初三数学初中数学 旋转的专项培优易错试卷练习题附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学初中数学旋转的专项培优易错试卷练习题附详细答案
一、旋转
1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.
【解析】
试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知
△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出
CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出
EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;
(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到
△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.
试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,
∴AF=AG,∠FAG=90°,
∵∠EAF=45°,
∴∠GAE=45°,
在△AGE与△AFE中,

∴△AGE≌△AFE(SAS);
(2)设正方形ABCD的边长为a.
将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.
则△ADF≌△ABG,DF=BG.
由(1)知△AEG≌△AEF,
∴EG=EF.
∵∠CEF=45°,
∴△BME、△DNF、△CEF均为等腰直角三角形,
∴CE=CF ,BE=BM,NF=DF,
∴a﹣BE=a﹣DF,
∴BE=DF,
∴BE=BM=DF=BG,
∴∠BMG=45°,
∴∠GME=45°+45°=90°,
∴EG2=ME2+MG2,
∵EG=EF,MG=BM=DF=NF,
∴EF2=ME2+NF2;
(3)EF2=2BE2+2DF2.
如图所示,延长EF交AB延长线于M点,交AD延长线于N点,
将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.
由(1)知△AEH≌△AEF,
则由勾股定理有(GH+BE)2+BG2=EH2,
即(GH+BE)2+(BM﹣GM)2=EH2
又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2
考点:四边形综合题
2.请认真阅读下面的数学小探究系列,完成所提出的问题:
()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 求证:BCD V 的面积为
21.(2
a 提示:过点D 作BC 边上的高DE ,可证ABC V ≌)BDE V ()2探究2:如图2,在一般的Rt ABC V 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 请用含a 的式子表示BCD V 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 试探究用含a 的式子表示BCD V 的面积,要有探究过程.
【答案】(1)详见解析;(2)BCD V 的面积为212
a ,理由详见解析;(3)BCD V 的面积为
214
a . 【解析】
【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;
()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;
()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2
=
,由条件可以得出AFB V ≌BED V 就可以得出BF DE =,由三角形的面积公式就可以得出结论.
【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,
BED ACB 90∠∠∴==o ,
由旋转知,AB AD =,ABD 90∠=o ,
ABC DBE 90∠∠∴+=o ,
A ABC 90∠∠+=o Q ,
A DBE ∠∠∴=,
在ABC V 和BDE V 中,
ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩

ABC ∴V ≌()BDE AAS V
BC DE a ∴==,
BCD 1S BC
DE 2
=⋅V Q , 2BCD 1S a 2
∴=V ; ()2BCD V 的面积为21a 2
, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,
BED ACB 90∠∠∴==o ,
Q 线段AB 绕点B 顺时针旋转90o 得到线段BE ,
AB BD ∴=,ABD 90∠=o ,
ABC DBE 90∠∠∴+=o ,
A ABC 90∠∠+=o Q ,
A DBE ∠∠∴=,
在ABC V 和BDE V 中,
ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩

ABC ∴V ≌()BDE AAS V ,
BC DE a ∴==,
BCD 1S
BC DE 2
=⋅V Q , 2BCD 1S a 2
∴=V ; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,
AFB E 90∠∠∴==o ,11BF BC a 22
==, FAB ABF 90∠∠∴+=o ,
ABD 90∠=o Q ,
ABF DBE 90∠∠∴+=o ,
FAB EBD ∠∠∴=,
Q 线段BD 是由线段AB 旋转得到的,
AB BD ∴=,
在AFB V 和BED V 中,
AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩

