中考数学 直角三角形的边角关系 培优练习(含答案)及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学 直角三角形的边角关系 培优练习(含答案)及答案解析
一、直角三角形的边角关系
1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.
(1)求观察哨所A 与走私船所在的位置C 的距离;
(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)
(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)
【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】
(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;
(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】
(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=. 在Rt ABC V 中,sin AC B AB =
,所以3sin 3725155
AC AB ︒
=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.
(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM V 中,4
sin 15125
CM AC CAM =⋅∠=⨯
=,3
cos 1595
AM AC CAM =⋅∠=⨯=.
在Rt ADM △中,tan MD
DAM AM
∠=,
所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =
+=+==-=,.
设缉私艇的速度为v海里/小时,则有24917
16
=,解得617
v=.
经检验,617
v=是原方程的解.
答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.
【点睛】
此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
【答案】(1)证明见解析(2)4(3)20
【解析】
试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;
(2)利用锐角三角函数,即勾股定理即可.
试题解析:(1)∵∠ABC=∠ACB,
∴AB=AC,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,
∵∠CAB=2∠BCP,
∴∠BCP=∠CAN,
∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,
∵点D在⊙O上,
∴直线CP是⊙O的切线;
(2)如图,作BF⊥AC
∵AB=AC,∠ANC=90°,
∴CN=CB=,
∵∠BCP=∠CAN,sin∠BCP=,
∴sin∠CAN=,
∴
∴AC=5,
∴AB=AC=5,
设AF=x,则CF=5﹣x,
在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,
在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,
∴25﹣x2=2O﹣(5﹣x)2,
∴x=3,
∴BF2=25﹣32=16,
∴BF=4,
即点B到AC的距离为4.
考点:切线的判定
3.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O
于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,,求PD的长;
(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)
【答案】(1)证明见解析;(2);(3).
【解析】
试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.
(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得
,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,
由(1)△PAC∽△PDF得,即可求得PD的长.
(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得
,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.
试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,
又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.
∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.
又∵∠PAC=∠PDC,∴△PAC∽△PDF.
(2)连接BP,设,∵∠ACB=90°,AB=5,
∴.∴.
∵△ACE∽△ABC,∴,即. ∴.
∵AB⊥CD,∴.
如图,连接BP,
∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.
∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.
由(1)△PAC∽△PDF得,即.
∴PD的长为.
(3)如图,连接BP,BD,AD,
∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.
∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.
∵,∴.
∵△AGP∽△DGB,∴.
∵△AGD∽△PGB,∴.
∴,即.
∵,∴.
∴与之间的函数关系式为.
考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.
4.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主
教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)
【答案】22.4m 【解析】 【分析】
首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解. 【详解】
解:在Rt △AFG 中,tan ∠AFG =3,
∴FG =tan 3
AG AFG =∠,
在Rt △ACG 中,tan ∠ACG =AG
CG
, ∴CG =
tan AG
ACG ∠=3AG .
又∵CG ﹣FG =24m ,
即3AG ﹣
3
=24m , ∴AG =123m , ∴AB =123+1.6≈22.4m .
5.某条道路上通行车辆限速60千米/时,道路的AB 段为监测区,监测点P 到AB 的距离PH 为50米(如图).已知点P 在点A 的北偏东45°方向上,且在点B 的北偏西60°方向上,点B 在点A 的北偏东75°方向上,那么车辆通过AB 段的时间在多少秒以内,可认定为
超速?(参考数据:3
≈1.7,2≈1.4).
【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速
【解析】
分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解
直角三角形即可.
详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,
∴∠PAH=∠CAB–∠CAP=30°,
∵∠PHA=∠PHB=90°,PH=50,∴AH=
tan
PH
PAH
∠
33,
∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,
则PH=BH=50,∴3,
∵60千米/时=50
3
米/秒,∴时间
50350
3
+
3≈8.1(秒),
即车辆通过AB段的时间在8.1秒以内,可认定为超速.
点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。
6.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;
(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存
在,请你直接写出对应的x 的值,若不存在,请你说明理由.
