四川省资阳中学高考数学压轴专题《等比数列》难题汇编doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .
14
B .1
C .
12
D .
1
3
2.已知{}n a 是正项等比数列且1a ,312
a ,22a 成等差数列,则
91078a a a a +=+( ) A .21-
B .21+
C .322-
D .322+
3.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于122,若第六个单音的频率为f ,则( ) A .第四个单音的频率为1
122f - B .第三个单音的频率为1
42f - C .第五个单音的频率为1
62f
D .第八个单音的频率为1
122f
4.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40
B .81
C .121
D .242
5.已知等比数列{}n a 的前n 项和为n S ,若2
13a a =,且数列{}13n S a -也为等比数列,则
n a 的表达式为( )
A .12n
n a ⎛⎫= ⎪⎝⎭
B .1
12n n a +⎛⎫= ⎪⎝⎭
C .23n
n a ⎛⎫= ⎪⎝⎭
D .1
23n n a +⎛⎫= ⎪⎝⎭
6.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )
A .15
B .10
C .5
D .3
7.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )
A .3
B .12
C .24
D .48
8.设数列{}n a 的前n 项和为n S ,且()*
2n n S a n n N
=+∈,则3
a
=( )
A .7-
B .3-
C .3
D .7
9.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记
{}n a 的前n 项积为n
T
,则下列选项错误的是( ) A .01q <<
B .61a >
C .121T >
D .131T >
10.已知q 为等比数列{}n a 的公比,且1212a a =-,31
4a =,则q =( ) A .1- B .4
C .12
-
D .12
±
11.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16
B .16-
C .20
D .16或16-
12.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足()
*
122n n a S n N ++=∈,则
满足
2100111
1000
10
n n
S S 的n 的最大值为( ). A .7
B .8
C .9
D .10
13.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-
B .1
C .2或2-
D .2
14.已知等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,则该数列的公比是( )
A .
19
B .9
C .
13
D .3
15.设等比数列{}n a 的前n 项和为n S ,若4
2
5S S =,则等比数列{}n a 的公比为( ) A .2
B .1或2
C .-2或2
D .-2或1或2
16.已知等比数列的公比为2,其前n 项和为n S ,则3
3
S a =( ) A .2
B .4
C .
74
D .158
17.在等比数列{}n a 中,首项11,2a =11
,,232
n q a ==
则项数n 为( ) A .3 B .4 C .5 D .6
18.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏
B .9盏
C .27盏
D .81盏
19.已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a ++
+=,
则k =( ) A .2
B .3
C .4
D .5
20.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152
B .142
C .132
D .122
二、多选题21.题目文件丢失! 22.题目文件丢失! 23.题目文件丢失!
24.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的
2
3
再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤
C .n S 的最小值为
700
3
D .n S 的最大值为400
25.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列
B .2n
n a =
C .数列{}2n
a 的前n 项和为2122
3
n +-
D .数列11n n b b +⎧⎫
⎨⎬⋅⎩⎭
的前n 项和为n T ,则
1n T <
26.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )
A .在第3分钟内,该计算机新感染了18个文件
B .经过5分钟,该计算机共有243个病毒文件
C .10分钟后,该计算机处于瘫痪状态
D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列 27.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确
的有( )
A .若{}n a 是等差数列,则{}n A 是等差数列
B .若{}n A 是等差数列,则{}n a 是等差数列
C .若{}n a 是等比数列,则{}n A 是等比数列
D .若{}n A 是等差数列,则{}2n a 都是等差数列
28.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )
A .1
12n n n S S ++-= B .12n n a
C .21n
n S =-
D .1
21n n S -=-
29.已知数列{}n a 的前n 项和为n S 且满足111
30(2),3
n n n a S S n a -+=≥=,下列命题中正确的是( ) A .1n S ⎧⎫
⎨
⎬⎩⎭
是等差数列 B .13n S n
=
C .1
3(1)
n a n n =-
-
D .{}
3n S 是等比数列
30.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有
n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )
A .等差数列不可能是收敛数列
B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-
C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫
=
⎪ ⎪⎝⎭⎝⎭
,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫
⎨⎬⎩⎭
一定是收敛数列
31.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a >,
871
01
a a -<-.则下列结论正确的是( ) A .01q <<
B .791a a <
C .n T 的最大值为7T
D .n S 的最大值为7S
32.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( ) A .q =1 B .数列{S n +2}是等比数列
C .S 8=510
D .数列{lga n }是公差为2的等差数列
33.关于等差数列和等比数列,下列四个选项中不正确的有( )
A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列
B .若数列{}n a 的前n 项和1
22n n S +=-,则数列{}n a 为等差数列
C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列
D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;
34.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2
{}n a 是等比数列
B .若32a =,732a =,则58a =±
C .若123a a a <<,则数列{}n a 是递增数列
D .若数列{}n a 的前n 和1
3n n S r -=+,则1r =-
35.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( ) A .数列n S n ⎧⎫
⎨
⎬⎩⎭
的前10项和为100 B .若1,a 3,a m a 成等比数列,则21m = C .若
11
16
25n
i i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则
116m n
+的最小值为25
12
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.D 【分析】
根据241a a =,由2
243a a a =,解得31a =,再根据313S =求解.
