人教版初中七年级数学上册第四章《几何图形初步》模拟检测卷(含答案解析)(33)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.(0分)[ID :68653]如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )
A .北偏西30°
B .北偏西60°
C .北偏东30°
D .北偏东60° 2.(0分)[ID :68645]下面四个图形中,能判断∠1>∠2的是( )
A .
B .
C .
D . 3.(0分)[ID :68605]已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )
A .2 r h π
B .22?r h π
C .23?r h π
D .24?r h π 4.(0分)[ID :68604]如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点
E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )
A .2
B .1
C .0
D .-1
5.(0分)[ID :68597]已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )
A .①②
B .③④
C . ①②④
D .①②③④ 6.(0分)[ID :68591]一个小立方块的六个面分别标有字母A ,B ,C ,D ,
E ,
F ,从三个不同的方向看形如图所示,则字母D 的对面是( )
A.字母A B.字母F C.字母E D.字母B
7.(0分)[ID:68585]已知线段AB=6cm,反向延长线段AB到C,使BC=8
3
AB,D是BC的
中点,则线段AD的长为____cm
A.2 B.3 C.5 D.6
8.(0分)[ID:68584]一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()
A.7种B.6种C.5种D.4种
9.(0分)[ID:68583]已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()
A.6cm B.10cm C.4cm或10cm D.6cm或10cm 10.(0分)[ID:68580]在钟表上,1点30分时,时针与分针所成的角是( ).
A.150°B.165°C.135°D.120°
11.(0分)[ID:68576]下列平面图形中不能围成正方体的是()
A.B.
C.D.
12.(0分)[ID:68567]下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近
B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标
C.向远方延伸的铁路给我们一条直线的印象
D.数轴是一条特殊的直线
13.(0分)[ID:68564]用一个平面去截一个圆锥,截面的形状不可能是()
A.B.C.D.
14.(0分)[ID:68563]用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有()
A.7个面B.15条棱C.7个顶点D.10个顶点15.(0分)[ID:68558]下列说法不正确的是()
A.两条直线相交,只有一个交点B.两点之间,线段最短
C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线二、填空题
16.(0分)[ID:68714]硬币在桌面上快速地转动时,看上去象球,这说明了
_________________.
17.(0分)[ID:68706]如图,点C,M,N在线段AB上,且M是AC的中点,CN:NB=1:2,若AC=12,MN=15,则线段AB的长是_______.
18.(0分)[ID:68686]用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.
19.(0分)[ID:68676]按照图填空:
(1)图中以点0为端点的射线有______条,分别是____________.
(2)图中以点B为端点的线段有______条,分别是____________.
(3)图中共有______条线段,分别是_____________.
20.(0分)[ID:68672]乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A,B 两站之间需要安排不同的车票________种.
21.(0分)[ID:68666]填空:(1)8.76︒=________︒________'________'';(2)
︒'''=________︒;(3)36000''=________'=________︒;(4)
41348
0.15︒=________'=________''.
22.(0分)[ID:68658]把命题“等角的余角相等”改写成“如果……那么……”的形
式:__________________________. 是______命题(填“真”或“假”)
23.(0分)[ID:68751]如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.3
AC cm
=,1
=,线段PN=__cm.
CP cm
24.(0分)[ID :68749]一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)
25.(0分)[ID :68742]如图,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=________.
26.(0分)[ID :68741]如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.
27.(0分)[ID :68729]如图,点A ,O ,B 在同一直线上,12∠=∠,则与1∠互补的角是________.若1283235'''∠=︒,则1∠的补角为________.
三、解答题
28.(0分)[ID :68848]已知:点O 为直线AB 上一点,过点O 作射线OC ,
100BOC ∠=︒.
(1)如图1,求AOC ∠的度数;
(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;
(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.
29.(0分)[ID:68825]一个锐角的补角比它的余角的4倍小30,求这个锐角的度数和这个角的余角和补角的度数.
