投资组合优化模型研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投资组合优化模型研究
学生姓名:刘铭雪学号:20095031277
数学与信息科学学院数学与应用数学专业
指导老师:韩建新职称:讲师
摘要:本文在VaR方法约束的基础上,对Markwitz均值—方差模型进行深入研究,给出了一种几何求解方法,并分析了该组合的特性,研究了在VaR约束条件下的最优投资组合的确定问题.
关键词:VaR;均值;方差;投资组合
Research on Portfolio Optimization Modle under
The VaR Constraint
Abstract: The basic constraint in VaR(Value at Risk)method is used in the article, Markwitz mean-variance model is in-depth studied, a geometrical method is gave , and the characteristics of the portfolio is analyzed,Determination of optimal portfolio VaR constraint conditions are researched.
Keywords: VaR(Value at Risk); mean value;variance;investment portfolio 前言
在丰富的金融投资理论中,组合投资理论占有非常重要的地位,投资决策也是金融机构经营活动中最基本的决策之一.现代投资组合理论试图解释获得最大投资收益与避免过分风险之间的基本权衡关系,也就是说投资者将不同的投资品种按一定的比例组合在一起作为投资对象,以达到在保证预定收益率的前提下把风险降到最小或者在一定风险的前提下使收益率最大.对金融机构和投资者来说,相对与资产向上波动,资产价格
向下波动而使资产遭受损失是真正的风险.正是由于这一点,集中考虑资产价格向下波动风险的风险价值(VaR)作为对风险的度量获得广泛的认可,越来越多的金融机构使用它来度量和管理市场风险,因此投资者在作投资选择时,应考虑VaR约束.VaR约束下的投资组合优化模型是在Markwitz证券组合理论框架基础上发展起来的,是对现代投资组合理论的扩展.
1. VaR约束下的投资组合优化模型
1.1VaR的基本原理与分析
1.1.1VaR的定义
VaR,即风险价值(Value at Risk),是指市场正常波动下,在一定的概率水平下,某一金融资产或证券组合在未来特定的一段时间内的最大可能损失.由于VaR值可以用来简明地表示市场风险的大小,因此没有任何专业背景的投资者和管理者都可以通过VaR值对金融风险进行评判.并且VaR 方法可以事前计算风险,它不像以往风险管理的方法都是在事后衡量风险大小.另外,VaR方法还可以衡量全部投资组合的整体风险,这也是传统金融风险管理所不能做到的.VaR方法的这些特点使得它逐渐成了度量金融风险的主流方法,越来越多的金融机构采用VaR测量市场风险,使用VaR 作为风险限额,特别是监管当局也在使用VaR确定风险资本金,这使得许多金融机构及其业务部门在投资选择时,往往需要满足VaR约束.为此,本文将研究一个在马柯维茨均值—方差模型的基础上加入VaR约束的投资组合优化模型.
根据VaR的定义,可以表示为:
其中,Prob表示概率,为证券组合在持有期内的损失,VaR为置信水平下处于风险中的价值.
从上面的定义中我们可以看出,VaR有两个重要的参数:资产组合的持有期及置信水平.这两个参数对VaR的计算及应用都起着重要的作用.例如,假定某一资产某天置信度为的日VaR为600万元,根据VaR的含义可知:
该资产以的可能性保证,这就意味着这一资产在24小时内发生大于600万人民币亏损的可能性为.
1.1.2资产组合的持有期
从投资者的角度来说,资产组合的持有期应由资产组合自身的特点来决定.资产的流动性越强,相应的持有期越短;反之,流动性越差,持有期则越长.国外商业银行由于其资产的高流动性,一般选择持有期为一个交易日;而各种养老基金所选择的持有期则较长,一般为一个月.在应用正态假设时,持有期选择得越短越好,因为资产组合的收益率不一定服从正态分布,但在持有期非常短的情形下,收益率渐进服从正态分布,这时的持有期一般选为一天.另外,持有期越短,得到大量样本数据的可能性越大.Basle 委员会选择10个交易日作为资产组合的持有期,这反映了其对监控成本及实际监管效果的一种折衷.持有期太短则监控成本过高;持有期太长则不利于及早发现潜在的风险.本文主要对股票投资组合进行分析,持有期选为一个交易日.