AFB ∴V ≌()BED AAS V ,
1BF DE a 2∴==
, 2BCD 1111S BC DE a a a 2224
=⋅=⋅⋅=V Q , BCD ∴V 的面积为21a 4
. 【点睛】
本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运
用相关的性质与定理是解题的关键.
3.如图1.在△ABC 中,∠ACB =90°,点P 为△ABC 内一点.
(1)连接PB 、PC ,将△BCP 沿射线CA 方向平移,得到△DAE ,点B 、C 、P 的对应点分别为点D 、A 、E ,连接CE .
①依题意,请在图2中补全图形; ②如果BP ⊥CE ,AB +BP =9,CE =33,求AB 的长.
(2)如图3,以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接PA 、PB 、PC ,当AC =4,AB =8时,根据此图求PA +PB +PC 的最小值.
【答案】⑴①见解析,②AB =6;⑵47.
【解析】
分析:(1)①根据题意补全图形即可;
②连接BD 、CD .根据平移的性质和∠ACB =90°,得到四边形BCAD 是矩形,从而有CD =AB ,设CD =AB =x ,则PB =DE =9x -, 由勾股定理求解即可;
(2)当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转的性质和勾股定理求解即可.
详解:(1)①补全图形如图所示;
②如图:连接BD 、CD .
∵△BCP 沿射线CA 方向平移,得到△DAE ,
∴BC ∥AD 且BC =AD ,PB =DE .
∵∠ACB =90°,
∴四边形BCAD 是矩形,∴CD =AB ,设CD =AB =x ,则PB =9x -,
DE =BP =9x -,
∵BP ⊥CE ,BP ∥DE ,∴DE ⊥CE ,
∴222CE DE CD +=,∴(()22
2339x x +-=, ∴6x =,即AB =6;
(2)如图,当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.
由旋转可得:△AMN≌△APB,∴PB=MN.
易得△APM、△ABN都是等边三角形,∴PA=PM,
∴PA+PB+PC=PM+MN+PC=CN,
∴BN=AB=8,∠BNA=60°,∠PAM=60°,
∴∠CAN=∠CAB+∠BAN=60°+60°=120°,
∴∠CBN=90°.
在Rt△ABC中,易得:2222
-=-=,
BC AB AC
=8443
∴在Rt△BCN中,22486447
CN BC BN
=+=+=.
点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.
4.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.
(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;
(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.
(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1
【解析】
分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.
由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;
(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等
即可得出结论.
(3)分两种情况讨论即可.
详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.
∵∠NCD′=30°,CD′=CD=2,∴ND′= 1
2
CD′=1.
由已知,D’A∥CE,且D’A=CE=1,
∴四边形ACED’为平行四边形.
又∵∠DCE=90°,
∴四边形ACED’为矩形;
(2)如图,取BC中点即为点G,连接GD’.
∵∠DCE=∠D’CE’=90°,
∴∠DCE’=∠D’CG.
又∵D’C= DC,CG=CE’,
∴△DCE’≌△D’CG,
∴GD’=E’D.
(3)分两种情况讨论:①如图1.
∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.
②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.
点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.
5.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:
(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.
【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.
【解析】
【分析】
(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;
(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;
(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.
【详解】
(1)∵a=b=3,且∠ACB=60°,
∴△ABC是等边三角形,
∴OC=,
∴CD=3;
(2)3;
(3)以点D为中心,将△DBC逆时针旋转60°,
则点B落在点A,点C落在点E.连接AE,CE,
∴CD=ED,∠CDE=60°,AE=CB=a,
∴△CDE为等边三角形,
∴CE=CD.
当点E、A、C不在一条直线上时,
有CD=CE<AE+AC=a+b;
当点E、A、C在一条直线上时,
CD有最大值,CD=CE=a+b;
只有当∠ACB=120°时,∠CAE=180°,
即A、C、E在一条直线上,此时AE最大
∴∠ACB=120°,
因此当∠ACB=120°时,CD有最大值是a+b.
【点睛】
本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.
6.如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO 并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF.
(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.
(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,
0)、(6,3)、(,)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.
【答案】(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小;(2)10.【解析】
试题分析:(1)当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF 于G.由全等三角形的性质可以得出结论;
(2)①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N,由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大,S =S△OAD-S△MND.
四边形OANM
②如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,利用S
=S△OCT-S△MN T,进而得出答案.
四边形OCMN
试题解析:(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小.
如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,
可以得出当P是MN的中点时S四边形MOFG=S△MON.
∵S四边形MOFG<S△EOF,∴S△MON<S△EOF.
∴当点P是MN的中点时S△MON最小.
(2)分两种情况:
①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N.
延长OC、AB交于点D,易知AD = 6,S△OAD=18 .
由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大.过点P、M分别作PP1⊥OA,MM1⊥OA,垂足分别为P1、M1.
由题意得M1P1=P1A = 2,从而OM1=MM1= 2.又P(4,2),B(6,3)
∴P1A=M1P1="O" M1=P1P=2,M1M=OM=2,可证四边形MM1P1P是正方形.
∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8.
∴.
② 如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N.
延长CB交x轴于T点,由B、C的坐标可得直线BC对应的函数关系式为 y =-x+9 .
则T点的坐标为(9,0).
∴S△OCT=×9×=.
由(1)的结论知:当PM=PN时,△MNT的面积最小,此时四边形OCMN的面积最大.
过点P、M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1.
从而 NP1=P1M1,MM1=2PP1=4.
∴点M的横坐标为5,点P(4、2),P1M1= NP1= 1,TN =6.
∴S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT =-12=<10.
综上所述:截得四边形面积的最大值为10.
考点:1.线动旋转问题;2.正方形的判定和性质;3.图形面积求法;4.分类思想的应用.
7.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.
(1)如图1,直接写出∠ABD和∠CFE的度数;
(2)在图1中证明:AE=CF;
(3)如图2,连接CE,判断△CEF的形状并加以证明.
【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】
试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.
(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.
(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.
