解析:C 【分析】
由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】
解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意.
故选:C.
【点睛】
本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题.3.C
解析:C
【分析】
由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.
【详解】
由﹣2x,3x2,﹣4x3,5x4……得,
单项式的系数的绝对值为序数加1,
系数的正负为(﹣1)n,字母的指数为n,
∴第100个单项式为(﹣1)100(100+1)x100=101x100,
故选C.
【点睛】
本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.
4.A
解析:A
【分析】
根据由题意可得被减式为5x2+4x-1,减式为3x2+9x,求出差值即是答案.
【详解】
由题意得:5x2+4x−1−(3x2+9x),
=5x2+4x−1−3x2−9x,
=2x2−5x−1.
故答案选A.
【点睛】
本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.
5.A
解析:A
【分析】
先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,
a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.
【详解】
解:第1次操作,a1=|23+4|-10=17;
第2次操作,a2=|17+4|-10=11;
第3次操作,a3=|11+4|-10=5;
第4次操作,a4=|5+4|-10=-1;
第5次操作,a5=|-1+4|-10=-7;
第6次操作,a6=|-7+4|-10=-7;
第7次操作,a7=|-7+4|-10=-7;
…
第2020次操作,a2020=|-7+4|-10=-7.
故选:A.
【点睛】
本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
6.C
解析:C
【分析】
观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.
【详解】
∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,
∴m3分裂成m个奇数,
所以,到m3的奇数的个数为:2+3+4+…+m=()()
21
2
m m
+-
,
∵2n+1=2019,n=1009,
∴奇数2019是从3开始的第1009个奇数,
当m=44时,()() 442441
989
2
+-
=,
当m=45时,()() 452451
134
2
+-
=,
∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,
即m=45.
故选:C.
【点睛】
本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.
7.D
解析:D
【分析】
根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可.
【详解】
解:∵5y3-4y-6-(3y2-2y-5)= 5y3-4y-6-3y2+2y+5= 5y3-3y2-2y-1.
故答案为D.
【点睛】
本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.
8.C
解析:C 【分析】
由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案. 【详解】
解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B , ∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈ 在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈ ∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上. 故答案为:C. 【点睛】
本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.
9.C
解析:C 【分析】
平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2. 【详解】
解:依题意得:1122()2m n mn
m n mn m n
+÷+=÷=+. 故选:C . 【点睛】
本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.
10.D
解析:D 【分析】
根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可. 【详解】
解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1, 即0到2011共2012个数,构成前面503个循环,
∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,
∴从2013到2014再到2015,箭头的方向是.
故选:D . 【点睛】
本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.
11.B
解析:B 【分析】
根据同类项概念和单项式的系数以及多项式的次数的概念分析判断. 【详解】
解:(1)23a bc 与2bca -是同类项,故错误;
(2)25
m n 是整式,故错;
(3)单项式-x 3y 2的系数是-1,正确; (4)3x 2-y+5xy 2是3次3项式,故错误. 故选:B . 【点睛】
本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.
12.B
解析:B 【分析】
根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案. 【详解】
∵一个多项式与221a a -+的和是32a -,
∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3, 故选B. 【点睛】
题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键.
二、填空题
13.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答
解析:(4n+2).
【分析】
先数出前三个“上”字各所需棋子数,然后规律即可解答. 【详解】
解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子, ∴依次多4个
∴第n 个“上”字需用(4n+2)枚棋子. 故答案为:(4n+2). 【点睛】
本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.
14.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122
x x -+-
【解析】
根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-1
2
x ,常数项是1,所以再相加可得此二次三项式为211x x 22
-
+-. 15.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到
解析:1024 【分析】
先写出前3次分割得到的正方形的个数,找到规律即可得出答案. 【详解】
由图可知分割1次得到正方形的个数为4; 分割2次得到正方形的个数为216=4个; 分割3次得到正方形的个数为364=4个; …
以此类推,分割5次得到正方形的个数为:54=1024个, 故答案为:1024. 【点睛】
本题考查了图形规律题,仔细观察图形找到规律是解题的关键.
16.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n 由以上规律即可求解【详解
解析:83n -
【分析】
由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解. 【详解】
解:由题知:右上和右下两个数的和等于中间的数, ∴第4个正方形中间的数字m=14+15=29;
∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n , ∴第n 个正方形的中间数字:4n-2+4n-1=8n-3. 故答案为:29;8n-3 【点睛】
本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.
17.2【分析】利用同类项的定义得出同类项定义中的两个相同:(1)所含字母相同;(2)相同字母的指数相同进而求出答案【详解】∵单项式与是同类项∴b =3c =2故答案为:3;2【点睛】本题考查了同类项的定义利
解析:2 【分析】
利用同类项的定义得出同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,进而求出答案. 【详解】
∵单项式325x y 与23b c x y 是同类项, ∴b =3,c =2, 故答案为:3;2. 【点睛】
本题考查了同类项的定义,利用同类项的次数相同得出b ,c 的值是解题关键.
18.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2
212121n n n -+=-
【分析】
观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案. 【详解】
根据题意可得:当n≥1时,可归纳出()()()2
212121n n n -+=- 故答案为:()()()2
212121n n n -+=-.
【点睛】
本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.
19.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数
解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.
【分析】
(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;
(2)易得最小的奇数为n-2,最大的奇数为n+2;
(3)余数为1或2的数都不能被3整除,从而列出代数式.
【详解】
解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,
∴它们的和为()()11n n n -+++=3n ;
(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;
(3)3n 能被3整除,余数为1或2的数都不能被3整除,
∴不能被3整除的数为31n +和32n +.
【点睛】
本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.
20.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键
解析:1.8 4.6x +
【分析】
起步价10元加上,超过3千米部分的费用即可.
【详解】
解:乘出租x 千米的付费是:10+1.8(x-3)
即1.8x+4.6.
故答案是:1.8x+4.6.
【点睛】
本题考查了列代数式,正确理解收费标准是关键.
三、解答题
21.132
【解析】
试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.
试题
原式222222244442x xy x y x xy y x y =-+--+-=-,
当12,2
x y =-=-
时,原式174.22=-= 22.-24.
【分析】 首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.
【详解】
解:∵230x y ++-=,
∴x+2=0,y-3=0,
∴x=-2,y=3, ∴152423
x y xy --+ ()()552342323
=-⨯--⨯+⨯-⨯ ()5524=-+-
24=-.
【点睛】
本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.
23.1+2+3+4+5;225;1+2+…+n ;
()n n 12+;11375 【解析】
分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2
n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.
详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225
(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[
n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()
n n 12
+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)
=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.
点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能
力.
24.-3.
【分析】
先合并同类项,根据已知得出m+2=0,3n-1=0,求出m 、n 的值后代入进行计算即可.
【详解】
my 3+3nx 2y +2y 3-x 2y +y =(m +2)y 3+(3n -1)x 2y +y ,
∵此多项式不含三次项,
∴m +2=0,3n -1=0,
∴m =-2,n =13
, ∴2m +3n =2×(-2)+3×
13=-4+1=-3. 【点睛】
本题考查了合并同类项和解一元一次方程的应用,关键是求出m 、n 的值.
25.见解析
【分析】
原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1
【详解】
解:∵3323323763363101a a b a b a a b a b a -+++--+
()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;
∴这个多项式的值与,a b 的值无关,
故,a b 的值抄错后结果也正确.
【点睛】
此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.
26.m =1,n =4.
【分析】
根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.
【详解】
∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,
解得m =1,n =4.
【点睛】
本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.。