30.(0分)[ID:68788]如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
【参考答案】
2016-2017年度第*次考试试卷参考答案
**科目模拟测试
一、选择题
1.B
2.D
3.C
4.A
5.C
6.D
7.A
8.B
9.D
10.C
11.C
12.B
13.D
14.A
15.D
二、填空题
16.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解
17.39【分析】根据中点的定义可求出MC的长根据MN=MC+CN可得CN的长根据CN:NB=1:2可求出NB的长根据AB=AC+CN+NB即可得答案【详解】∵M是AC的中点
AC=12∴MC=AC=6∵M
18.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三
19.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的
20.20【解析】【分析】本题需先求出AB之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE是线段AB上的三个点根据题意可得:图中共用=10条线段∵A到B与B到A车票不同∴从A到B的车票
21.4536423600109540【分析】根据题意可知(1)(2)(3)(4)都是度分秒的计算由度化度分秒的运算法则整数的度数直接填入度数小数部分乘以60即可得到分分的小数部分乘以60得到秒;度分秒化
22.如果两个角是两个相等角的余角那么这两个角相等真【解析】【分析】根据命题由题设和结论组成把条件两个角是同角的余角写在如果的后面把结论这两个角相等写在那么的后面即可【详解】命题同角的余角相等改写成如果那
23.【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN 的长进而得出PN的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用
24.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体
25.53°【解析】由∠BOE与∠AOF是对顶角可得∠BOE=∠AOF又因为∠COD是平角可得∠1+∠2+∠AOF=180°将∠1=95°∠2=32°代入即可求得∠AOF的度数即∠BOE的度数
26.65°【解析】∵把一张长方形纸片沿AB折叠
∴∠2=∠3∵∠1+∠2+∠3=180°∠1=50°∴∠2=(180°-∠1)2=65°
27.【分析】根据补角的性质和余角的性质解答即可【详解】∵∠1=∠2∴与∠1互补的角是∠AOD∵∠1=28°32′35″∴∠1的补角=151°27′25″故答案为:∠AOD;151°27′25″【点睛】本
三、解答题
28.
29.
30.
2016-2017年度第*次考试试卷参考解析
【参考解析】
**科目模拟测试
一、选择题
1.B
解析:B
【分析】
先求出∠COB=60°,再根据具体位置确定答案.
【详解】
如图,
∵∠AOB=90°,∠AOC=30°,
∴∠COB=60°,
∴OB的方位角是北偏西60°,
故选:B.
.
【点睛】
此题考查方位角,已知一个角求其余角,正确理解方位角的确定方法及表示方法是解题的关键.
2.D
解析:D
【分析】
根据图象,利用排除法求解.
【详解】
A.∠1与∠2是对顶角,相等,故本选项错误;
B.根据图象,∠1<∠2,故本选项错误;
C.∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;
D.∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.
故选D.
【点睛】
本题考查了学生识图能力和三角形的外角性质.
3.C
解析:C
【分析】
根据柱体的体积V=S•h,求出形成的几何体的底面积,即可得出体积.
【详解】
∵柱体的体积V=S•h,其中S表示柱体的底面面积,h表示柱体的高,现将矩形ABCD绕轴l旋转一周,
∴柱体的底面圆环面积为:π(2r)2-πr2=3πr2,
∴形成的几何体的体积等于:3πr2h.
故选:C.
【点睛】
此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.
4.A
解析:A
【分析】
根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.
【详解】
∵|AD|=|6-(-5)|=11,2AB=BC=3CD,
∴AB=1.5CD,
∴1.5CD+3CD+CD=11,
∴CD=2,
∴AB=3,
∴BD=8,
∴ED=1
BD=4,
2
∴|6-E|=4,
∴点E所表示的数是:6-4=2.
∴离线段BD的中点最近的整数是2.
故选:A.
【点睛】
本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
5.C
解析:C
【分析】
分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.