(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.
∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.
∴∠CFE=∠A+∠ABD=45°.
(2)如图,连接CD、DF.
∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.
∴CD=BD.
∵线段BD平移到EF,∴EF∥BD,EF=BD.
∴四边形BDFE是平行四边形,EF= CD.
∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.
∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.
∴△AEF≌△FCD(AAS).
∴AE=CF.
(3)△CEF是等腰直角三角形,证明如下:
如图,过点E作EG⊥CF于G,
∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.
∵∠A=300,∠AGE=90°,∴.
∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.
∴EF=EC.
∴∠CEF=∠FEG=90°.
∴△CEF是等腰直角三角形.
考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.
8.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).
(1)求AB的长;
(2)当∠BAD=45°时,求D点的坐标;
(3)当点C在线段AB上时,求直线BD的关系式.
【答案】(1)5;(2)D(4,7)或(-4,1);(3)
【解析】
试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根
据勾股定理求解即可;
(2)根据旋转的性质结合△BOA的特征求解即可;
(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,
∴;
(2)由题意得D(4,7)或(-4,1);
(2)由题意得D点坐标为(4,)
设直线BD的关系式为
∵图象过点B(0,4),D(4,)
∴,解得
∴直线BD的关系式为.
考点:动点的综合题
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
9.(1)观察猜想
如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是
_____;
(2)拓展探究
将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)解决问题
若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.
【答案】(1)BG=AE.
(2)成立.
如图②,
连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.
正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
【解析】
解:(1)BG=AE.
(2)成立.
如图②,连接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]
因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=.
即在正方形DEFG旋转过程中,当AE为最大值时,AF=.
10.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.
(1)求证:AC垂直平分EF;
(2)试判断△PDQ的形状,并加以证明;
(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.
【解析】
试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,
∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;
(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明
∠DPQ=90°,即可得出结论;
(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.
试题解析:(1)证明:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,
∵BE=DF,
∴CE=CF,
∴AC垂直平分EF;
(2)解:△PDQ是等腰直角三角形;理由如下:
∵点P是AF的中点,∠ADF=90°,
∴PD=AF=PA,
∴∠DAP=∠ADP,
∵AC垂直平分EF,
∴∠AQF=90°,
∴PQ=AF=PA,
∴∠PAQ=∠AQP,PD=PQ,
∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,
∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,
∴△PDQ是等腰直角三角形;
(3)成立;理由如下:
∵点P是AF的中点,∠ADF=90°,
∴PD=AF=PA,
∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,
∴CE=CF,∠FCQ=∠ECQ,
∴CQ⊥EF,∠AQF=90°,
∴PQ=AF=AP=PF,
∴PD=PQ=AP=PF,
∴点A、F、Q、P四点共圆,
∴∠DPQ=2∠DAQ=90°,
∴△PDQ是等腰直角三角形.
考点:四边形综合题.
11.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.
(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.
(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任
意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,
AC=kAF,上一问的结论还成立吗?并证明你的结论.
(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且
∠IHJ=∠AGB=θ=60°,k=2;
求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).
【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.
【解析】
试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,
FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明
△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,
△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.
试题解析:(1)特例发现,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,
∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,
∴FQ=AG,∴PE=FQ;
(2)延伸拓展,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,
∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,
△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(3)深入探究,如图2,
在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,
∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,
△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(4)应用推广,如图3,
在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,
∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,
∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,
∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为
△AEF的中位线,∴MN min=EF=×2=1.
考点:1.几何变换综合题;2.三角形全等及相似的判定性质.
12.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作
CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.
思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.
①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;
②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;
③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.
【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是
PC=PE,PC⊥PE,见解析;③PC2=1033
2
.
【解析】
【分析】
(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB =CD,即可解题.
(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.
②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .
③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2
=10+
求出2211022
PC EC +=
= 【详解】
(1)解:∵CD ∥AB ,∴∠C =∠B ,
在△ABP 和△DCP 中, BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩

