北壁乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北壁乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)6月8日我县最高气温是29℃,最低气温是19℃,则当天我县气温t(℃)的变化范围是()
A.19≤t≤29
B.t<19
C.t≤19
D.t≥29
【答案】A
【考点】不等式及其性质
【解析】【解答】解:因为最低气温是19℃,所以19≤t,最高气温是29℃,t≤29,
则今天气温t(℃)的范围是19≤t≤29.
故答案为:A.
【分析】由最高气温是19℃,最低气温是29℃可得,气温变化范围是19≤t≤29,即可作出判断。
2、(2分)估计30的算术平方根在哪两个整数之间()
A. 2与3
B. 3与4
C. 4与5
D. 5与6
【答案】D
【考点】估算无理数的大小
【解析】【解答】解:∵25<30<36,
∴5<<6,
故答案为:D.
【分析】由25<30<36,根据算术平方根计算即可得出答案.
3、(2分)如图,AB//CD,那么∠A , ∠D ,∠E 三者之间的关系为()
A. ∠A+∠D+∠E=360°
B. ∠A-∠D+∠E=180°
C. ∠A+∠D-∠E=180°
D. ∠A+∠D+∠E=180°
【答案】B
【考点】平行线的判定与性质
【解析】【解答】解:过点E作EF∥AB
∵AB∥CD
∴AB∥CD∥EF
∴∠1+∠A=180°①,∠2=∠D②
由①+②得:∠1+∠A+∠2=180°+∠D
∴∠A-∠D+∠AED=180°
故答案为:B
【分析】过点E作EF∥AB,根据平行线的性质,得出∠1+∠A=180°①,∠2=∠D②,由①+②,即可得出结论。
4、(2分)方程2x+3y=15的正整数解有()
A.0个
B.1个
C.2个
D.无数个
【答案】C
【考点】二元一次方程的解
【解析】【解答】解:方程2x+3y=15,
解得:x= ,
当y=3时,x=3;当y=1时,x=6,
∴方程2x+3y=15的正整数解有2个,
故答案为:C.
【分析】将方程用含y的代数式表示x,再根据原方程的正整数解,因此分别求出当y=3时;当y=1时的x的值,就可得出此方程的正整数解的个数。
5、(2分)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()
吻仔鱼养生粥番茄蛋
炒饭
凤梨蛋
炒饭
酥炸排
骨饭
和风烧
肉饭
蔬菜海
鲜面
香脆炸
鸡饭
清蒸鳕
鱼饭
香烤鲷
鱼饭
红烧牛
腩饭
橙汁鸡
丁饭
白酒蛤
蜊面
海鲜墨
鱼面
嫩烤猪
脚饭
60元70
元
70
元
80
元
80
元
90
元
90
元
100
元
100
元
110
元
120
元
120
元
140
元
150
元
A.5
B.7
C.9
D.11
【答案】C
【考点】一元一次不等式的特殊解,一元一次不等式的应用【解析】【解答】解:设第二份餐的单价为x元,
由题意得,(120+x)×0.9≤200,
解得:x≤102,
故前9种餐都可以选择.
故答案为:C.
【分析】设第二份餐的单价为x元,根据“ 两份餐点的总花费不超过200元”列不等式,求出解集,再根据表格可得答案.
6、(2分)关于x的不等式(a+2 014)x-a>2 014的解集为x<1,那么a的取值范围是()
A. a>-2 014
B. a<-2 014
C. a>2 014
D. a<2 014
【答案】B
【考点】不等式的解及解集,解一元一次不等式
【解析】【解答】解:(a+2 014)x>a+2 014
∵此不等式的解集为:x<1,
∴a+2 014<0
解之:a<-2 014
故答案为:B
【分析】先将不等式转化为(a+2 014)x>a+2 014,再根据它的解集为x<1,得出a+2 014<0,解不等式即可求解。
7、(2分)下列四个数中,最大的一个数是()
A. 2
B.
