九年级数学上册第十九章随机事件与概率检测题(含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九章 随机事件与概率检测题
(时间:90分钟,满分:100分)
一、选择题(每小题3分,共30分)
1.下列事件是必然事件的是( )
A.某运动员投篮时连续3次全中
B.太阳从西方升起
C.打开电视正在播放动画片《喜羊羊与灰太狼》
D.若a ≤0,则|a |=−a
2.下面事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到100℃会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有( )
A.1个
B.2个
C.3个
D.4个
3.气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是( )
A.本市明天将有80%的地区降水
B.本市明天将有80%的时间降水
C.明天肯定下雨
D.明天降水的可能性比较大
4.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( ) A.1 B.1
2 C.1
3 D.0 5.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是1p ,摸到红球的概率是2p ,则( )
A.1211p p ==,
B.1201p p ==,
C.120p p ==,
D.12p p == 6.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( ) A.13 B.16 C.12 D.14
7.某市民政部门:“五•一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这此彩票中,设置如下奖项:
A.20001
B.5001
C.5003
D.2003
1414
8.做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()
A.0.22
B.0.44
C.0.50
D.0.56
9.关于频率和概率的关系,下列说法正确的是()
A.频率等于概率
B.当实验次数很大时,频率稳定在概率附近
C.当实验次数很大时,概率稳定在频率附近
D.实验得到的频率与概率不可能相等
10.现有游戏规则如下:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到“38”,谁就获胜.在这个游戏中,若采取合理的策略,你认为()
A.后报者可能胜
B.后报者必胜
C.先报者必胜
D.不分胜负
二、填空题(每小题3分,共24分)
11.下列6个事件中:(1)掷一枚硬币,正面朝上;(2)从一副没有大小王的扑克牌中抽出
一张恰为黑桃;(3)随意翻开一本有400页的书,正好翻到第100页;(4)天上下雨,马路潮湿;(5)买奖券中特等大奖;(6)掷一枚正方体骰子,得到的点数大于7.其中确定事件为___________,不确定事件为____________;不可能事件为_________;必然事件为__________;不确定事件中,发生可能性最大的是_______,发生可能性最小的是________.
12.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)
13.小芳掷一枚硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为______.
14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.
15.如图,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑
色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是________.
16.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.
17.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
种子粒数100 400 800 1 000 2 000 5 000 发芽种子粒数85 318 652 793 1 604 4 005 发芽频率0.850 0.795 0.815 0.793 0.802 0.801 根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1).
18.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此
估计袋中的黄球约有_____个.
三、解答题(共46分)
19.(6分)一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全
相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少
有一只次品;(3)3只次品;(4)至少有一只正品指出这些事件分
别是什么事件.
20. (6分)如图是小明家地板的部分示意图,它由大小相同的黑白
两色正方形拼接而成,家中的小猫在地板上行走,请问:
(1)小猫踩在白色的正方形地板上,这属于哪一类事件?
(2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件?
(3)小猫踩在红色的正方形地板上,这属于哪一类事件?
(4)小猫踩在哪种颜色的正方形地板上可能性较大?
21.(6分)一只小狗在如图所示的方砖上走来走去,求最终停在阴影方砖上的概率是多少?
红红
22.(6分)如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种,
指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当做指向右边的扇形),求下列事件的概率:
(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.
23.(6分)请用“一定”、“很可能”、“可能性极小”、“可能”、“不太可能”、“不可能”等语言来描述下列事件的可能性.
(1)买20注七星彩票,获特等奖500万.
(2)袋中有20个球,1个红的,19个白的,从中任取一球,取到红色的球.
(3)掷一枚均匀的骰子,6点朝上.
(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品.
(5)早晨太阳从东方升起.
(6)小丽能跳10m高.
24.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:
(1)计算“3点朝上”的频率和“5点朝上”的频率.
(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?
25.(8分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,
袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是1
4

(1)取出白球的概率是多少?
(2)如果袋中的白球有18只,那么袋中的红球有多少只?
第十九章 随机事件与概率检测题参考答案
1.D 解析:A 项和C 项可能发生也可能不发生,是随机事件;B 项不可能发生,是不可能事件;D 项必然发生,是必然事件.
2.A 解析:②在标准大气压下,水加热到100℃会沸腾是必然事件.
3.C 解析:本市明天降水概率是80%,只说明明天降水的可能性比较大,是随机事件,A ,B ,C 属于对题意的误解,只有D 正确.
