2020-2021学年七年级数学上册 1.3 有理数大小的比较同步练习(含解析)(全国通用版)人教版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

版)人教版
1.3 有理数大小的比较
一、选择题
1.在1,﹣2,0,这四个数中,最大的整数是()
A.1
B.0
C.
D.﹣2
2.比较,,,的大小,正确的是()
A. <<<
B. <<<
C. <<<
D. <<<
3.若0<x<1,则x,,x2的大小关系是()
A. <x<x2
B. x<<x2
C. x2<x<
D. <x2<x
4.两个数相加,如果和小于每个加数,那么这两个加数()
A. 同为正数
B. 同为负数
C. 一正一负且负数的绝对值较大
D. 不能确定
5.绝对值小于3的所有整数的和是()
A. 3
B. 0
C. 6
D. ﹣6
6.下列说法正确的有()
①非负数与它的绝对值的差为0 ②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.
A. 1个
B. 2个
C. 3个
D. 4个
7.在数5,﹣2,7,﹣6中,任意三个不同的数相加,其中最小的和是()
A. 10
B. 6
C. ﹣3
D. ﹣1
8.下列各组数中,相等的是()
A. -1与(-4)+(-3)
B. 与-(-3)
C. 与
D. 与-16
9.已知a=(﹣2)0,b=()﹣1,c=(﹣2)﹣2,那么a、b、c的大小关系为()
A. a>b>c
B. c>a>b
C. c>b>a
D. b>a>c
版)人教版
10.下列几种说法中,正确的是()
A. 有理数的绝对值一定比0大
B. 有理数的相反数一定比0小
C. 互为倒数的两个数的积为1
D. 两个互为相反的数(0除外)的商是0
11.已知a,b,c三个数的位置如图所示.则下列结论不正确的是()
A.a+b<0
B.b﹣a>0
C.a+b>0
D.a+c<0
12.若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+ n]的值为()
A. ﹣3
B. ﹣2
C. ﹣1
D. 0
二、填空题
13.比较大小________ (填“<”“>”或“=”).
14.最小的正整数是________,最大的负整数是________.
15.在数﹣5,﹣3,﹣2,2,6中,任意两个数相乘,所得的积中最小的数是________.
16.填空(选填“>”“<”“=”).⑴________1;⑵________ .
17.绝对值不大于4.5的所有整数的和为________.
18.若|x﹣2|=5,|y|=4,且x>y,则x+y的值为________.
19.所有大于﹣2而不大于3的非负整数的和是________.
20.请你根据如图所示已知条件,推想正确结论,
要求:每个结论同时含有字母a,b.
写出至少两条正确结论:①________,②________.
21.在数轴上表示下列各数:0,–2.5,,–2,+5,.并用“<”连接各数.比较大小:________<________<________<________<________<________
22.已知a、b为有理数,且a<0,b>0,a+b<0,将四个数a、b、-a、-b按从小到大的顺序排列是________
三、解答题
版)人教版
23.已知|a|=3,|b|=5,且a<b,求a﹣b的值.
24.把下列各数在数轴上表示出来,井用“<”连接:-1,,|-3| ,0.
25.数轴上的点A、B、C、D、E分别对应的数是:+5,﹣1.5,,﹣4,0.
(1)画数轴,并在数轴上将上述的点表示出来,并用“<”连接;
(2)问A、B两点间是多少个单位长度?
26.
(1)在如图所示的数轴上,把数﹣2,,4,﹣,2.5表示出来,并用“<“将它们连接起来;(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同时小球乙从表示数4的点处出发,以2个单位长度/秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t(秒).请从A,B两题中任选一题作答.
版)人教版
A.当t=3时,求甲、乙两小球之间的距离.
B.用含t的代数式表示甲、乙两小球之间的距离.
版)人教版
参考答案
一、选择题
1.【答案】A
【解析】:1,﹣2,0是整数,且﹣2<0<1,∴最大的整数是1,
故选:A.
【分析】先确定四个数中的整数,再根据有理数的大小比较法则解答.
2.【答案】A
【解析】-2<-<0<0.02.
故答案为:A.
【分析】根据负数大小的比较和整数大于负数可得:-2-00.02.
3.【答案】C
【解析】:∵0<x<1,∴可假设x=0.1,
则= =10,x2=(0.1)2= ,
∵<0.1<10,
∴x2<x<.
故答案为:C.
【分析】本题可以转化为指数函数的大小比较,利用指数函数的单调性可得出答案.
4.【答案】B
【解析】:两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.
例如:(﹣1)+(﹣3)=﹣4,﹣4<﹣1,﹣4<﹣3,
故选B.
【分析】根据有理数的加法法则,两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.5.【答案】B
版)人教版
【解析】:绝对值小于3的整数有±2,±1,0,
所以绝对值小于3的所有整数的和=﹣2+2+(﹣1)+1+0=0.
故答案为:B.
【分析】绝对值小于3的整数有±2,±1,0,由互为相反数的两个数的和等于零,得到绝对值小于3的所有整数的和是0.
6.【答案】B
【解析】:①非负数与它的绝对值的差为0,正确;②相反数大于本身的数是负数,正确;③数轴上原点两侧的数互为相反数,错误;④应为两个负数比较,绝对值大的反而小,故本小题错误.综上所述,说法正确的是①②共2个.故选B.
【分析】根据有理数的减法法则,相反数的定义,有理数的大小比较方法对各小题分析判断即可得解.7.【答案】C
【解析】:由题意,得﹣2,5,﹣6是三个最小的数,
﹣2+(﹣6)+5=﹣3,
故选:C.
【分析】根据最小的三个数相加,可得和最小.
8.【答案】B
【解析】本题考查有理数的比较大小,先利用有理数的加法,绝对值,有理数的乘方进行,然后再进行比较,可以选出正确的答案.【分析】根据有理数运算法则进行运算比较即可,-1和(-4)+(-3)=-7不相等,=3和-(-3)=3相等,=和不相等,(-4)2=16和-16不相等。

