十间房乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十间房乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)若a>b,则下列不等式中错误的是()
A.a-1>b-1
B.a+1>b+1
C.2a>2b
D.
【答案】D
【考点】不等式及其性质
【解析】【解答】解:根据不等式的基本性质,可知不等式的两边同时加上或减去同一个数(或因式),不等号的方向不变,不等式的两边同时乘以或除以一个正数,不等号的方向不变,不等号的方向不变,不等式的两边同时乘以或除以一个负数,不等号的方向改变,可知D不正确.
故答案为:D.
【分析】根据不等式的性质可判断.不等式的两边同时加上或减去同一个数(或因式),不等号的方向不变;不等式的两边同时乘以或除以一个正数,不等号的方向不变;不等号的方向不变,不等式的两边同时乘以或除以一个负数,不等号的方向改变.
2、(2分)下列各对数中,相等的一对数是().
A. B. C. D.
【答案】A
【考点】实数的运算
【解析】【解答】解:A.∵(-2)3=-8,-23=-8,∴(-2)3=-23,A符合题意;
B.∵-22=-4,(-2)2=4,∴-22≠(-2)2,B不符合题意;
C.∵-(-3)=3,-|-3|=-3,∴-(-3)≠-|-3|,C不符合题意;
D.∵=,()2=,∴≠()2,D不符合题意;
故答案为:A.
【分析】根据乘方的运算,绝对值,去括号法则,分别算出每个值,再判断是否相等,从而可得出答案.
3、(2分)如图,在五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()
A. 150°
B. 135°
C. 120°
D. 90°
【答案】D
【考点】对顶角、邻补角,平行线的性质,三角形内角和定理
【解析】【解答】解:连接BD,
∵BC⊥CD,
∴∠C=90∘,
∴∠CBD+∠CDB=180∘−90∘=90∘
∵AB∥DE,
∴∠ABD+∠EDB=180∘,
∴∠1+∠2=180∘−∠ABC+180∘−∠EDC=360∘−(∠ABC+∠EDC)=360∘−(∠ABD+∠CBD+∠EDB+∠CDB)=360∘−(90∘+180∘)=90∘
故选D.
【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB=90°,根据平行线的性质求出∠ABD+∠EDB=180°,然后根据邻补角的定义及角的和差即可求出答案.
4、(2分)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()
A. n≤m
B. n≤
C. n≤
D. n≤
【答案】B
【考点】一元一次不等式的应用
【解析】【解答】解:设成本为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,
则(1+m%)(1﹣n%)﹣1≥0,
去括号得:1﹣n%+m%﹣﹣1≥0,
整理得:100n+mn≤100m,
故n≤ .故答案为:B
【分析】先设出成本价,即可用成本价表示出标价,再用根据“不亏本”即售价减去成本大于等于0即可列出一元一次不等式,解关于x的不等式即可求得n的取值范围.
5、(2分)下列语句正确是()
A. 无限小数是无理数
B. 无理数是无限小数
C. 实数分为正实数和负实数
D. 两个无理数的和还是无理数
【答案】B
【考点】实数及其分类,实数的运算,无理数的认识
【解析】【解答】解:A.无限不循环小数是无理数,故A不符合题意;
B.无理数是无限小数,符合题意;
C.实数分为正实数、负实数和0,故C不符合题意;
D.互为相反数的两个无理数的和是0,不是无理数,故D不符合题意.
故答案为:B.
【分析】(1)无理数是指无限不循环小数;
(2)无限小数分无限循环和无限不循环小数;
(3)实数分为正实数、零、负实数;
(4)当两个无理数互为相反数时,和为0.
6、(2分)下列语句叙述正确的有()
①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;
③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.
A.0个
B.1个
C.2个
D.3个
【答案】B
【考点】两点间的距离,对顶角、邻补角,点到直线的距离
【解析】【解答】解:①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
②如果两个角相等,那么这两个角是对顶角,错误;
③连接两点的线段长度叫做两点间的距离,正确;
④直线外一点到这条直线的垂线段叫做这点到直线的距离,错误;
综上所述:正确的有1个.
故答案为:B.
【分析】对顶角定义:有一个共同的顶点且一边是另一边的反向延长线,由此可知①和②均错误;
两点间的距离:连接两点的线段长度,由此可知③正确;
点到直线的距离:直线外一点到这条直线的垂线段的长度叫做这点到直线的距离,由此可知④错误.
7、(2分)已知方程组,则(x﹣y)﹣2=()
A. 2
B.
C. 4
D.