C. 0
D. -2
【答案】A
【考点】实数大小的比较
【解析】【解答】解:∵0和负数比正数都小
而1<<2
∴最大的数是2
故答案为:A
【分析】根据正数都大于0和负数,因此只需比较2和的大小即可。
8、(2分)三元一次方程组的解为()
A. B. C. D.
【答案】C
【考点】三元一次方程组解法及应用
【解析】【解答】解:
②×4−①得2x−y=5④
②×3+③得5x−2y=11⑤
④⑤组成二元一次方程组得,
解得,
代入②得z=−2.
故原方程组的解为.
故答案为:C.
【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②
×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
9、(2分)二元一次方程组的解是()
A. B. C. D.
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故答案为:B.
【分析】观察方程组中未知数的系数特点:x的系数相等,因此利用①﹣②消去x,求出y的值,再将y的值代入方程①,就可求出x的值,即可得出方程组的解。
10、(2分)下列式子:①<y+5;②1>-2;③3m-1≤4;④a+2≠a-2中,不等式有()
A.2个
B.3个
C.4个
D.1个
【答案】C
【考点】不等式及其性质
【解析】【解答】解:根据不等式的定义:“用不等号表示两个量间的不等关系的式子叫做不等式”分析可知,上述四个式子都是不等式.
故答案为:C.
【分析】根据不等式的定义:用不等号表示两个量间的不等关系的式子叫做不等式,依次作出判断即可。
11、(2分)若a=-0.32,b=(-3)-2,c=,d=,则()
A.a<b<c<d
B.a<b<d<c
C.a<d<c<b
D.c<a<d<b
【答案】B
【考点】实数大小的比较
【解析】【解答】解:∵a=-0.32=-0.9,
b=(-3)-2=,
c=(-)-2=(-3)2=9,
d=(-)0=1,
∴9>1>>-0.9,
∴a<b<d<c.
故答案为:B.
【分析】根据幂的运算和零次幂分别计算出各值,比较大小,从而可得答案.
12、(2分)下列各式是一元一次不等式的是()
A.2x﹣4>5y+1
B.3>﹣5
C.4x+1>0
D.4y+3<
【答案】C
【考点】一元一次不等式的定义
【解析】【解答】解:根据一元一次不等式的概念,用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式,可知2x-4>5y+1含有两个未知数,故不正确;
3>-5没有未知数,故不正确;4x+1>0是一元一次不等式,故正确;根据4y+3<中分母中含有未知数,故不正确.
故答案为:C.
【分析】只含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的不等式叫一元一次不等式。
根据这个定义依次对各选项作出判断即可。
二、填空题
13、(1分)如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.
【答案】53°
【考点】对顶角、邻补角
【解析】【解答】解:∵∠2和∠COE为对顶角
∴∠2=∠COE=32°
∵∠1+∠COE+∠BOE=180°
即95°+32°+∠BOE=180°
∴∠BOE=53°
故答案为:53°。
【分析】根据对顶角相同,可求∠COE的度数,因为∠AOB为平角,根据平角等于180度,即可求得∠1+∠COE+∠BOE的和为180°,从而得出∠BOE的度数。
14、(1分)方程3x+2y=12的非负整数解有________个.
【答案】3
【考点】二元一次方程的解
【解析】【解答】解:由题意可知:
∴
解得:0≤x≤4,
∵x是非负整数,
∴x=0,1,2,3,4
此时y=6,,3,,0
∵y也是非负整数,
∴方程3x+2y=12的非负整数解有3个,
故答案为:3
【分析】将方程3x+2y=12 变形可得y=,再根据题意可得x0,,,解不等式组即可
求解。
15、(1分)已知,则x+y=________.
【答案】-2
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:因为, ,
所以可得: ,解方程组可得: ,所以x+y=-2,故答案为: -2.
【分析】根据几个非负数之和为0,则每一个数都为0,就可建立关于x、y的方程组,利用加减消元法求出方程组的解,然后求出x与y的和。
16、(2分)若方程组与有相同的解,则a=________,b=________。
【答案】3;2
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:
由得:11x=22
解之:x=2
把x=2代入得:4-y=5
解之:y=-1
∴
由题意得:把代入得
解之:
故答案为:
【分析】利用加减消元法解方程组,求出x、y的值,再将x、y的值代入,建立关于a、b的方程组,解方程组求出a、b的值即可。
17、(1分)若= =1,将原方程组化为的形式为________.
