统计学科学家介绍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伯努利
在科学史上,父子科学家、兄弟科学家并不鲜见,然而,在一个家族跨世纪的几代人中,众多父子兄弟都是科学家的较为罕见,其中,瑞士的伯努利家族最为突出。

伯努利家族3代人中产生了8位科学家,出类拔萃的至少有3位;而在他们一代又一代的众多子孙中,至少有一半相继成为杰出人物。

伯努利家族的后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。

最不可思议的是这个家族中有两代人,他们中的大多数数学家,并非有意选择数学为职业,然而却忘情地沉溺于数学之中,有人调侃他们就像酒鬼碰到了烈酒。

老尼古拉·伯努利(Nicolaus Bernoulli,公元1623~1708年)生于巴塞尔,受过良好教育,曾在当地政府和司法部门任高级职务。

他有3个有成就的儿子。

其中长子雅各布(Jocob,公元1654~1705年)和第三个儿子约翰(Johann,公元1667~1748年)成为著名的数学家,第二个儿子小尼古拉(Nicolaus I,公元1662~1716年)在成为彼得堡科学院数学界的一员之前,是伯尔尼的第一个法律学教授。

1654年12月27日,雅各布·伯努利生于巴塞尔,毕业于巴塞尔大学,1671年17岁时获艺术硕士学位。

这里的艺术指“自由艺术”,包括算术、几何学、天文学、数理音乐和文法、修辞、雄辩术共7大门类。

遵照父亲的愿望,他于1676年22岁时又取得了神学硕士学位。

然而,他也违背父亲的意愿,自学了数学和天文学。

1676年,他到日内瓦做家庭教师。

从1677年起,他开始在那里写内容丰富的《沉思录》。

1678年和1681年,雅各布·伯努利两次外出旅行学习,到过法国、荷兰、英国和德国,接触和交往了许德、玻意耳、胡克、惠更斯等科学家,写有关于彗星理论(1682年)、重力理论(1683年)方面的科技文章。

1687年,雅各布在《教师学报》上发表数学论文《用两相互垂直的直线将三角形的面积四等分的方法》,同年成为巴塞尔大学的数学教授,直至1705年8月16日逝世。

1699年,雅各布当选为巴黎科学院外籍院士;1701年被柏林科学协会(后为柏林科学院)接纳为会员。

许多数学成果与雅各布的名字相联系。

例如悬链线问题(1690年),曲率半径公式(1694年),“伯努利双纽线”(1694年),“伯努利微分方程”(1695年),“等周问题”(1700年)等。

雅各布对数学最重大的贡献是在概率论研究方面。

他从1685年起发表关于赌博游戏中输赢次数问题的论文,后来写成巨著《猜度术》,这本书在他死后8年,即1713年才得以出版。

最为人们津津乐道的轶事之一,是雅各布醉心于研究对数螺线,这项研究从1691年就开始了。

他发现,对数螺线经过各种变换后仍然是对数螺线,如它的渐屈线和渐伸线是对数螺线,自极点至切线的垂足的轨迹,以极点为发光点经对数螺线反射后得到的反射线,以及与所有这些反射线相切的曲线(回光线)都是对数螺线。

他惊叹这种曲线的神奇,竟在遗嘱里要求后人将对数螺线刻在自己的墓碑上,并附以颂词“纵然变化,依然故我”,用以象征死后永生不朽。

(二)
雅各布·伯努利的弟弟约翰·伯努利比哥哥小13岁,1667年8月6日生于巴塞尔,1748年1月1日卒于巴塞尔,享年81岁,而哥哥只活了51岁。

约翰于1685年18岁时获巴塞尔大学艺术硕士学位,这点同他的哥哥雅各布一样。

他们的父亲老尼古拉要大儿子雅各布学法律,要小儿子约翰从事家庭管理事务。

但约翰在雅各布的带领下进行反抗,去学习医学和古典文学。

约翰于1690年获医学硕
士学位,1694年又获得博士学位。

但他发现他骨子里的兴趣是数学。

他一直向雅各布学习数学,并颇有造诣。

1695年,28岁的约翰取得了他的第一个学术职位——荷兰格罗宁根大学数学教授。

10年后的1705年,约翰接替去世的雅各布任巴塞尔大学数学教授。

同他的哥哥一样,他也当选为巴黎科学院外籍院士和柏林科学协会会员。

1712、1724和1725年,他还分别当选为英国皇家学会、意大利波伦亚科学院和彼得堡科学院的外籍院士。

约翰的数学成果比雅各布还要多。

例如解决悬链线问题(1691年),提出洛必达法则(1694年)、最速降线(1696年)和测地线问题(1697年),给出求积分的变量替换法(1699年),研究弦振动问题(1727年),出版《积分学教程》(1742年)等。