1.1.3置信水平
置信水平的选取反映了投资主体对风险的厌恶程度,置信水平越高,厌恶风险的程度越大.由前面所述VaR的定义我们可以看出,置信水平的选取对VaR值有很大影响.同样的资产组合,由于选取的置信水平不同计算出的VaR值也不同.由于国外已将VaR值作为衡量风险的一个指标对外公布,因此各金融机构有选取不同的置信水平以影响VaR值的内在动力.例如,国外各银行选取的置信水平就不尽相同,美洲银行和J.P.Morgan银行选择95%,花旗银行选择95.4%,
大通曼哈顿银行(Chemical and Chase)选择97.5%,信孚银行(Bankers Trust)选择99%.由VaR的定义可知,置信水平越高,资产组合的损失小于其VaR值的概率越大,也就是说,VaR模型对于极端事件的发生进行预测时失败的可能性越小.因此,Basle委员会要求采用99%的置信水平.
1.1.4VaR的数学表达式
为了更好地理解VaR的概念,下面我们将推导其数学表达式.
设资产组合的初始价值为,持有期末的期望收益为,的数学期望和标准差分别为和,在给定的置信水平下,期末资产组合的最低值为,其中为相应的最低收益率(一般为负值),则:
(1)
VaR也可由资产组合值的概率分布推导而得.由VaR的定义,
该式等价于:
即组合价值低于的概率为.设资产组合的价值服从正态分布,为标准正态分布相应的分位数,则:
其中为标准正态分布密度函数.又由
可知:
(2)
将(2)式代入(1)式可得:
(3)
这就是正态分布假设下VaR的一般表达式.
2.引入VaR约束的马柯维茨均值—方差模型
2.1马柯维茨均值—方差模型
经典马柯维茨均值—方差模型为:
模型()
其中,;是第种资产的预期回报率;是投资组合的权重向量;是种资产间的协方差矩阵;和分别是投资组合的期望回报率和回报率的方差.该模型的解在空间是图1中的抛物线,即投资组合的有效前沿.
马柯维茨均值-方差模型利用方差度量了资产组合的市场风险,但该方法主要存在两个缺点:①方差只描述了收益的偏离程度,却没有描述偏离的方向.而实际中最关心的是负偏离(损失);②方差并没反映证券组合的损失到底是多大.因此对于随机变量统计特征的完整描述需要引入概率分布,而不仅仅是方差.
2.2引入VaR约束
鉴于前述VaR方法在风险度量与管理领域中的主流地位,现在我们考虑在模型中加入VaR约束.假定置信水平为,由VaR的定义,有:
(4)
在模型()中考虑VaR约束后,经典均值-方差模型为:
模型() (5)
在正态分布下,(4)式可化为:
(6)
其中,是标准正态分布的分布函数.
模型()的解在空间中是图1中的弧线,称其为基于VaR约束下的投资组合的有效前沿.
VaR约束
-VaR
A
B
图1 基于VaR约束的投资组合的有效前沿
O
图1中VaR约束表现为一条斜率为,截距为-VaR的直线.在该直线或其以上的全部投资组合都具有的概率使其回报率超过最小值-VaR;而在直线以下的全部投资组合回报率在置信度下不超过-VaR.这样,VaR约束使投资组合选择仅仅限制在传统有效前沿和VaR约束直线间的阴影部分,即点
和之间的弧线上.进一步地,根据有效集定理,最优投资组合选择应为抛物线顶点与点之间的弧线,即弧线段.
2.3模型的几何求解方法
由图1可知,VaR约束的最优投资组合确定时,只需求出点和处的权重即可.但由于该模型的约束条件比较复杂,用传统的Laganerge乘子法无法求解.因此在这里我们用几何方法来解决此问题.