【详解】
解:当C在线段AB上时,BC=AB-AC= 8-6=2;
当C在线段BA的延长线上时,BC=AB+AC =8+6=14;
当C不在直线AB上时,AB、AC、BC三边构成三角形,则2<BC<14,
综上所述①②④正确
故选:C.
【点睛】
本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键.6.D
解析:D
【分析】
根据与A相邻的四个面上的数字确定即可.
【详解】
由图可知,A相邻的四个面上的字母是B、D、E、F,
所以,字母D的对面是字母B.
故选:D.
本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.7.A
解析:A
【分析】
由BC=8
3
AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出
AD的长即可.
【详解】
∵BC=8
3
AB,AB=6cm,
∴BC=6×8
3
=16cm,
∵D是BC的中点,
∴BD=1
2
BC=8cm,
∵反向延长线段AB到C,
∴AD=BD-AB=8-6=2cm,
故选A.
【点睛】
本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.
8.B
解析:B
【分析】
根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.
【详解】
如图,
∵线段AD被B、C两点分成AB、AC、AD、BC、BD、CD六条的线段
∴能量的长度有:2、3、5、7、8、10,共6个,
故选B.
【点睛】
本题考查的实质是找出已知图形上线段的条数.
9.D
解析:D
【分析】
由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据
线段的和差关系求出AC的长即可.
【详解】
∵点C在直线AB上,AB=8,BC=2,
∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,
当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,
∴AC的长度是6cm或10cm.
故选D.
【点睛】
本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.10.C
解析:C
【分析】
根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.
【详解】
钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.
故选C.
【点睛】
此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.
11.C
解析:C
【分析】
根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.
【详解】
根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,
只有C选项不能围成正方体.
故选C.
【点睛】
此题考查展开图折叠成几何体,解题关键在于掌握正方体展开图的11种形式即可. 12.B
解析:B
【分析】
根据两点确定一条直线进而得出答案.
【详解】
在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.
故选B.
【点睛】
此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.
13.D
解析:D
【解析】
【分析】
圆锥是由圆和扇形围成的几何体,圆锥的底面是圆,侧面是曲面,截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关,据此对所给选项一一进行判断.【详解】
圆锥的轴截面是B,平行于底面的截面是C,当截面与轴截面斜交时截面是A;
无论如何截,截面都不可能是D.
故选D.
【点睛】
此题考查截一个几何体,解题关键是掌握圆锥的特点进行求解.
14.A
解析:A
【解析】
【分析】
用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.
【详解】
用一个平面截正方体,若所得的截面是一个三角形,
此时剩下的较大的几何体一定比正方体多了一个面,
如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,
如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.
故选:A.
【点睛】
此题考查截一个几何体,解题关键在于掌握立体图形.
15.D
解析:D
【解析】
【分析】
根据直线公理、线段公理进行逐一分析判断.
【详解】
A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;
B.两点之间,线段最短,是线段公理,故该选项正确;
C. 两点确定一条直线,是直线公理,故该选项正确;
D. 当三点共线时,则只能确定一条直线,故该选项错误.
故选 D.
此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.
二、填空题
16.面动成体【分析】本题是面动成体的原理在现实中的具体表现根据面动成体原理解答即可【详解】硬币在桌面上快速地转动时看上去象球这说明了面动成体故答案为面动成体【点睛】本题考查了点线面体掌握面动成体原理是解
解析:面动成体
【分析】
本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.
【详解】
硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为面动成体.
【点睛】
本题考查了点、线、面、体,掌握面动成体原理是解题的关键.
17.39【分析】根据中点的定义可求出MC的长根据MN=MC+CN可得CN的长根据CN:NB=1:2可求出NB的长根据AB=AC+CN+NB即可得答案【详解】∵M 是AC的中点AC=12∴MC=AC=6∵M
解析:39
【分析】
根据中点的定义可求出MC的长,根据MN=MC+CN可得CN的长,根据CN:NB=1:2,可求出NB的长,根据AB=AC+CN+NB即可得答案.