【详解】
因为正项等比数列{}n a 满足241a a =,
由于2
243a a a =,
所以2
31a =,31a =,211a q =.
因为313S =, 所以1q ≠.
由()()31231111a q S a q q q
-=
=++-
得2
2
131q q q =++, 即2
1210q q --=, 解得13q =,或1
4
q =-(舍去). 故选:D 2.D 【分析】 根据1a ,
312a ,22a 成等差数列可得3121
222
a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将
910
78
a a a a ++化简即可求解.
【详解】
因为{}n a 是正项等比数列且1a ,31
2
a ,22a 成等差数列, 所以
3121
222
a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,
解得:1q =+
1q =
(
22
2
2910787878
13a a a q a q q a a a a ++====+++,
故选:D 3.B 【分析】
根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】
解:根据题意得该单音构成公比为 因为第六个单音的频率为f ,
1
4
14
22f f -==.
6
6
112
2
f f -
=
=.
所以第五个单音的频率为1
122f =.
所以第八个单音的频率为
12
6
2f f =
故选:B. 4.C 【分析】
根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出
5S 的结果.
【详解】
因为12234,12a a a a +=+=,所以23
12
3a a q a a +=
=+,所以1134a a +=,所以11a =, 所以()5515113121113
a q S q
--===--, 故选:C. 5.D 【分析】
设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a a
S a q a q q
-=-
⋅+---,若是等比数列,则11301a a q -=-,可得2
3
q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】
设等比数列{}n a 的公比为q
当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,(
)1111111n n
n a q a a
q S q
q q
-==-
⋅+---, 所以11113311n n a a
S a q a q q
-=-
⋅+---, 要使数列{}13n S a -为等比数列,则需
11301a a q -=-,解得2
3
q =. 21
3a a =,2
123a ⎛⎫
∴= ⎪⎝⎭
,
故2
1
1
11222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭
⎝⎭
⎝⎭
.
故选:D. 【点睛】
关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形
式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301a
a q
-=-,即可求得q 的值,通项即可求出. 6.A 【分析】
根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()5
2212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+
⋅++=
()2475log 15a a =⋅=.
故选:A. 7.C 【分析】
题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】
根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为
1a ,则有()717
1238112
a S ⋅-=
=-,解得13a =,中间层灯盏数3
4124a a q ==,
故选:C. 8.A 【分析】
先求出1a ,再当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减后化
简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出
n a ,可求得3a 的值
【详解】
解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减得
1221n n n a a a -=-+,即121n n a a -=-,
所以112(1)n n a a --=-,
所以数列{}1n a -是以2-为首项,2为公比的等比数列,
所以1122n n a --=-⨯,所以1
221n n a -=-⨯+,
所以23
2217a =-⨯+=-,
故选:A
9.D 【分析】
等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:
等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,
67(1)(1)0a a ∴--<,
11a >,若61a <,则一定有71a <,不符合
由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,
6121231267()1T a a a a a a =⋯=>,故C 正确,
13
1371T a =<,故D 错误,
∴满足1n T >的最大正整数n 的值为12.
故选:D . 10.C 【分析】
利用等比通项公式直接代入计算,即可得答案; 【详解】
()21114
2211
1111
22211121644a a q a q q q q a q a q ⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=
⎪⎪⎩⎩
, 故选:C. 11.A 【分析】
根据等比数列的通项公式得出6
18a q =,10
132a q
=且10a >
,再由
819a a q ==.