设种资产组合的权重是(其中),则投资组合的期望回报率与方差分别可表示为:
(7)
(8)
因为协方差矩阵是正定矩阵,所以在权重空间中,(8)式代表等方差超椭球面.取不同值可得到一族同心超椭球面,中心记为,表示所有的可能投资组合中风险最小的投资组合的权数;在权重空间中,(7)式代表等期望回报率超平面,取不同值可得到一族平行超平面.因而,种资产投资组合的最优权重应为等期望回报率超平面与等方差超椭球面的正切点.将这些正切点连接起来,就得到一条直线,称其为种资产投资组合的临界线.不难看出,临界线实际上就是图1中的有效前沿在权重空间中的表现形式.
(7)式在点处的法向量为:
(8) 式在点处的法向量为:

则(8)式在点处的法向量可简化为:
由临界线定义,可得临界线方程为
(9)
由(9)式可得到个方程构成的线性方程组:
(10)
其中:
进一步将(6)式化为如下形式:
(11)
根据均值和方差的表达式:,,将其代入上式:
(12)
因为线性方程组(10)的秩是,所以它的基础解系的个数是1,我们可以用分别表示.而由于,也可以用表示.将代入(12)式,就得到一个关于的一元二次方程,求出就可得到相应的值.因为有两个根,因此有两组解,它们分别是点和点处的权重.这样就求出了点和点处投资组合的预期回报率,和方差,.进一步地,根据方程,我们可求出抛物线顶点处的投资权重.该方程是常数项包含的关于一元二次方程,当其判别式为零时只有一个解,此时与重合为.利用判别式为零求出后,便可分别求出点的投资权重及投资回报率.于是可以得到VaR约束下投资组合的选择范围:
针对这一范围内投资组合的一个回报率,联立(10)式和(7)式,就可在临界线上求得投资组合最优权重,该权重下的投资组合的方差为最小,并通过(8)式可算出这个最小方差;同理,给定了上述范围内投资组合的一个方差,联立(10)式和(8)式,就可在临界线上求得投资组合的最优权重,使得该权重下的投资组合的预期回报率最高,并且由(7)式可算出这个最高的预期回报率.
需要指出的是,VaR约束可能太严格以致关于的一元二次方程无解,即任何组合都被排除在外,这种情况体现在图1中便是VaR约束线和弧线没有交点.同样,VaR约束太宽松也将使计算结果变得没有意义.
3.VaR约束下的投资组合优化模型的特性分析
3.1Markwitz均值—方差模型的缺点
Markwitz均值—方差模型存在2个明显的缺点:一是用方差或标准差从波动性角度来反映风险,只描述了收益偏离期望值的程度,并没有描述损失情况;二是用等效曲线函数来描述投资者的收益,风险特征,具有很大的额随意性,很难用一个准确的数学公式来表示.而VaR测量的是在一定的置信度下,在正常的市场环境下,某一资产或资组合在未来特定的一段时间内的预期最大的可能损失,是一种非常直观的风险测量方法,弥补了
方差或标准差的不足.同时,VaR方法能够使投资者根据自身财务状况,市场环境和对投资损失的心理承受能力,比使用等效曲线函数更能客观,容易,准确地量化自己的收益和风险特征,而且VaR描述的是损失状况,因此它更接近投资者对风险的直接心理感受.因此,引进VaR方法,是对传统的均值—方差模型的补充和改进.
3.2VaR组合模型有事先防范风险的作用
在进行投资决策过程中,投资者首先要确定置信水平和VaR值,将自身对风险的承受能力与风险的大小加以比较,尽可能减少因投资失误带来的损失.VaR可以事前计算风险,在均值—方差模型中加入了VaR约束后,将投资者不能接受的投资组合排除在外,就是将投资可能发生最大损失降至投资者能承受的概率水平.VaR含义简洁,价值判断方式直观,使得资产组合的风险,能够具体化为一个可以与收益相配比的数字,从而有利于经营者管理目标的实现.