【答案】D
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:,
①﹣②得:x﹣y=2,
则原式=2﹣2= .故答案为:D
【分析】观察方程组中同一未知数的系数特点及所求代数式的底数,由①﹣②得出x-y的值,再整体代入求值即可。
8、(2分)古代有这样一个“鸡兔同笼”的题目:“今有鸡兔同笼,上有三十五头,下有一百足.问鸡兔各几只?”其中正确的答案是()
A. 鸡23、兔12
B. 鸡21、兔14
C. 鸡20、兔15
D. 鸡19、兔16
【答案】C
【考点】解二元一次方程组,二元一次方程组的实际应用-鸡兔同笼问题
【解析】【解答】解;设鸡有x只,兔子有y只,
由题意得,,
解得;,
答:鸡有20只,兔子有15只.故答案为:C.
【分析】将题中关键的已知条件转化为等量关系是:鸡的数量+兔子的数量=25;2×鸡的数量+4×兔子的数量=100(抓住每只鸡有2条足,每只兔有4条足);设未知数,列方程组求解即可。
9、(2分)用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()
①②③④
A. ①②
B. ②③
C. ③④
D. ①④
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:试题分析:
把y的系数变为相等时,①×3,②×2得,
,
把x的系数变为相等时,①×2,②×3得,
,
所以③④正确.
故答案为:C.
【分析】观察方程特点:若把y的系数变为相等时,①×3,②×2,就可得出结果;若把x的系数变为相等时,①×2,②×3,即可得出答案。
10、(2分)如图,长方形ABCD的边AD长为2,边AB长为1,AD在数轴上,以原点D为圆心,对角线BD的长为半径画弧,交正半轴于一点,则这个点表示的实数是()
A. B. C. D.
【答案】A
【考点】实数在数轴上的表示
【解析】【解答】解:∵长方形ABCD的边AD长为2,边AB长为1,
∴,
∴这个点表示的实数是:,
故答案为:A.
【分析】首先根据勾股定理算出DB的长,然后根据同圆的半径相等及原点右边表示的是正数即可得出答案。
二、填空题
11、(1分)我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[﹣0.56]=﹣1,则按这个规律[﹣]=________.
【答案】-4
【考点】实数的运算,定义新运算
【解析】【解答】∵2<<3,
∴﹣4<﹣﹣1<﹣3,
∴[﹣]=﹣4.
故答案为:﹣4.
【分析】先求得的范围是,于是可得的范围是,然后由题中的材料可
知,原式=-4.
12、(1分)某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,甲工人步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于________米.
【答案】1.3
【考点】一元一次不等式的应用
【解析】【解答】解:设导火线的长度为x(m),
工人转移需要的时间为:+ =130(s),
由题意得,>130,
解得x>1.3m.
故答案为:1.3
【分析】先计算出工人转移所需时间,再利用导火线的长度除以燃烧的速度表示出燃烧导火线所需的时间,该时间应大于工人转移的时间,即可列出一元一次不等式,解不等式即可求得导火线长度的范围.
13、(1分)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是________度.
【答案】108
【考点】扇形统计图
【解析】【解答】A所占百分比为:100%-15%-20%-35%=30%
圆心角:
故答案为:108
【分析】注意:扇形图中各部分所占百分比之和等于1
14、(4分)下列各数:,,,1.414,,3.12122,,3.161661666…(每两个1之间依次多1个6)中,无理数有________个,有理数有________个,负数有________个,整数有________个.
【答案】3;5;4;2
【考点】实数及其分类
【解析】【解答】属于开方开不尽的数,是无理数;是一个分数,属于有理数,是负数;
属于开方开得尽的数,是有理数,是负数;1.414是有限小数,是有理数,是正数;中含有π,是无理数,是负数;3.12122是有限小数,是有理数,是正数;是有理数,是负数;3.161661666…(每两个1
之间依次多1个6)属于看似有规律实则没有规律的一种数,是无理数,是正数。
故答案为:3;5;4;2。
【分析】实数分为有理数和无理数,开方开不尽的数,含有π的数,看似有规律实则没有规律的都是无理数,分数和有限小数,开方开得尽的数都是有理数。
15、(2分)如图,已知∠1=∠2,则图中互相平行的线段是________;理由是:________.
【答案】AD∥BC;内错角相等,两直线平行
【考点】平行线的判定
【解析】【解答】解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故答案为:AD∥BC,内错角相等,两直线平行.
【分析】∠1和∠2是由AD和BC两条直线被直线AC所截得到的,所以应该AD//BC.
16、(1分)若= =1,将原方程组化为的形式为________.
【答案】
【考点】二元一次方程组的其他应用
【解析】【解答】解:原式可化为:=1和=1,
整理得,.