【详解】
设等比数列{}n a 的公比为q ,则6
18a q =,10
132a q
=且10a >
则81916a q a ====
故选:A 12.C 【分析】
根据(
)*
122n n a S n N ++=∈可求出n
a
的通项公式,然后利用求和公式求出2,n n S S ,结合
不等式可求n 的最大值.
【详解】
1122,22()2n n n n a S a S n +-+=+=≥相减得1(22)n n a a n +=≥,11a =,21
2
a =
;则{}n a 是首项为1,公比为12的等比数列,100111111000210n
⎛⎫<+< ⎪⎝⎭,1111000210
n
⎛⎫<< ⎪⎝⎭,则n 的最大值为9. 故选:C 13.C 【分析】
根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】
设等比数列{}n a 的公比为q ,
因为12a =,且53a a =,所以2
1q =,解得1q =±, 所以9
1012a a q ==±.
故选:C. 14.D 【分析】
利用等比数列的通项公式求出1a 和2a ,利用2
1
a a 求出公比即可 【详解】
设公比为q ,等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,
则3
1327a ==,4
2381a ==,2
1
3a q a ∴
==, 故选:D 15.C 【分析】
设等比数列{}n a 的公比为q ,由等比数列的前n 项和公式运算即可得解. 【详解】
设等比数列{}n a 的公比为q , 当1q =时,
41
21
422S a S a ==,不合题意; 当1q ≠时,()
()4142
4222111115111a q S q q q S q
a q q
---===+=---,解得2q =±. 故选:C.
16.C 【分析】
利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】
解:因为等比数列的公比为2,
所以313
12311(12)
7712244
a S a a a a --===⋅, 故选:C 17.C 【分析】
根据等比数列的通项公式求解即可. 【详解】
由题意可得等比数列通项5
1
11122n
n n a a q -⎛⎫⎛⎫
=== ⎪ ⎪⎝⎭⎝⎭
,则5n = 故选:C 18.C 【分析】
根据题意,设塔的底层共有x 盏灯,分析可得每层灯的数目构成以x 为首项,1
3
为公比的等比数列,由等比数列的前n 项和公式可得x 的值,即可得答案. 【详解】
根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,1
3
为公比的等比数列,
则有51(1)
3363
1
13
x S ⨯-
=
=-, 解可得:243x =,
所以中间一层共有灯2
1243()273
⨯=盏. 故选:C 【点睛】
思路点睛:要求中间一层的灯的数量,只需求等比数列的首项,根据等比数列的和求出数列的首项即可. 19.B 【分析】
本题首先可设公比为q ,然后根据132185k a a a +++
+=得出()2284k q a a ++=,再
然后根据24242k a a a +++=求出2q
,最后根据等比数列前n 项和公式即可得出结
果. 【详解】
设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,
即()2285184k q a a +
+=-=,
因为24242k a a a +++=,所以2q
,
则()21123
221112854212712
k k k a a a a a ++⨯-+++++=+==
-,
即211282k +=,解得3k =, 故选:B. 【点睛】
关键点点睛:本题考查根据等比数列前n 项和求参数,能否根据等比数列项与项之间的关系求出公比是解决本题的关键,考查计算能力,是中档题. 20.A 【分析】
根据29T T =得到7
61a =,再由2121512a a a q ==,求得1,a q 即可.
【详解】
设等比数列{}n a 的公比为q ,
由29T T =得:7
61a =, 故61a =,即5
11a q =. 又2
121512a a a q ==,
所以9
1
512
q =, 故12
q =
, 所以()()21112
2
123411...2n n n n n n n T a a a a a a q
--⎛⎫=== ⎪⎝⎭
,
所以n T 的最大值为15
652T T ==.
故选:A.