3.3VaR组合模型体现了投资者的个人偏好
在投资活动中,风险与期望收益率之间存在正比关系,如何在二者间做出选择,主要依赖于投资者对风险的个人偏好.在组合模型中,不同的置信水平对应于不同的VaR值,组合的VaR值会随置信度的提高而上升,投资者可以根据自身对风险的承受能力来决定投资策略,调整相应的获利能力.对于风险承受能力较低的投资者,应选择较高的置信水平,以降低风险;对于风险承受能力较强的投资者来说,可以设置较低的置信水平,以利于作出积极的投资策略.
3.4VaR组合模型具有高效性
由前面的模型介绍可知,VaR约束实际上缩小Markwitz均值—方差模型所确定的最优投资组合选择范围(主要由所确定的置信水平决定有效解的范围),即投资者的选择范围在缩小,实质上排出了投资者所不能接受的投资组合,从而提高了投资决策的速度与效率.但应注意可能出现的两种极端情况:一是约束太严,即VaR约束线的斜率太大以至于过多投资选择被排除在外(如模型一有可能无解);二是约束太松,即VaR约束线的
斜率太小,以至于失去实质性的约束意义.
3.5应用VaR组合模型应注意的问题
应用VaR组合模型应注意的问题:
(1)VaR描述的是市场正常波动下资产组合最大的可能损失,而不是处理发生剧烈波动的市场极端情况,如市场崩盘等;同时,从技术角度
讲,VaR表明的是一定置信度内的最大损失,并不能绝对排除高于值的损失发生的可能性,这种情况一旦发生就会给投资者带来严重损失.所以,需要运用其它各种定性,定量分析方法作为辅助的风险测量工具.
(2)由于我国证劵市场起步较晚,市场尚需规范,政府的干预和机构的坐庄行为在一定程度上导致收益率不能完全满足正态分布.事实上,在正发达国家较成熟证劵市场,也不能完全满足上述条件,因此,利用VaR模型组合时,在考虑资产收益率偏离正态分布程度的同时,只能做近似正态处理.
结束语
马柯维茨的证券组合理论是现代投资理论和投资实践的基础,他的均值-方差模型给出了投资决策的最基本也是最完整的框架.投资决策大都是在马柯维茨证券组合理论的框架或基本思想下展开的,不同的只是收益和风险的描述不同.由于当前VaR在风险测量,风险限额设定和绩效评估中的广泛应用,因此在马柯维茨证券组合理论的框架下,基于VaR的投资决策具有重要的实用价值.本文在马柯维茨的均值—方差模型的基础上,加入了VaR约束,给出了一个基于VaR的证券投资组合优化模
型.VaR约束来寻求投资者的最优投资组合,体现了一种较为成熟的投资理念,即在投资组合管理中,应考虑如何控制风险,相应的调整获利目标,客观量化收益和风险特征.因此在马柯维茨证券组合理论的框架下,基于VaR的投资决策具有重要的实用价值.
参考文献:
[1]金道政,黄永兴,金融投资学[M].中国科学技术大学出版社,2002.
[2]卢文莹.金融风险管理[M].复旦大学出版社,2006.
[3]张尧庭.金融市场的统计方法[M].广西师范大学出版社,1998.
[4]杜海涛.VaR模型在证券风险管理中的应用.证券市场导报.2000年(8):57-61.
[5]王春峰.金融市场金融管理[M].天津:天津大学出版社.2001.
[6]景乃权,陈姝.VaR模型及其在投资组合中的应用[J].财贸经济.2003.(2):68-71.
[7]黄继平,黄良文.基于风险控制的证劵投资决策[J].统计研究.2004.(7(:44-48.
[8]郑明川,吴晓良.VaR约束下的投资组合管理[J].技术经济与管理研究.2003.(6):34-35.
[9]维普.K.班瑟尔,皮埃特罗.潘泽.用VaR度量市场风险[M].北京:机械工业出版社.2002.。

相关文档
最新文档