【答案】
【考点】二元一次方程组的其他应用
【解析】【解答】解:原式可化为:=1和=1,
整理得,.
【分析】由恒等式的特点可得方程组:=1,=1,去分母即可求解。
18、(1分)如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=________.
【答案】105°
【考点】对顶角、邻补角,垂线
【解析】【解答】解:∵∠AOC=90°,∠1=15°,
∴∠BOC=∠AOC-∠1=90°-15°=75°,
又∵∠BOC+∠2=180°,
∴∠2=180°-∠BOC=180°-75°=105°.
故答案为:105°.
【分析】根据角的运算结合已知条件得∠BOC=75°,由补角定义得∠2=180°-∠BOC即可得出答案.
三、解答题
19、(5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF的度数.
【答案】解:∵OE⊥CD于O
∴∠EOD=∠EOC=90°
∵∠AOD=∠EOD-∠AOE,∠EOA=50°
∴∠AOD=90º-50º=40º
∴∠BOC=∠AOD=40º
∵∠BOE=∠EOC+∠BOC
∴∠BOE=90°+40°=130°
∵OD平分∠AOF
∴∠DOF=∠AOD=40°
∴∠BOF=∠COD-∠BOC-∠DOF=180°-40°-40°=100°
【考点】角的平分线,角的运算,对顶角、邻补角,垂线
【解析】【分析】根据垂直的定义得出∠EOD=∠EOC=90°,根据角的和差得出∠AOD=90º-50º=40º,根据对顶角相等得出∠BOC=∠AOD=40º,根据角平分线的定义得出∠DOF=∠AOD=40°,根据角的和差即可算出∠BOF,∠BOE的度数。
20、(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55° ,最后根据三角形内角和定理得出答案。
21、(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,∠EOD=36°,
求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。
22、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
23、(5分)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD 的度数.
【答案】解:由角的和差,得∠EOF=∠COE-COF=90°-28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF-∠COF=62°-28°=34°.
由对顶角相等,得∠BOD=∠AOC=34°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据图形求出∠EOF=∠COE-COF的度数,由角平分线的性质求出∠AOF=∠EOF的度数,由角的和差和由对顶角相等,求出∠BOD=∠AOC的度数.
24、(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
每亩生产成本每亩产量油菜籽市场价格种植面积
310元130千克5元/千克500000亩
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)
【答案】(1)解:根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),
答:种植油菜每亩的种子成本是31元
(2)解:根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元
(3)解:根据题意得:340×500 000=170 000 000=1.7×108(元),
答:2014年南县全县农民冬种油菜的总获利为1.7×108元
【考点】统计表,扇形统计图,科学记数法—表示绝对值较大的数
【解析】【分析】(1)先根据扇形统计图计算种子的百分比,然后乘以每亩的成本可得结果;
(2)根据产量乘单价再减去生产成本可得获利;
(3)根据(2)中的利润乘以种植面积,最后用科学记数法表示即可.
25、(5分)如图,已知直线AB、CD交于O点,OA平分∠COE,∠COE:∠EOD=4:5,求∠BOD的度数.
【答案】解:∵∠COE:∠EOD=4:5,∠COE+∠EOD=180°
∴∠COE=80°,
∵OA平分∠COE
∴∠AOC=∠COE=40°
∴∠BOD=∠AOC=40°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义得出∠COE+∠EOD=180°,又∠COE:∠EOD=4:5,故∠COE=80°,根据角平分线的定义得出∠AOC=∠COE=40°,根据对顶角相等即可得出∠BOD的度数。
26、(5分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
【答案】解:∵∠FOC=90°,∠1=40°,
∴∠3=∠AOB-∠FOC-∠1=180°-90°-40°=50°,
∴∠DOB=∠3=50°
∴∠AOD=180°-∠BOD=130°
∵OE平分∠AOD
∴∠2=∠AOD=×130°=65°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义,由角的和差得出∠3的度数,根据对顶角相等得出∠DOB=∠3=50°,再根据邻补角的定义得出∠AOD=180°-∠BOD=130°,再根据角平分线的定义即可得出答案。