二、多选题 21.无 22.无
23.无
24.AC 【分析】
由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】
由题可知,第一次着地时,1
100S =;第二次着地时,221002003
S =+⨯;
第三次着地时,2
32210020020033S ⎛⎫
=+⨯+⨯ ⎪⎝⎭;……
第n 次着地后,2
1
222100200200200333n n S -⎛⎫
⎛⎫
=+⨯+⨯+
+⨯ ⎪ ⎪
⎝⎭
⎝⎭
则2
1
1222210020010040013333n n n S --⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭⎝
⎭⎝⎭
,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为400700
10033
+=; 综上所述,AC 正确 故选:AC 25.BD 【分析】
根据22n n S a =-,利用数列通项与前n 项和的关系得1,1
,2
n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然
后再根据选项求解逐项验证. 【详解】
当1n =时,12a =,
当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,
所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n n a =,24n
n a =,数列{}2n
a
的前n 项和为()14144414
3
n n n
S +--'=
=
-, 则22log log 2n
n n b a n ===,
所以()11111
11
n n b b n n n n +==-⋅⋅++,
所以 1111111
(11123411)
n T n n n =-+-++-=-<++, 故选:BD 【点睛】
方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()
11122
n n n a a n n S na d +-=
=+②等比数列的前n 项和公式()
11,1
1,11n
n na q S a q q q
=⎧⎪=-⎨≠⎪
-⎩;
(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.
(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.
(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 26.ABC 【分析】
设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则
()121n n a S +=+,且12a =,可得123n n a -=⨯,即可判断四个选项的正误.
【详解】
设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则
()121n n a S +=+,且12a =,
由()121n n a S +=+可得()121n n a S -=+,两式相减得:12n n n a a a +=-,
所以13n n a a +=,所以每分钟内新感染的病毒构成以12a =为首项,3为公比的等比数列,
所以1
23n n a -=⨯,
在第3分钟内,该计算机新感染了31
32318a -=⨯=个文件,故选项A 正确;
经过5分钟,该计算机共有()551234521311324313
a a a a a ⨯-+++++=+==-个病毒文
件,故选项B 正确;
10分钟后,计算机感染病毒的总数为
()
1010512102131
11310132
a a a ⨯-+++
+=+
=>⨯-,
所以计算机处于瘫痪状态,故选项C 正确; 该计算机瘫痪前,每分钟内新被感染的文件数成公比为3的等比数列,故选项D 不正确; 故选:ABC 【点睛】
关键点点睛:解决本题的关键是读懂题意,得出第1n +分钟之内新感染的文件数为1n a +与 前n 分钟内新感染的病毒文件数之和为n S 之间的递推关系为()121n n a S +=+,从而求得
n a .
27.AD 【分析】
利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】
对于A ,若{}n a 是等差数列,设公差为d ,
则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=⎡⎤⎣⎦, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,
()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,
奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q , 当1q ≠-时, 则
11111n n n n n n n n n n
a q a A a a a q
q a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】
本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题. 28.BC 【分析】
根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】
数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>
23464a a a =,2364a ∴=,解得34a =,
2410a a +=,4
410q q
∴+=即22520q q -+=,解得2q
或
12
, 又数列{a n }为单调递增的等比数列,取2q
,3124
14
a a q =
==, 1
2
n n
a ,212121
n n n S -==--,()1121212n n n
n n S S ++-=---=.
故选:BC 【点睛】
本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 29.ABD 【分析】
由1
(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,从而可求得n S ,利用n S 求出n a ,并确定3n S 的表达式,判断D . 【详解】
因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以
1
113n n S S --=, 所以1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,A 正确;
公差为3,又
11113S a ==,所以133(1)3n n n S =+-=,13n S n =.B 正确; 2n ≥时,由1n n n a S S -=-求得1
3(1)
n a n n =
-,但13a =不适合此表达式,因此C 错;
由1
3n S n =
得1
311333
n n n S +==⨯,∴{}
3n S 是等比数列,D 正确. 故选:ABD . 【点睛】
本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由
1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.
30.BCD 【分析】
根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D. 【详解】
当0n S >时,取2111222
222n d d d
d d d S n a n n n a n a ⎛⎫⎛⎫=
+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭, 为使得1n S r >,所以只需要1122d d n a r
+->1112222
d
a ra dr r
n N d dr -+
-+⇒>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错; 对于B ,1
1n n x x q -=,若1q >,则对任意正数r ,
当11log 1q r n x ⎛⎫
+>+ ⎪
⎪
⎝⎭
时, 1n x r >+,所以不存在正整数N 使得定义式成立, 若1q =,显然符合;若1q =-为摆动数列()1
11n n x x -=-,
只有1x ±两个值,不会收敛于一个值,所以舍去;
若()1,1q ∈-,取0a =,1
log 11q r N x ⎡⎤=++⎢⎥⎣⎦
,
当n N >时,1
11
1
0n n r
x x q x r x --=<=,故B 正确; 对于C ,()1
sin cos sin 0222
n x n n n πππ⎛⎫⎛⎫===
⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫
=
+- ⎪⎝
⎭, 当0d >时,n S 单调递增并且可以取到比
1
r
更大的正数,
当n N
>=时,110n n r S S -=<,同理0d <,所以D 正确. 故选:BCD 【点睛】
关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列
的通项公式求解,属于中档题. 31.ABC 【分析】
由11a >,781a a >,
871
01
a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】
11a >,781a a >,
871
01
a a -<-, 71a ∴>,801a <<,
∴A.01q <<,故正确;
B.2
798
1a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.