【详解】
∵M是AC的中点,AC=12,
∴MC=1
AC=6,
2
∵MN=MC+CN,MN=15,
∴CN=15-6=9,
∵CN:NB=1:2,
∴NB=18,
∴AB=AC+CN+NB=12+9+18=39.
故答案为39
【点睛】
本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.
18.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三
n .
解析:五,六,七,2
三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.
【详解】
用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.
故答案为五;六;七; n+2.
【点睛】
此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.
19.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的
解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC
【解析】
【分析】
判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.
【详解】
(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;
(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;
(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.
【点睛】
此题考查直线、射线、线段,解题关键在于掌握其性质定义.
20.20【解析】【分析】本题需先求出AB之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE是线段AB上的三个点根据题意可得:图中共用=10条线段∵A到B与B到A车票不同∴从A到B的车票
解析:20
【解析】
【分析】
本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.
【详解】
设点C、D、E是线段AB上的三个点,
根据题意可得:
图中共用()5152
-⨯=10条线段 ∵A 到B 与B 到A 车票不同.
∴从A 到B 的车票共有10×2=20种
故答案为20.
【点睛】
本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.
21.4536423600109540【分析】根据题意可知(1)(2)(3)(4)都是度分秒的计算由度化度分秒的运算法则整数的度数直接填入度数小数部分乘以60即可得到分分的小数部分乘以60得到秒;度分秒化
解析:45 36 4.23 600 10 9 540
【分析】
根据题意可知,(1)(2)(3)(4)都是度分秒的计算,由度化度分秒的运算法则,整数的度数直接填入,度数小数部分乘以60,即可得到分,分的小数部分乘以60得到秒;度分秒化度的运算法则为分别除以60,即可得到答案;
【详解】
解:(1)0.766045.6'⨯=,0.6'6036⨯="
∴8.76845'36︒=︒";
(2)48600.8'"÷=,'13.8600.23÷=︒
∴'41348 4.23"︒=︒;
(3)3600060600'"÷=,'6006010÷=︒
∴'3600060010"==︒;
(4)0.15609'︒⨯=,9'60540⨯="
∴0.159540'︒==".
故答案为(1)8,45,36;(2)4.23;(3)600,10;(4)9,540.
【点睛】
本题考查了度分秒之间的换算,解题的关键是掌握度分秒的运算法则.
22.如果两个角是两个相等角的余角那么这两个角相等真【解析】【分析】根据命题由题设和结论组成把条件两个角是同角的余角写在如果的后面把结论这两个角相等写在那么的后面即可【详解】命题同角的余角相等改写成如果那 解析:如果两个角是两个相等角的余角,那么这两个角相等. 真
【解析】
【分析】
根据命题由题设和结论组成,把条件“两个角是同角的余角”写在如果的后面,把结论“这两个
角相等"写在那么的后面即可
【详解】
命题“同角的余角相等”改写成“如果..,那么."的
形式是“如果两个角是同角的余角,那么这两个角相等”
如果两个角是同角的余角,那么这两个角相等是真命题
【点睛】
此题考查命题与定理,掌握三角形的性质是解题关键
23.【分析】根据线段中点的性质计算即可CB 的长结合图形根据线段中点的性质可得CN 的长进而得出PN 的长【详解】解:为的中点为的中点故答案为:
【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用 解析:32 【分析】
根据线段中点的性质计算即可CB 的长,结合图形、根据线段中点的性质可得CN 的长,进而得出PN 的长.
【详解】
解:AP AC CP =+,1CP cm =,
314AP cm ∴=+=,
P 为AB 的中点,
28AB AP cm ∴==,
CB AB AC =-,3AC cm =,
5CB cm ∴=,
N 为CB 的中点,
1522
CN BC cm ∴==, 32PN CN CP cm ∴=-=
. 故答案为:32
.