4.C 解析:因为是随机选取的,故选取桂花、菊花、杜鹃花的可能性是相等的.
5.B 解析:因为袋中只有红球,故摸到白球是不可能事件,摸到红球是必然事件.
6.C 解析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为12
. 7.C
解析:因为从10万张彩票中购买一张,每张被买到的机会相同,
因而有10万个结果,奖金不少于50元的共有,
张)(6004001504010=+++,元所得奖金不少于所以500
3100000600)50(==P 故选C. 8.D 解析:在大量重复试验下,随机事件发生的频率可以作为概率的估计值,因此抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为1−0.44=0.56.
9.B 解析:A.频率只能估计概率;B 正确;C.概率是定值;D.可以相等,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.
10.C 解析:为了抢到38,必须抢到35,那么不论另一个人说36还是36、37,你都能胜.游戏的关键是报数先后顺序,并且每次报数的个数和对方合起来是三个,即对方报a (1≤a ≤2)个数,你就报(3−a )个数.抢数游戏,它的本质是一个是否被“3”整除的问题.谁先抢到35,对方无论叫“36”或“37”你都获胜.若甲同学先报数1,为抢到35,甲每次报数的个数和对方合起来是三个,(35−2)÷3=11,先报数者胜.
11.(4)(6) (1)(2)(3)(5) (6) (4) (1) (5)
解析:(1)因为一枚硬币有正反两面,所以掷一枚硬币,正面朝上,是随机事件;
(2)因为一副没有大小王的扑克牌中有黑桃、红桃、梅花及方块共四种颜色,故随机抽出一种恰是黑桃,是随机事件;
(3)因为一本书有400页,每页都有被翻到的可能性,正好翻到第100页,是随机事件;
(4)天上下雨后雨水落到地上,马路就湿了,是必然事件;
(5)买奖券可能中特等奖,也可能不中特等奖,是随机事件;
(6)正方体骰子共有6个面,点数为1,2,3,4,5,6,得到的点数小于7,是必然事件.
(1)发生的概率为2
1,可能性中最大;(5)发生的可能性最小,概率往往为数百万分之一. 12.不公平 解析:甲获胜的概率是
49,乙获胜的概率是59
,两个概率值不相等,故这个游戏不公平. 13.2
1 解析:掷一枚硬币正面向上的概率为21,概率是个固定值,不随试验次数的变化而变化. 14.45
解析:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是45
. 15.2
1 解析:圆形地面被分成面积相等的八部分,其中阴影占四部分,所以小球落在黑色石子区域内的概率是 21. 16.2
1 解析:由图可知阴影部分的面积是大圆面积的一半,所以豆子落在阴影部分的概率是
21. 17.0.8 解析:由表知,种子发芽的频率在0.8左右摆动,并且统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值.
18.15 解析:因为口袋里有25个球,试验200次,其中有120次摸到黄球,所以摸到黄球的频率为120200=35,所以袋中的黄球有25×35=15(个).故袋中的黄球约有15个.
19.解:(1)(2)可能发生,也可能不发生,是随机事件.
(3)一定不会发生,是不可能事件.
(4)一定发生,是必然事件.
20.解:(1)可能发生,也可能不发生,是不确定事件;
(2)一定会发生,是必然事件;
(3)一定不会发生,是不可能事件;
(4)踩在黑色的正方形地板上可能性较大.
21.解:因为方砖共有15块,而阴影方砖有5块,所以停在阴影方砖上的概率是51153
=. 22.解:转一次转盘,它的可能结果有四种:红、红、绿、黄,并且各种结果发生的可能性 相等.
(1)a (指针指向绿色)=14;(2)a (指针指向红色或黄色)=34
; (3)a (指针不指向红色)=
12. 23.解:(1)买20注七星彩票,获特等奖500万,可能性极小;
(2)袋中有20个球,1个红的,19个白的,从中任取一球,取到红色的球,不太可能;
(3)掷一枚均匀的骰子,6点朝上,可能;
(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品,很可能;
(5)早晨太阳从东方升起,一定;
(6)小丽能跳10 m高,不可能.
24.解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是3
16020=. (2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事 件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概 率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数 不一定是100次.
25.解:(1)()().434111=-
=-=取到红球取到白球P P (2)设袋中的红球有x 只,则有
1184x x =+ 或183184
x =+,解得6x =. 所以袋中的红球有6只.。

相关文档
最新文档