D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】
本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题. 32.BC 【分析】
先根据题干条件判断并计算得到q 和a 1的值,可得到等比数列{a n }的通项公式和前n 项和公式,对选项进行逐个判断即可得到正确选项. 【详解】
由题意,根据等比中项的性质,可得 a 2a 3=a 1a 4=32>0,a 2+a 3=12>0, 故a 2>0,a 3>0. 根据根与系数的关系,可知
a 2,a 3是一元二次方程x 2﹣12x +32=0的两个根. 解得a 2=4,a 3=8,或a 2=8,a 3=4. 故必有公比q >0, ∴a 12
a q
=
>0. ∵等比数列{a n }是递增数列,∴q >1. ∴a 2=4,a 3=8满足题意. ∴q =2,a 12
a q
=
=2.故选项A 不正确. a n =a 1•q n ﹣1=2n . ∵S n (
)21212
n -=
=-2
n +1
﹣2.
∴S n +2=2n +1=4•2n ﹣1.
∴数列{S n +2}是以4为首项,2为公比的等比数列.故选项B 正确. S 8=28+1﹣2=512﹣2=510.故选项C 正确. ∵lga n =lg 2n =n .
∴数列{lga n }是公差为1的等差数列.故选项D 不正确. 故选:BC
【点睛】
本题考查了等比数列的通项公式、求和公式和性质,考查了学生概念理解,转化划归,数学运算的能力,属于中档题. 33.ABD 【分析】
根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案. 【详解】
根据题意,依次分析选项:
对于A ,若数列{}n a 的前n 项和2
n S an bn c =++,
若0c =,由等差数列的性质可得数列{}n a 为等差数列, 若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;
对于B ,若数列{}n a 的前n 项和1
22n n S +=-,
可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;
对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为
12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,
即为2
2322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,
故C 正确;
对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,
比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故
D 不正确. 故选:ABD . 【点睛】
本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 34.AC 【分析】
在A 中,数列{}
2
n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,
数列{}n a 是递增数列;在D 中,13
r =-. 【详解】
由数列{}n a 是等比数列,知: 在A 中,
22221n n a a q -=,
22221122221n
n n n a a q q a a q
+-∴==是常数, ∴数列{}
2n a 是等比数列,故A 正确;
在B 中,若32a =,732a =
,则58a =,故B 错误;
在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则
01q <<,数列{}n a 是递增数列,故C 正确;
在D 中,若数列{}n a 的前n 和1
3n n S r -=+,
则111a S r ==+,
()()221312a S S r r =-=+-+=, ()()332936a S S r r =-=+-+=,
1a ,2a ,3a 成等比数列, 2213a a a ∴=,
()461r ∴=+,
解得1
3
r =-
,故D 错误. 故选:AC . 【点睛】
本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AB 【分析】
由已知可得:43n a n =-,2
2n S n n =-,
=21n S n n -,则数列n S n ⎧⎫
⎨⎬⎩⎭
为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为
11111=44341i i a a n n +⎛⎫
- ⎪-+⎝⎭
,通过裂项求和可求得11
1
n
i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】
由已知可得:43n a n =-,2
2n S n n =-,
=21n S n n -,则数列n S n ⎧⎫
⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002
+.所以A 正确;
1,a 3,a m a 成等比数列,则2
31=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确;
因为
11111=44341i i a a n n +⎛⎫
- ⎪-+⎝⎭
所以
1111111116=1=45549413245
1n i i i n n n a a n =+⎛⎫-+-++-> ⎪++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以
()()1161116116125=116172412121212n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭
,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45n m =不成立,故选项D 错误.
故选:AB.
【点睛】
本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般.。