9.【答案】D
【解析】:a=1,b=2,c= ∴b>a>c,
故答案为:D
【分析】先将各数化简后即可判断大小.
10.【答案】C
【解析】A .0的绝对值是0,等于0,故A选项不符合题意;B.0的相反数是0,等于0,故B选项不符合题意;C.互为倒数的两个数的乘积为1,故C选项符合题意;D. 两个互为相反的数(0除外)的商是-1,
版)人教版
故D不符合题意,
故答案为:C.
【分析】根据倒数的意义:乘积为1的两个有理数互为倒数可知C符合题意。

11.【答案】C
【解析】:∵从数轴可知:a<b<0<c,|a|>|c|>|b|,∴A、a+b<0,正确,故本选项错误;
B、b﹣a>0,正确,故本选项错误;
C、a+b>0,错误,故本选项正确;
D、a+c<0,正确,故本选项错误;
故选C.
【分析】根据数轴得出a<b<0<c,|a|>|c|>|b|,再判断即可.
12.【答案】A
【解析】:m=[π]=3,n=[﹣2.1]=﹣3.
[m+ n]=[3+ ×(﹣3)]=[﹣]=﹣3,
故答案为:A.
【分析】根据题意得到m、n的值,再计算即可.
二、填空题
13.【答案】<
【解析】:∵|﹣|= = ,|-|= = ,∴>,∴-<-.故答案为:<.【分析】两个负数比大小,绝对值大的反而小。

14.【答案】1;-1
【解析】:最小的正整数是1,最大的负整数是﹣1【分析】正整数是指除0以外的自然数,所以1是最小的正整数;因为-1的绝对值是最小的负数,所以根据两个负数大小的比较,绝对值大的反而小可知,-1是最大的负整数。

