八年级初二数学下学期二次根式单元测试提优卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.下列计算正确的是( )
A
=B
C
D =
2.( )
A .1
B .﹣1
C .
D -
3.下列各式计算正确的是( )
A =
B =
C .23=
D 2=-
4.下列各式中,正确的是( )
A 2=±
B =
C 3=-
D 2=
5.下列各式中,运算正确的是( )
A .=-=.2=D 2=-
6.x 的取值范围是( ) A .13
x ≥
B .13
x >
C .13
x ≤
D .13
x <
7.已知4
4
2
2
0,24,180x y x y >+=++=、.则xy=( )
A .8
B .9
C .10
D .11
8.已知a ( )
A .0
B .3
C .
D .9
9.
A .﹣3
B .3
C .﹣9
D .9
10.下列运算中正确的是( )
A .=
B
===
C 3===
D 1==
二、填空题
11.若m
m 3﹣m 2﹣2017m +2015=_____.
12.能力拓展:
1A =
2A =;3:A =;
4A =________.
…n A :________.
()1请观察1A ,2A ,3A 的规律,按照规律完成填空.
()2比较大小1A 和2A
()3
-
13.计算(π-3)0-2
1-2
()
的结果为_____.
14.实数a 、b 10-b 4-b-2=+,则22a b +的最大值为_________.
15.若2x ﹣x 2﹣x=_____.
16.计算:2015·
2016=________.
17.已知x ,y 为实数,y 求5x +6y 的值________.
18.3y =
,则2xy 的值为__________.
19.如果0xy >.
20.x 的取值范围是_____
三、解答题
21.阅读下面问题: 阅读理解:
==1;
==
2
=
=-.
应用计算:(1
(21
(n 为正整数)的值.
归纳拓展:(3
98+
+
【答案】应用计算:(12 归纳拓展:(3)9. 【分析】
由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1
分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】
(1
(2
(3+
98+,
(
+
98+,
++99-
, =10-1, =9. 【点睛】
本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.
22.计算:
(1(2))((2
22
+-+.
【答案】(1) 【分析】
(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】
(1
=
=
(2)
)((2
22
+-+
=22
23
--+ =5-4-3+2 =0
23.计算:
10099+
【答案】
910
【解析】 【分析】
先对代数式的每一部分分母有理化,然后再进行运算 【详解】
10099++
=
2100992612
9900
-++++
=9912233499100
-+-+-++
-
=1100
- =1
110
- =
910
【点睛】
本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。

24.计算:
(1﹣
(2) (3)
2
44x -﹣1
2
x -.
【答案】(1)2(3)-12
x + 【解析】
分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;
(2)根据乘法的分配律以及二次根式的性质进行计算即可;
(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.
详解:(1
(2)
(3)2
41
42x x --- =41
(2)(2)2
x x x -+--
= 42
(2)(2)(2)(2)
x x x x x +-+-+-
=
2(2)(2)x
x x -+-
=12
x -
+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.
25.
)÷
)(a ≠b ).
【答案】
【解析】
试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.
试题解析:解:原式=
()(
)
a b a b --+-
2
222
26
.先化简,再求值:(
()69
x x x x --+,其中1x =
.
【答案】化简得6x+6,代入得 【分析】
根据整式的运算公式进行化简即可求解. 【详解】
(
()69x x
x x +--+
=22369x x x
--++ =6x+6
把1x =
代入原式=6
1)
【点睛】
此题主要考查实数的运算,解题的关键熟知整式的运算法则
.
27.在一个边长为(
cm 的正方形的内部挖去一个长为(
)cm

cm 的矩形,求剩余部分图形的面积.
【答案】
【解析】
试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积. 试题解析:剩余部分的面积为:(
2﹣(
) =(
)﹣(﹣) =(cm 2).
考点:二次根式的应用
28.计算:(1)-
(2)
【答案】(1)21
【分析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)先利用二次根式的乘除法则运算,再合并即可.
【详解】
解:(1)原式==
(2)原式3+21
==.
【点睛】
本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
直接利用二次根式的混合运算法则分别判断得出答案.
【详解】
解:A
B
=,故此选项不合题意;
2
C,故此选项不合题意;
D=
故选:D.
【点睛】
本题考查二次根式的混合运算,正确掌握相关运算法则是解题关键.