【分析】由恒等式的特点可得方程组:=1,=1,去分母即可求解。
三、解答题
17、(10分)太仓港区道路绿化工程工地有大量货物需要运输,某车队有载重量为8吨和10吨的卡车共15辆,所有车辆运输一次能运输128吨货物.
(1)求该车队载重量为8吨、10吨的卡车各有多少辆?
(2)随着工程的扩大,车队需要一次运输货物170吨以上,为了完成任务,车队准备增购这两种卡车共5辆(两种车都购买),请写出所有可能的购车方案.
【答案】(1)解:设该车队载重量为8吨的卡车有x辆,载重量为10吨的卡车有y辆,由题意得:
,
解得:,
答:8吨的有11辆,10吨的有4辆
(2)解:设增购8吨的卡车有a辆,则增购10吨的卡车有(5﹣a)辆,由题意得:
(11+a)×8+10(5﹣a+4)>170,
解得:a<4,
∵a为正整数,
∴a=1,2,3,
购车方案:8吨1辆10吨4辆或者8吨2辆10吨3辆或者8吨3辆10吨2辆.
【考点】一元一次不等式的应用,二元一次方程组的实际应用-鸡兔同笼问题
【解析】【分析】(1)等量关系为:载重量为8吨的数量+10吨的卡车的数量=15;载重量为8吨的数量×8+10吨的卡车的数量×10=128,再设未知数,列方程组,求出方程组的解。
(2)根据两种卡车的数量=5,及两种卡车一次运输货物>170 ,设未知数,列不等式,求出不等式的正整数解,就可得出购车方案。
18、(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
19、(5分)解方程组
【答案】解:令=k
x=2k,y=3k.z=4k
将它们代入②得
解得k=2
所以x=4,y=6,z=8
原方程组的解为
【考点】三元一次方程组解法及应用
【解析】【分析】“遇到连比,设比值为k”,用含k的代数式表示x、y、z,再将x、y、z带入方程5x+2y−3z=8即可求解,这是非常有用的方法.
20、(5分)一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了多少道题?
【答案】解:设小明答对了x道题,
4x+(30﹣x)≥90
解得x≥24
答:小明至少答对24道题.
【考点】一元一次不等式的应用
【解析】【分析】解本题时需注意找不等量中的关键词“至少”,也就是. 这是解决此题的关键.
21、(5分)如图所示,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数.
【答案】解:∵∠2=65°
∴∠1=∠2=65°(对顶角相等)
又∠1=2∠3
∴∠3= ∠1=32.5°
∴∠4=∠3=32.5°(对顶角相等)
【考点】对顶角、邻补角
【解析】【分析】因为∠4和∠3是对顶角,所以可求出∠3的值,即为∠4的值.
22、(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。
23、(10分)解方程组
(1)解方程组
(2)解不等式组.
【答案】(1)解:
①×2﹣②,得:3x=6,
解得:x=2,
将x=2代入①,得:4+y=5,
解得:y=1,
则方程组的解为
(2)解:解不等式4(x﹣3)>﹣1,得:x>,
解不等式+3>x,得:x<6,
则不等式组的解集为<x<6
【考点】解二元一次方程组,解一元一次不等式组
【解析】【分析】第一题是解二元一次方程组,可用加减消元法解也可用代入消元法,因为方程(1)中y的系数为1,(2)中x的系数为1.
第二题是不等式组,应先将第一个不等式去括号、合并同类项求出解集,再将第二个去分母,求出解集,即可得到不等式组的解集.
24、(16分)对于有理数a,b,定义min 的含义为:当a≥b时,min =b;当a<b时,min
=a.
例如:min =-2,min =-3.
(1)min =________;
(2)求min{x2+1,0};
(3)已知min{-2k+5,-1}=-1,求k的取值范围;
(4)已知min{ ,5}=5,直接写出m,n的值.
【答案】(1)-1
(2)解:∵ x2≥0,
∴ x2 +1 >0.
∴ min{x2+1,0}=0.
(3)解:∵当a≥b时,min =b ,min{-2k+5,-1}=-1,
∴ -2k+5≥-1.
∴k≤3
(4)解:m=1,n=-2
【考点】实数大小的比较,解一元一次不等式,偶次幂的非负性
【解析】【解答】解:(1)min =-1
【分析】根据定义可知min 的结果为a,b中的较小的数。
(1)比较-1和2的大小即可填空。
(2)比较x2+1,0大小即可(任何数平方的结果都为非负数)。
(3)由min{-2k+5,-1}=-1 可知-2k+5≥-1.解不等式即可求出k的取值范围。
25、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:
=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:
=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
第21 页,共21 页。