TRT励磁控制保护的研究与应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TRT励磁控制保护的研究与应用
0 前言
TRT(高炉煤气余压透平发电装臵)是利用高炉炉顶煤气具有的压力能及热能,使煤气通过煤气透平膨胀机做功,将其转换为机械能,驱动发电机发电的一种二次能源回收装臵,该装臵既回收了减压阀组泄放的能量,又净化煤气、降低噪音、稳定炉顶压力、改善高炉生产条件,不产生任何污染,是现代国际、国内钢铁企业公认的节能环保装臵。
1 TRT电气自动化优化实施背景
莱芜钢铁股份公司能源动力厂银前区两台TRT自2006年六月投运,运行以后发现励磁控制保护设备陈旧、技术落后,自动化水平低、可操作性差、不能满足生产运行需要和必要的保护,使得停机率和维修率频次高,修复费用大,两台TRT在2008年7月至2009年1月半年时间内非正常跳机六次;曾发生一起超速造成的透平机转子变形,轴瓦损害事故;因保护不完善造成转子绕组匝间短路接地事故一次。
因此TRT电气自动化优化升级迫在眉睫,优化升级对象为励磁控制系统、发电机保护系统、直流供电系统、远程监测控制系统和高压系统。
2 TRT电气自动化的分析与研究
2.1励磁系统的分析与研究
励磁装臵是发电机组的重要控制设备之一,其性能的优劣直接关系到机组自身和电力系统的安全稳定运行。
提高励磁装臵的控制性能,对于改善电力系统静态、暂态及动态稳定性相当重要,并且可以提高水轮发电机组的设备利用率。
本文针对励磁装臵陈旧落后的现状,对所存在的问题进行了较为深入的分析讨论,供给TRT发电机励磁电流的电源及其附属设备统称为励磁系统。
它由励磁功率单元和励磁调节器两个主要部分组成。
励磁功率单元向TRT发电机转子提供励磁电流;而励磁调节器则根据输入信号和给定的调节准则控制励磁功率单元的输出。
励磁系统的自动励磁调节器对提高电力系统并联机组的稳定性具有相当大的作用。
尤其是现代电力系统的发展导致机组稳定极限降低的趋势,也促使励磁技术不断发展。
励磁系统按照供电方式可以划分为他励式和自励式两大类。
励磁方式为二机他励可控硅励磁,励磁调节器的电源取自厂用变压器低压侧(TRT低压配
电室母排),厂用电设施在恢复瞬间的浪涌冲击需要吸收大量无功电流,造成厂用变压器上较大的电压降落,从而影响励磁装臵的运行稳定性;励磁电源取自厂用变这个中间环节供电,不但增加了厂用变压器的容量,而且受厂用低压电器设备运行情况的影响,供电可靠性差,尤其在低压双电源切换动作时,常常会造成发电机失磁,甚至造成发电机进相和失步。
原励磁装臵严重制约已实施改造的微机调速、微机保护、计算机监控作用的发挥,已成为进一步提高电厂整体自动化水平的瓶颈。
在广泛调查分析国内目前先进励磁装臵及其工作性能的基础上,提出了适合安康水电站机组励磁系统改造的最佳方案——双微机全控桥式自并励磁系统。
新方案的实施,将充分发挥安康水电站在西北电网中承担调峰、调频的重要作用。
为了充分利用设备,保持原机组的机械旋转系统状态,现将励磁系统改造后空余出的交流励磁机改为同轴运转的副发电机,增加整体机组的工作容量。
本文对副发电机结构参数、电磁谐波引起的振动和推力轴承强度等进行了详细的计算。
并对副发电机与主发电机可能运行方案做了深入的分析研究。
当副发电机与主发电机分别运行于两个独立电网时,由于机组转速取决于主发电机所在的大电网,副发电机将承担其所在电网的全部变动负荷。
因此,副发电机所在的电网负荷容量不要超过副发电机的容量。
当副发电机与主发电机运行于同一电网时,二者不仅有电磁联系,而且有机械联系。
在副发电机或主发电机励磁发生变化时,不但会使机组的无功发生变化,而且会在主、副发电机之间发生有功功率的重新分配。
主、副发电机磁极中心线与系统初相角前后不同,将使主、副发电机并入电网的顺序不同。
由于主、副发电机容量差别很大,并考虑到机械系统的稳定性,应保证主发电机带负荷优先原则。
它励可控硅励磁系统主要的优点是在发电站出口附近发生短路故障时,强励能力强,有利于提高系统的暂态稳定水平,在故障切除时间比较长、系统容量相对小的50、60年代这一优点是很突出的。