【答案】(1)45
2
;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、
32 669-. 【解析】 【分析】
(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′=
'''''
=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤
115时和当11
5
<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】
解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,
根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''
=A B CE A D CD ∴
682
=CE ∴CE =
3
2
cm , ∴S ABCE =S ABD ′﹣S CED ′=86345
22222
⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =3
2
(x +1), ∴S △CD ′E =32x 2+3x +32
, ∴y =
12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452
;
②当
115≤x ≤4时,B ′C =8﹣2x ,CE =4
3
(8﹣2x ) ∴()2
14y 8223x =
⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;
②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245
, ∵AN 2+A ′N 2=36, ∴(6﹣
245)2+(2x +18
5
)2=36, 解得:x =
6695-,x =669
5
--(舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =24
5
, ∵AB 2+BB ′2=AN 2+A ′N 2 ∴36+4x 2=(6﹣245)2+(2x +18
5
)2 解得:x =
32
. 综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、
32秒、6695
-.
【点睛】
本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.
7.在正方形ABCD 中,AC 是一条对角线,点E 是边BC 上的一点(不与点C 重合),连接
AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.
(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;
(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.
【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3
BE=
【解析】
【分析】
(1)①补全图形即可,
②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3
得出结果.
【详解】
解:(1)①补全图形如图1所示,
②FG=DG,FG⊥DG,理由如下,
连接BG,如图2所示,
∵四边形ABCD是正方形,
∴∠ACB=45°,
∵EG⊥AC,
∴∠EGC=90°,
∴△CEG是等腰直角三角形,EG=GC,
∴∠GEC=∠GCE=45°,
∴∠BEG=∠GCF=135°,
由平移的性质得:BE=CF,
在△BEG和△GCF中,
BE CF
BEG GCF EG CG
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BEG≌△GCF(SAS),
∴BG=GF,
∵G在正方形ABCD对角线上,∴BG=DG,
∴FG =DG ,
∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.
(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =32,
在Rt △DHG 中,∵∠AGD =60°, ∴GH =
3
=
323
=6,
∴DG =2GH =26, ∴DF =2DG =43, 在Rt △DCF 中,CF =()
2
2436-=23,
∴BE =CF =23.
【点睛】
本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.
8.如图(1),已知正方形ABCD 在直线MN 的上方BC 在直线MN 上,E 是BC 上一点,
以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE ;
(2)连接FC ,观察并直接写出∠FCN 的度数(不要写出解答过程)
(3)如图(2),将图中正方形ABCD 改为矩形ABCD ,AB =6,BC =8,E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请求出tan ∠FCN 的值.若∠FCN 的大小发生改变,请举例说明.
【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =4
3
.理由见解析. 【解析】 【分析】
(1)根据三角形判定方法进行证明即可.
(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.
(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】
(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,
ADG ABE DAG BAE AD AB ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:
则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,
∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,
EHF ABE FEH BAE AE EF ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.
(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:
由已知可得∠EAG =∠BAD =∠AEF =90°,
结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴
EH FH FH
AB BE CH
==; 在Rt △FEH 中,tan ∠FCN =
84
63
FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43
. 【点睛】
本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的
综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.
9.如图,在平面直角坐标系xOy 中,抛物线y =﹣
14x 2+bx +c 与直线y =1
2
x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .
(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;
(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.
【答案】(1)21y 234x x =-+-,D (4,1);(2)1
3
;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =
1
2
x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣
14
x 2
+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC 5CE =2,则CH 5
解;
(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =
1
2
x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣1
4
×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣
14
x 2
+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1); (2)过点E 作EH ⊥BC 交于点H ,
C、D的坐标分别为:(0,﹣3)、(4,1),
直线CD的表达式为:y=x﹣3,则点E(3,0),
tan∠OBC=
31
62
OC
OB
==,则sin∠OBC=
5
,
则EH=EB•sin∠OBC=
5
,
CE=32,则CH=
5
,
则tan∠DCB=
1
3 EH
CH
=;
(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),
则BC=35,
∵OE=OC,∴∠AEC=45°,
tan∠DBE=
1
64
-
=
1
2
,
故:∠DBE=∠OBC,
则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,
过点F作FG⊥BG交BC的延长线与点G,
则∠GFC=∠OBC=α,
设:GF=2m,则CG=GFtanα=m,
∵∠CBF=45°,∴BG=GF,
即:35+m=2m,解得:m=35,
CF=22
GF CG
=5m=15,
故点F(0,﹣18);
②当点F在y轴正半轴时,
同理可得:点F(0,1);
故:点F坐标为(0,1)或(0,﹣18).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC=∠DBA+∠DCB=∠AEC=45°,是本题的突破口.
10.已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=1
2
∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=3
5
,AK=10,求CN
的长.