约翰与他同时代的110位学者有通信联系,进行学术讨论的信件约有2500封,其中许多已成为珍贵的科学史文献,例如同他的哥哥雅各布以及莱布尼茨、惠更斯等人关于悬链线、最速降线(即旋轮线)和等周问题的通信讨论,虽然相互争论不断,特别是约翰和雅各布互相指责过于尖刻,使兄弟之间时常造成不快,但争论无疑会促进科学的发展,最速降线问题就导致了变分法的诞生。

约翰的另一大功绩是培养了一大批出色的数学家,其中包括18世纪最著名的数学家欧拉、瑞士数学家克莱姆、法国数学家洛必达,以及他自己的儿子丹尼尔和侄子尼古拉二世等。

(三)
约翰·伯努利想迫使他的第二个儿子丹尼尔去经商,但丹尼尔在不由自主地陷进数学之前,曾宁可选择医学成为医生。

丹尼尔(Daniel,公元1700~1782年)出生于荷兰的格罗宁根,1716年16岁时获艺术硕士学位;1721年又获医学博士学位。

他曾申请解剖学和植物学教授职位,但未成功。

丹尼尔受父兄影响,一直很喜欢数学。

1724年,他在威尼斯旅途中发表《数学练习》,引起学术界关注,并被邀请到圣彼得堡科学院工作。

同年,他还用变量分离法解决了微分方程中的里卡提方程。

1725年,25岁的丹尼尔受聘为圣彼得堡的数学教授。

1727年,20岁的欧拉(后人将他与阿基米德、艾萨克·牛顿、高斯并列为数学史上的“四杰”),到圣彼得堡成为丹尼尔的助手。

然而,丹尼尔认为圣彼得堡那地方的生活比较粗鄙?摇,以至于8年以后的1733年,他找到机会返回巴塞尔,终于在那儿成为解剖学和植物学教授,最后又成为物理学教授。

1734年,丹尼尔荣获巴黎科学院奖金,以后又10次获得该奖金。

能与丹尼尔媲美的只有大数学家欧拉。

丹尼尔和欧拉保持了近40年的学术通信,在科学史上留下一段佳话。

在伯努利家族中,丹尼尔是涉及科学领域较多的人。

他出版了经典著作《流体动力学》(1738年);研究弹性弦的横向振动问题(1741~1743年),提出声音在空气中的传播规律(1762年)。

他的论著还涉及天文学(1734年)、地球引力(1728年)、湖汐(1 740年)、磁学(1743、1746年),振动理论(1747年)、船体航行的稳定(1753、1757年)和生理学(1721、1728年)等。

凡尼尔的博学成为伯努利家族的代表。

丹尼尔于1747年当选为柏林科学院院士,1748年当选巴黎科学院院士,1750年当选英国皇家学会会员。

他一生获得过多项荣誉称号。

著名的伯努利家族曾产生许多传奇和轶事。

对于这样一个既有科学天赋然而又语言粗暴的家族来说,这似乎是很自然的事情。

一个关于丹尼尔的传说这是样的:有一次在旅途中,年轻的丹尼尔同一个风趣的陌生人闲谈,他谦虚地自我介绍说:“我是丹尼尔·伯努利。

”陌生人立即带着讥讽的神情回答道:“那我就是艾萨克·牛顿!”
贝叶斯
目录[隐藏]
【理论概述】
【贝叶斯公式】
【贝叶斯决策理论分析】
【贝叶斯决策判据】
[编辑本段]
【理论概述】
贝叶斯(1702-1763) Thomas Bayes,英国数学家.1702年出生于伦敦,做过神甫。

1742年成为英国皇家学会会员。

176 3年4月7日逝世。

贝叶斯在数学方面主要研究概率论。

他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用。

贝叶斯的另一著作《机会的学说概论》发表于1758年。

贝叶斯所采用的许多术语被沿用至今。

贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。

贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。

贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:
1、已知类条件概率密度参数表达式和先验概率。

2、利用贝叶斯公式转换成后验概率。

3、根据后验概率大小进行决策分类。

他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。

贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。

贝叶斯公式是他在1763年提出来的:假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。

如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。

P(Bi∣A)既是对以A为前提下Bi的出现概率的重新认识,称P(Bi∣A)为后验概率。

经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。

【贝叶斯公式】
设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。

对于任一事件x,P(x)>0,则有:
n
P(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)
i=1
贝叶斯公式
[编辑本段]
【贝叶斯决策理论分析】
(1)如果我们已知被分类类别概率分布的形式和已经标记类别的训练样本集合,那我们就需要从训练样本集合中来估计概率分布的参数。