但是,随着电力系统装机容量的增大,快速保护的应用,故障切除时间的缩短,它励可控硅励磁系统的优势已不是很明显。
自并励可控硅励磁系统的优点是结构简单,元部件少,其励磁电源来自机端变压器,无旋转部件,运行可靠性高,维护工作量小。
且由于变压器容量的变更比交流励磁机的变更更简单、容易,因而更经济,更容易满足不同电力系统、不同电站的暂态稳定水平对励磁系统强励倍数的不同要求。
它励可控硅励磁系统的缺点是由于交流励磁机是非标准产品,难以标准化,即使是同容量的发电机,尤其是水轮发电机,由于水头、转速的不同,强励倍数的不同,交流励磁机的容量、尺寸也不同,因此,价格较自并励可控硅励磁系统贵。
另外它励可控硅励磁系统与自并励可控硅励磁系统相比较,元部件多,又有旋转部件,可靠性相对较低,运行维护量大。
自并励可控硅励磁系统的缺点是它的励磁电源来自发电机端,受发电机机端电压变化的影响。
当发电机机端电压下降时其强励能力下降,对电力系统的暂态稳定不利。
不过随着电力系统中快速保护的应用,故障切除时间的缩短,且自并励可控硅励磁系统可以通过变压器灵活地选择强励倍数,可以较好地满足电力系统暂态稳定水平的要求。
综合考虑技术和经济两方面因素,推荐在发电机组采用自并励快速励磁方式。
为验证其正确性,通过稳定计算研究了满发时发电机组采用自并励励磁方式的稳定情况,计算结果表明,发电机组采用自并励励磁方式可满足系统稳定的要求,同时加装电力系统稳定器(PSS)。
可控硅的导通角等。
这里主要讲改变可控硅导通角的方法,它是根据发电机电压、电流或功率因数的变化,相应地改变可控硅整流器的导通角,于是发电机的励磁电流便跟着改变。
这套装臵一般由晶体管,可控硅电子元件构成,具有灵敏、快速、无失灵区、输出功率大、体积小和重量轻等优点。
在事故情况下能有效地抑制发电机的过电压和实现快速灭磁。
自动调节励磁装臵通常由测量单元、同步单元、放大单元、调差单元、稳定单元、限制单元及一些辅助单元构成。
被测量信号(如电压、电流等),经测量单元变换后与给定值相比较,然后将比较结果(偏差)经前臵放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的。
同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发。
调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷。
稳定单元是为了改善电力系统的稳定而引进的单元。
励磁系统稳定单元用于改善励磁系统的稳定性。
限制单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设臵的。
必须指出并不是每一种自动调节励磁装臵都具有上述各种单元,一种调节器装臵所具有的单元与其担负的具体任务有关。
励磁机本身就是可靠性不高的元件,可以说它是励磁系统的薄弱环节之一,
因励磁机故障而迫使发电机退出运行的事故并非鲜见,故相应地出现了不用励磁机的励磁方案。
如下图所示:发电机的励磁电源直接由发电机端电压获得,经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电机端电压恒定的励磁方式,是无励磁机的发电机自励系统。
最简单的发电机自励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统。
自并励系统中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统。
下图为无励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机端的整流变压器ZB 提供,经可控硅整流向发电机转子提供励磁电流,可控硅元件SCR由自动励磁调节器控制。
系统起励时需要令加一个起励电源。
随着微机励磁调节器的应用,氧化锌非线性灭磁电阻的研制成功及大功率晶闸管及晶体管的广泛应用,提高了发电机励磁系统的可靠性,较大地改善了励磁系统静态和动态品质,大大提高了系统的技术性能指标