【答案】(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(320
10 13
【解析】
试题分析:
(1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;
(2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=1
2
∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;
(3)如下图2,作NP⊥AC于P,
由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=3
5
AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=
4
3
CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=
3AH
HK
=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP
=,可设PN=12b ,AP=9b ,由tan ∠ACG=
PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=5
13
,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:
(1)如图1,连接OG .
∵EF 切⊙O 于G , ∴OG ⊥EF ,
∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,
∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α, ∵∠FGB=
1
2
∠ACH ,
∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .
(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=3
5
AH AC =,设AH=3a ,AC=5a ,
则4a =,tan ∠CAH=
4
3
CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH , ∴∠CAK=∠AKH ,
∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=AH
HK
=3,=, ∵
∴
=
∴a=1.AC=5, ∵∠BHD=∠AGB=90°, ∴∠BHD+∠AGB=180°,
在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°, ∴∠ABG+∠HKG=180°, ∵∠AKH+∠HKG=180°, ∴∠AKH=∠ABG , ∵∠ACN=∠ABG , ∴∠AKH=∠ACN , ∴tan ∠AKH=tan ∠ACN=3, ∵NP ⊥AC 于P , ∴∠APN=∠CPN=90°, 在Rt △APN 中,tan ∠CAH=4
3PN AP =,设PN=12b ,则AP=9b , 在Rt △CPN 中,tan ∠ACN=PN
CP
=3, ∴CP=4b , ∴AC=AP+CP=13b , ∵AC=5, ∴13b=5, ∴b=
513
,
∴CN=22
PN CP
+=410b⋅=20
10 13
.
11.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.
(1)求抛物线表达式;
(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,
①求点P坐标;
②过此二点的直线交y轴于F, 此直线上一动点G,当GB+
2
GF
2
最小时,求点G坐标.
(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值
【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313
【解析】
【分析】
(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式
为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2
×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为
2
GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;
(3)先用面积法求出sin∠ACB=213
,
tan∠ACB=
2
3
,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=
MB
BN
=
2
3
,所以BN=
3
2
MB,当MB为直径时,BN的长度最大.
【详解】
(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),
∴
14
12554
a b
a b
-++
⎧
⎨
-++
⎩
=
,
=
解得
1
6
a
b
⎧
⎨
-
⎩
=
,
=
∴抛物线表达式为y=x²﹣6x+4.
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,
设直线BC的解析式为y=kx+m,
∵B(5,-1),C(0,4),
∴
15
4
k m
m
-+
⎧
⎨
⎩
=
=
,解得
1
4
k
m
=
,
=
-
⎧
⎨
⎩
∴直线BC的解析式为:y=-x+4,
设点P(t,t2-6t+4),R(t,-t+4),
∵▱CBPQ的面积为30,
∴S△PBC=1
2
×(−t+4−t2+6t−4)×5=15,
解得t=2或t=3,
当t=2时,y=-4
当t=3时,y=-5,
∴点P坐标为(2,-4)或(3,-5);
②当点P为(2,-4)时,
∵直线BC解析式为:y=-x+4, QP∥BC,
设直线QP的解析式为:y=-x+n,
将点P代入,得-4=-2+n,n=-2,
∴直线QP的解析式为:y=-x-2,
∴F(0,-2),∠GOR=45°,
∴GB+2
2
GF=GB+GR
当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,
同理可得点G的坐标为(0,-2),
(3) )∵A(1,-1),B(5,-1)C(0,4),
∴AC=26,BC=52,
∵S△ABC=1
2AC×BCsin∠ACB=
1
2
AB×5,
∴sin∠ACB=213
13,tan∠ACB=
2
3
,
∵AE为直径,AB=4,
∴∠ABE=90°,
∵sin∠AEB=sin∠ACB=213=4
AE
,∴AE=213,
∵MB⊥NB,∠NMB=∠EAB,
∴∠N=∠AEB=∠ACB,
∴tanN=MB
BN =
2
3
,
∴BN=3
2
MB,
当MB为直径时,BN的长度最大,为313.
【点睛】
题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.
12.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).
【答案】1.5米.
【解析】
试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出
在Rt△ACD中,米,CD=2AD=3
米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.
试题解析:延长OA交BC于点D.
∵AO的倾斜角是,
∴
∵
在Rt△ACD中, (米),
∴CD=2AD=3米,
又
∴△BOD是等边三角形,
∴(米),
∴BC=BD−CD=4.5−3=1.5(米).
答:浮漂B与河堤下端C之间的距离为1.5米.。