在现实世界中有时会出现这种情况。

(如已知为正态分布了,根据标记好类别的样本来估计参数,常见的是极大似然率和贝叶斯参数估计方法)
(2)如果我们不知道任何有关被分类类别概率分布的知识,已知已经标记类别的训练样本集合和判别式函数的形式,那我们就需要从训练样本集合中来估计判别式函数的参数。

在现实世界中有时会出现这种情况。

(如已知判别式函数为线性或二次的,那么就要根据训练样本来估计判别式的参数,常见的是线性判别式和神经网络)
(3)如果我们既不知道任何有关被分类类别概率分布的知识,也不知道判别式函数的形式,只有已经标记类别的训练样本集合。

那我们就需要从训练样本集合中来估计概率分布函数的参数。

在现实世界中经常出现这种情况。

(如首先要估计是什么分布,再估计参数。

常见的是非参数估计)
(4)只有没有标记类别的训练样本集合。

这是经常发生的情形。

我们需要对训练样本集合进行聚类,从而估计它们概率分布的参数。

(这是无监督的学习)
(5)如果我们已知被分类类别的概率分布,那么,我们不需要训练样本集合,利用贝叶斯决策理论就可以设计最优分类器。

但是,在现实世界中从没有出现过这种情况。

这里是贝叶斯决策理论常用的地方。

问题:假设我们将根据特征矢量x 提供的证据来分类某个物体,那么我们进行分类的标准是什么?decide wj,if(p(wj|x)> p(wi|x))(i不等于j)应用贝叶斯展开后可以得到p(x|wj)p(wj)>p(x|wi)p(wi)即或然率p(x|wj)/p(x|wi)>p(wi)/p(wj),决策规则就是似然率测试规则。

结论:对于任何给定问题,可以通过似然率测试决策规则得到最小的错误概率。

这个错误概率称为贝叶斯错误率,且是所有分类器中可以得到的最好结果。

最小化错误概率的决策规则就是最大化后验概率判据。

[编辑本段]
【贝叶斯决策判据】
贝叶斯决策理论方法是统计模式识别中的一个基本方法。

贝叶斯决策判据既考虑了各类参考总体出现的概率大小,又考虑
了因误判造成的损失大小,判别能力强。

贝叶斯方法更适用于下列场合:
(1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。

(2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。

用这种方法进行分类时要求两点:第一,要决策分类的参考总体的类别数是一定的。

例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。

第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率密度函数P(x/Di)是已知的。

显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。

对于两类故障诊断问题,就相当于在识别前已知正常状态D1的概率户(D1)和异常状态0:的概率P(D2),它们是由先验知识确定的状态先验概率。

如果不做进一步的仔细观测,仅依靠先验概率去作决策,那么就应给出下列的决策规则:若P(D1)>P(D 2),则做出状态属于D1类的决策;反之,则做出状态属于D2类的决策。

例如,某设备在365天中,有故障是少见的,无故障是经常的,有故障的概率远小于无故障的概率。

因此,若无特B,j明显的异常状况,就应判断为无故障。

显然,这样做对某一实际的待检状态根本达不到诊断的目的,这是由于只利用先验概率提供的分类信息太少了。

为此,我们还要对系统状态进行状态检测,分析所观测到的信息。

高斯
目录[隐藏]
数学家
【人物介绍】
【物理单位】
演员高斯
【个人档案】
【高斯简介】
【演艺经历】
【寻找高斯】
数学家
【人物介绍】
【物理单位】
演员高斯
【个人档案】
【高斯简介】
【演艺经历】
【寻找高斯】 [高斯奥特曼]
[编辑本段]
数学家
[编辑本段]
【人物介绍】
物理学家、数学家卡尔·弗里德里希·高斯
高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。