15.【答案】-30
【解析】:取出两数为﹣5和6,所得的积最小的数是﹣30.故答案为:﹣30.
【分析】取出两数,使其乘积最小即可.
版)人教版
16.【答案】<;=
【解析】⑴⑵
故答案为:
【分析】(1)-0.02是负数小于正数1;(2)分别计算出数值都为0.75,则相等。

17.【答案】0
【解析】:∵绝对值不大于4.5的所有整数有:﹣4、﹣3、﹣2、﹣1、0、1、2、3、4,
∴绝对值不大于4.5的所有整数的和为:
(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4=0.
故答案为:0.
【分析】根据有理数大小比较的方法,可得绝对值不大于4.5的所有整数有:﹣4、﹣3、﹣2、﹣1、0、1、2、3、4,把它们相加,求出绝对值不大于4.5的所有整数的和为多少即可.
18.【答案】11,3,﹣7
【解析】:∵|x﹣2|=5,|y|=4,且x>y,
∴x﹣2=5或x﹣2=﹣5,y=4或﹣4,
解得:x=7,y=4;x=7,y=﹣4;x=﹣3,y=﹣4,
则x+y的值为11,3,﹣7.
故答案为:11,3,﹣7.
【分析】利用绝对值的代数意义及x与y的大小,确定出x与y的值,即可求出x+y的值.
19.【答案】6
【解析】:所有大于﹣2而不大于3的非负整数是0,1,2,3,0+1+2+3=6,
故答案为:6.
【分析】先得出大于﹣2而不大于3的非负整数是0,1,2,3,再根据有理数的加法,即可解答.
20.【答案】a+b<0;b-a>0
版)人教版
【解析】根据有理数的大小比较,有理数的加法,可得a+b<0,或b-a>0.【分析】此题是开放性的命题,答案不唯一,根据数轴上表示的数的特点,及有理数大小的比较,数轴上表示的数,右边的总比左边的大,原点左边表示负数,原点右边表示正数,及有理数的加减乘除法法则,可以得出结论。

21.【答案】–2.5;–2;0;;;+5
【解析】将各数在数轴上表示为:
用“<”连接各数为:-2.5<-2<0<<<+5.
【分析】根据有理数大小比较即可解答.
22.【答案】a <-b < b < -a
【解析】∵a<0,b>0,a+b<0,
∴.
∴a<-b<b<-a.
故答案为:a<-b<b<-a.
【分析】根据已知确定出,即可得出答案.
三、解答题
23.【答案】解:∵|a|=3,|b|=5,
∴a=±3,b=±5.
∵a<b,
∴当a=3时,b=5,则a﹣b=﹣2.
当a=﹣3时,b=5,则a﹣b=﹣8.
故a﹣b的值是﹣8或﹣2
【解析】【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=3时,b=5或a=﹣3时,b=5,所以a﹣b=﹣2或a﹣b=﹣8.
版)人教版
24.【答案】解:如图所示:
把各数用“<”连接:-1<0<<
【解析】【分析】根据数轴和绝对值化简出各个数,再用<连接.
25.【答案】(1)解:在数轴上表示数,如图:

由数轴上的点表示的数右边的总比左边的大,得:-4<-1.5<0<<+5
(2)解:A、B两点间的距离是=6.5.
【解析】【分析】(1)根据有理数大小的比较法则:数轴上的点表示的数右边的总比左边的大,可得-4<-1.5<0 <<+5;
(2)同一数轴上两点间的距离=两坐标之差的绝对值,所以A、B两点间的距离= | 5 − (− 1.5 )| =6.5.
26.【答案】(1)解:如图所示:
(2)解:A、当t=3时,甲、乙两小球之间的距离为:t﹣2+2t﹣4=3t﹣6=9﹣6=3.B、甲、乙两小球之间的距离为:t﹣2+2t﹣4=3t﹣6
【解析】【分析】(1)根据数轴的点的表示解答即可;(2)设运动的时间为t,根据题意列出代数式即可.
【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。

相关文档
最新文档