【点睛】
本题考查了两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.
24.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体 解析:12π或16π
【分析】
根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.
【详解】
解:绕它的直角边所在的直线旋转所形成几何体是圆锥,
①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:2134123
ππ⨯⨯=, ②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:2143163
ππ⨯⨯=, 故答案为:12π或16π.
【点睛】
此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论. 25.53°【解析】由∠BOE 与∠AOF 是对顶角可得∠BOE=∠AOF 又因为∠COD 是平角可得∠1+∠2+∠AOF=180°将∠1=95°∠2=32°代入即可求得∠AOF 的度数即∠BOE 的度数
解析:53°
【解析】
由∠BOE 与∠AOF 是对顶角,可得∠BOE=∠AOF ,又因为∠COD 是平角,可得
∠1+∠2+∠AOF=180°,将∠1=95°,∠2=32°代入,即可求得∠AOF 的度数,即∠BOE 的度数.
26.65°【解析】∵把一张长方形纸片沿AB 折叠
∴∠2=∠3∵∠1+∠2+∠3=180°∠1=50°∴∠2=(180°-∠1)2=65°
解析:65°
【解析】
∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,
∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)÷2=65°.
27.【分析】根据补角的性质和余角的性质解答即可
【详解】∵∠1=∠2∴与∠1互补的角是∠AOD ∵∠1=28°32′35″∴∠1的补角=151°27′25″故答案为:∠AOD ;151°27′25″【点睛】本
解析:AOD ∠ 2512517'''︒
【分析】
根据补角的性质和余角的性质解答即可.
【详解】
∵∠1=∠2,
∴与∠1互补的角是∠AOD ,
∵∠1=28°32′35″,
∴∠1的补角=151°27′25″,
故答案为:∠AOD ;151°27′25″.
【点睛】
本题考查了余角和补角,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.
三、解答题
28.
(1)80°;(2)50°;(3)50︒或150︒,图见解析
【分析】
(1)直接根据邻补角的概念即可求解;
(2)直接根据角平分线的性质即可求解;
(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.
【详解】
解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;
(2)由(1)得80AOC ∠=︒,
90COD ∠=︒,
10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线, 11804022
AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;
(3)由(2)得40AOM ∠=︒,
BOP ∠与AOM ∠互余,
90BOP AOM ∴∠+∠=︒,
90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,
①当射线OP 在BOC ∠内部时(如图3-1),
1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;
②当射线OP 在BOC ∠外部时(如图3-2),
10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.
综上所述,COP ∠的度数为50︒或150︒.
【点睛】
此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.
29.
这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.
【分析】
设这个锐角为x 度,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.
【详解】
设这个锐角为x 度,由题意得:
()18049030x x -=--,
解得50x =.
即这个锐角的度数为50︒.
905040︒︒︒-=,18050130︒︒︒-=.
答:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.
【点睛】
本题考查了余角与补角,熟记“余角的和等于90°,补角的和等于180°”是解题的关键. 30.
60°
【分析】
根据∠AOC :∠COD :∠BOD=2:3:4分别设∠AOC=2x ,∠COD=3x ,∠BOD=4x ,根据这三个角之和等于180°,求得三个角的度数,然后根据角平分线的性质即可求得∠EOF 的大小.
【详解】
设∠AOC=2x ,∠COD=3x ,∠BOD=4x
∵∠AOC+∠COD+∠BOD=∠AOB=180°
∴2x+3x+4x=180°
∴x=20°
∴∠AOC=40°∠COD=60°∠BOD=80°
∵OE,OF 平分∠AOC ,∠BOD
∴∠EOC=20°,∠DOF=40°
∴∠EOF=120°
又∵OG 平分∠EOF
∴∠EOG=∠GOF=60°
∴∠GOF=60°.
【点睛】
本题考查角平分线的性质.角平分线把一个角平分成两部分,它们都等于原来角的12.。