高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿、欧拉并列,同享盛名。

高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于哥廷根。

幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。

1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。

从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。

高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。

他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。

1792年,15岁的高斯进入Braunschweig学院。

在那里,高斯开始对高等数学作研究。

独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic -geometric mean)。

1795年高斯进入哥廷根大学。

1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。

5年以后,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。

1855年2月23日清晨,高斯于睡梦中去世。

生平
高斯是一对普通夫妇的儿子。

他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。

在她成为高斯父亲的第二个妻子之前,她从事女佣工作。

他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。

当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。

他曾说,他在麦仙翁堆上学会计算。

能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

物理学家、数学家卡尔·弗里德里希·高斯
高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。

高斯被认为是最重要的数学家,有数学王子的美誉,并被誉为历史上伟大的数学家之一,和阿基米德、牛顿、欧拉并列,同享盛名。

哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。

当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。

他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

高斯的老师Bruettner与他助手Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhel m Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。

于是他们从高斯14岁起,便资助其学习与生活。

这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。

18岁时,高斯转入哥廷根大学学习。

在他19岁时,第一个成功的用尺规构造出了规则的17角形。

高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。

在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。

此后,他又有两个孩子。

Wilhelmine(1809-1840)和Louis(1809-1810)。

1807年高斯成为哥廷根大学的教授和当地天文台的台长。

虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。

尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼。

高斯墓地:高斯非常信教且保守。

他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Jo hanna也离开人世。

次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。

他们又有三个孩子:Eugen (18 11-1896), Wilhelm (1813-1883) 和Therese (1816-1864)。

1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。

1839年4月18日,他的母亲在哥廷根逝世,享年95岁。

高斯于1855年2月23日凌晨1点在哥廷根去世。

他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。

贡献
18岁的高斯发现了质数分布定理和最小二乘法。

通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。

在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。

其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

在高斯19岁时,仅用没有刻度的尺规与圆规便构造出了正17边形(阿基米德与牛顿均未画出)。

并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。

高斯计算的谷神星轨迹高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个复数解。

在他的第一本著名的著作《数论》中,作出了二次互反律的证明,成为数论继续发展的重要基础。

在这部著作的第一章,导出了三角形全等定理的概念。

高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。

并用这种方法,发现了谷神星的运行轨迹。

谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。

皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。

高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。

奥地利天文学家Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。

从此高斯名扬天下。

高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelesti um in sectionibus conicis solem ambientium )中。

高斯设计的汉诺威大地测量的三角网为了获知任意一年中复活节的日期,高斯推导了复活节日期的计算公式。

在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。

通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显著的提高了测量的精度。

出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约45 0公里外的地方。

高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。

高斯亲自参加野外测量工作。

他白天观测,夜晚计算。

五六年间,经他亲自计算过的大地测量数据,超过100万次。

当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。

在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。

汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。

在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。

日光反射仪由于要解决如何用椭圆在球面上的正形投影理论解决大地测量问题,高斯亦在这段时间从事曲面和投影的理论,这成了微分几何的重要基础。

他独自提出不能证明欧氏几何的平行公设具有…物理的‟必然性,至少不能用人类理智,也不能给予人类理智以这种证明。

但他的非欧几何的理论并没有发表,也许是因为对处于同时代的人不能理解对该理论的担忧。

后来相对
论证明了宇宙空间实际上是非欧几何的空间,高斯的思想被近100年后的物理学接受了。

当时高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。

高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。

1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。

这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。

为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。

最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。

高斯和韦伯19世纪的30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。

他与韦伯(1804-1891)在电磁学的领域共同工作。

他比韦伯年长27岁,以亦师亦友的身份进行合作。

1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。

这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。

尽管线路才8千米长。

1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。

高斯和韦伯共同设计的电报高斯研究数个领域,但只将他思想中成熟的理论发表。

他经常提醒他的同事,该同事的结论已经被自己很早的证
高斯
明,只是因为基础理论的不完备性而没有发表。

批评者说他这样是因为极爱出风头。

实际上高斯只是一部疯狂的打字机,将他的结果都记录起来。

在他死后,有20部这样的笔记被发现,才证明高斯的宣称是事实。

一般认为,即使这20部笔记,也不是高斯全部的笔记。

下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数字化并置于互联网上。

高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上。

著作
1799年:关于代数基本定理的博士论文(Doktorarbeit uber den Fundamentalsatz der Algebra)
1801年:算术研究(Disquisitiones Arithmeticae)
1809年:天体运动论(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)
1827年:曲面的一般研究(Disquisitiones generales circa superficies curvas)
1843-1844年:高等大地测量学理论(上)(Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 1) 1846-1847年:高等大地测量学理论(下)(Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 2)。

相关文档
最新文档