∴△ABP ≌△DCP (SAS ),
∴DC =AB .
∵AB =200米.
∴CD =200米,
故答案为:200.
(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .
理由如下:如解图1,延长EP 交BC 于F ,
同(1)理,可知∴△FBP ≌△EDP (SAS ),
∴PF =PE ,BF =DE ,
又∵AC =BC ,AE =DE ,
∴FC =EC ,
又∵∠ACB =90°,
∴△EFC 是等腰直角三角形,
∵EP =FP ,
∴PC =PE ,PC ⊥PE .
②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .
理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,
同①理,可知△FBP ≌△EDP (SAS ),
∴BF =DE ,PE =PF =
12
EF , ∵DE =AE ,
∴BF =AE ,
∵当α=90°时,∠EAC =90°,
∴ED ∥AC ,EA ∥BC
∵FB ∥AC ,∠FBC =90,
∴∠CBF =∠CAE ,
在△FBC 和△EAC 中,
BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩

∴△FBC ≌△EAC (SAS ),
∴CF =CE ,∠FCB =∠ECA ,
∵∠ACB =90°,
∴∠FCE =90°,
∴△FCE 是等腰直角三角形,
∵EP =FP ,
∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作
BF

DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,
当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150°
同②可得△FBP ≌△EDP (SAS ),
同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =
22CE , 在Rt △AHE 中,∠EAH =30°,AE =DE =1,
∴HE =12,AH =3, 又∵AC =AB =3, ∴CH =3+
32, ∴EC 2=CH 2+HE 2=1033+
∴PC 2=21103322
EC +=
【点睛】
本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.
13.正方形ABCD和正方形AEFG的边长分别为2和22,点B在边AG上,点D在线段EA的延长线上,连接BE.
(1)如图1,求证:DG⊥BE;
(2)如图2,将正方形ABCD绕点A按逆时针方向旋转,当点B恰好落在线段DG上时,求线段BE的长.

【答案】(1)答案见解析;(2)26
【解析】
【分析】
(1)由题意可证△ADG≌△ABE,可得∠AGD=∠AEB,由∠ADG+∠AGD=90°,可得
∠ADG+∠AEB=90°,即DG⊥BE;
(2)过点A作AM⊥BD,垂足为M,根据勾股定理可求MG的长度,即可求DG的长度,由题意可证△DAG≌△BAE,可得BE=DG.
【详解】
(1)如图,延长EB交GD于H
∵四边形ABCD和四边形AEFG是正方形
∴AD=AB,AG=AE,∠DAG=∠BAE=90°
∴△ADG≌△ABE(SAS)
∴∠AGD=∠AEB
∵∠ADG+∠AGD=90°
∴∠ADG+∠AEB=90°
∴DG⊥BE
(2)如图,过点A作AM⊥BD,垂足为M
∵正方形ABCD和正方形AEFG的边长分别为2和22,
∴AM=DM=2,∠DAB=∠GAE=90°
∴MG=22
AG MA
-=6,∠DAG=∠BAE
∴DG=DM+MG=2+6,由旋转可得:AD=AB,AG=AE,且∠DAG=∠BAE
∴△DAG≌△BAE(SAS)
+
∴BE=DG=26
【点睛】
考查了旋转的性质,正方形的性质,全等三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.
14.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.
【答案】40°.
【解析】
【分析】
先根据平行线的性质,由CC′∥AB得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.
【详解】
∵CC′∥AB,
∴∠A CC′=∠CAB=70°,
∵△ABC绕点A旋转到△AB′C′的位置,
∴AC=AC′,∠BAB′=∠CAC′,
在△ACC′中,∵AC=AC′
∴∠ACC′=∠AC′C=70°,
∴∠CAC′=180°-70°-70°=40°,
∴∠BAB′=40°.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
15.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。

【答案】(1)90 (2)答案见解析(3)4秒或16秒
【解析】
【分析】
(1)根据旋转的性质知,旋转角是∠MON;
(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;
(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°
【详解】
解:(1)由旋转的性质知,旋转角∠MON=90°.
故答案是:90;
(2)如图3,∠AOM﹣∠NOC=30°.
设∠AOC=α,由∠AOC:∠BOC=1:2可得
∠BOC=2α.
∵∠AOC+∠BOC=180°,
∴α+2α=180°.
解得α=60°.
即∠AOC=60°.
∴∠AON+∠NOC=60°.①
∵∠MON=90°,
∴∠AOM+∠AON=90°.②
由②﹣①,得∠AOM﹣∠NOC=30°;
(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,
由OD平分∠AOC,可得∠BON=30°.
因此三角板绕点O逆时针旋转60°.
此时三角板的运动时间为:
t=60°÷15°=4(秒).
(ⅱ)如图5,当直角边ON在∠AOC内部时,
由ON平分∠AOC,可得∠CON=30°.
因此三角板绕点O逆时针旋转240°.
此时三角板的运动时间为:
t=240°÷15°=16(秒).
【点睛】
本题综合考查了旋转的性质,角的计算.解答(3)题时,需要分类讨论,以防漏解.。

相关文档
最新文档