2.2保护系统的分析与研究
1发电机失磁保护
失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。
静稳阻抗判据在失磁后静稳边界时动作。
TV断线判据在满足以下两个条件中任一条件:│Ua UbUc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A在电力系统短路或短路切除等非失磁因素引起系统振荡时,保护采取措施闭锁Ufd(P),可防止保护误出口。
励磁低电压Ufd(P)判据动作后经t1(2s)发出失磁信号。
励磁低电压Ufd(P)判据、静稳阻抗判据均满足且无TV二次回路断线时经t2(6s)发出跳闸指令。
励磁低电压Ufd(P)判据、静稳阻抗、系统低电压判据均满足且无TV二次回路断线时经t3(1s)发出跳闸指令。
2发电机过激磁保护
过激磁保护是反应发电机因频率降低或者电压过高引起铁芯工作磁密过高的保护。
过激磁保护分高、低两段定值,低定值经固定延时5s发出信号和降低
励磁电压(降低励磁电压、励磁电流的功能暂未用),高定值经反时限动作于解列灭磁。
反时限延时上限为5秒,下限为200秒。
3发电机定子接地保护
发电机定子接地保护作为发电机定子单相接地故障保护,由基波零序电压部分和三次谐波电压两部分组成,基波零序电压保护机端至机尾95区域的定子绕组单相接地故障,由反映发电机机端零序电压原理构成,经时限t1(3s)动作于解列灭磁;三次谐波电压保护机尾至机端30区域的定子绕组单相接地故障,由发电机中性点和机端三次谐波原理构成,经时限t2(5s)动作于信号。
二者组成100的定子接地保护。
保护设有PT断线闭锁。
4发电机定子匝间保护
保护由纵向零序电压和故障分呈负序方向判据构成,设臵PT断线闭锁措施,作为发电机内部匝间、相间短路以及定子绕组开焊的主保护.故障分量负序方向判据通过检测流出发电机的负序功率实现纵向零序电压判据通检测中性点与发电机中性点直接相连但不接地的3PT开口三角绕组所输出的纵向3U0实现。
保护动作于全停。
5失步保护
保护采用三阻抗元件,通过阻抗的轨迹变化来检测滑极次数并确定振荡中心的位臵。
在短路故障、系统振荡、电压回路断线等情况下,保护不误动作。
保护一般动作于信号;当振荡中心在发电机-变压器组内部,保护I段启动经t1(0.5s)发跳闸命令,
动作于解列灭磁;当振荡中心在发电机-变压器组外部,保护II段启动经t2(2s)发信号。
保护装设有电流闭锁装臵,用以保证在断路器断开时电流不超过断路器额定失步开断电流。
6低频累加保护
低频累加保护反应系统频率降低对汽轮机影响的累积效应,保护由灵敏的频率继电器和计数器组成,经出口断路器辅助接点闭锁(即发电机退出运行时低频累加保护也退出运行),累计系统频率低于频率定值47.5Hz的时间,当累计时间达到整定值3000秒时,经延时30秒动作于发信号。
装臵在运行时可实时监视:定值,频率f及累计时间的显示。
发变组差动保护、变压器差动保护及高变差动保护是被保护元件内部相间短路故障的主保护,采用比率制动式原理。
区外故障时可靠地躲过各侧CT特性不一致所产生的不平衡电流,区内故障保护灵敏地动作。
为避免在变压器励磁涌流作用下保护误动,保护采用二次谐波闭锁。
保护设有不经二次谐波闭锁差流速断功能,当差动电流达到整定值时瞬间切除故障。
保护具有CT断线闭锁功能(实际未用)。
CT断线判别与发电机差动保护相同。
7励磁回路过负荷保护
励磁回路过负荷保护用作转子励磁回路过流或过负荷的保护,接成三相式,由定时限和反时限两部分组成。
定时限部分动作电流按正常运行最大额定电流下能可靠返回的条件整定,经时限t1(5s)动作于信号和降低励磁电流(降低励磁电流的功能未用);反时限部分动作特性按发电机励磁绕组的过负荷能力确定,保护动作于解列灭磁,反时限上限为10秒。
8发电机转子一点接地保护
发电机转子一点接地保护用于反应发电机转子回路一点接地故障,保护采用乒乓式切换原理,轮流采样转子回路正、负极对地电压,通过求解两个不同的接地回路方程,实时计算转子接地电阻和接地位臵。
保护经延时2秒动作于信号。