2.C
解析:C
【解析】
解:原式=故选C.
3.C
解析:C
【分析】
根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】
2
,故选项A错误;
=
2
,故选项B错误;
C. 2
3
=,故选项C正确;
2
=,故选项D错误;
故选C.
【点睛】
本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.B
解析:B
【分析】
本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.
【详解】
A,故该选项错误;
B==
C3
=,故该选项错误;
D
112
2
333
4=(2)2
==,故该选项错误;
故选:B.
【点睛】
本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.
5.A
解析:A
【分析】
由合并同类项、二次根式的性质分别进行判断,即可得到答案.
【详解】
解:A、-=A正确;
B=B错误;
C 、2不能合并,故C 错误;
D 2=,故D 错误;
故选:A . 【点睛】
本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.
6.C
解析:C 【分析】
根据二次根式的性质:被开方数大于或等于0,列不等式求解. 【详解】 解:依题意有
当130x -≥时,原二次根式有意义;
解得:13
x ≤
; 故选:C . 【点睛】
本题考查了二次根式的基本性质(被开方数大于或等于0);解一元一次不等式,在解一元一次不等式的过程中要用到不等式的基本性质(1.不等式两边同时加上或同时减去一个数,不等号的方向不变;2.不等式两边同时乘以或同时除以一个正数,不等号的方向不变;3.不等式两边同时乘以或同时除以一个负数,不等号的方向改变.)熟记并灵活运用不等式的基本性质是解本题的关键.
7.D
解析:D 【分析】
利用完全平方公式、平方差公式化简第二个等式即可. 【详解】
44180+=
配方得2
2222180⎡⎤+-+⋅=⎣⎦
22
2180⎡⎤⎡⎤+=⎣⎦⎣⎦
222()180x y +-=
22162(2)180xy x xy y +-+= 22122()180xy x y ++=
将2
2
24x y +=代入得:12224180xy +⨯= 计算得:11xy = 故选:D.
【点睛】
本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握.
8.B
解析:B 【解析】
=,可知当(a ﹣3)
2
=0,即a=3
故选B .
9.B
解析:B 【分析】
利用二次根式的性质进行化简即可. 【详解】
﹣3|=3.
故选B.
10.B
解析:B 【分析】
根据二次根式的乘除法则求出每个式子的值,再判断即可. 【详解】
解: A. 67=⨯==42,故本选项不符合题意;
===,故本选项,符合题意;
===
3,故本选项不符合题意;
D. ==3,故本选项不符合题意; 故选B . 【点睛】
本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.
二、填空题 11.4030 【分析】
利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.
【详解】
m== m==+1,
∴m3-m2-2017m+2015
=m2(m ﹣1)﹣2017m+2015
解析:4030
【分析】
利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.
【详解】
m
m ), ∴m 3-m 2-2017m +2015
=m 2(m ﹣1)﹣2017m +2015
= )22017)+2015
=(2017+2015
﹣2
=4030.
故答案为4030.
【点睛】
本题主要考查二次根式的化简以及二次根式的混合运算.
12.(1)、;(2);(3)
【解析】
【分析】
(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;
(2)先根据不等式的性质等式的两边同时加上或減去一个数,等
解析:(1)
=;(2),,><<;(3) ,,<<< 【解析】
【分析】
(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;
(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得
>1)的结论解答;
(3)利用(2)的结论进行填空.
【详解】
解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代
数式,所以
=,
(2>
1>
>,
<
<
(3)由(1)、(2<,
故答案为:
=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.
13.﹣6
【解析】
根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.
故答案为﹣6.
解析:﹣6
【解析】
根据零指数幂的性质0
1(0)a a =≠,二次根式的性质,负整指数幂的性质
1
(0)p
p a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣
4×2
﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.
14.【分析】
首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出的最大值.
【详解】
解析:【分析】
10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.
【详解】
10-b 4-b-2=+,
1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,
∵264a a -+-≥,426b b ++-≥,
∴ 264a a -+-=,42=6b b ++-,
∴2≤a≤6,-4≤b≤2,
∴22a b +的最大值为()2
26452+-=,
故答案为52.
【点睛】
本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 15.【解析】
【分析】
根据完全平方公式以及整体的思想即可求出答案.
【详解】
解:∵2x﹣1= ,
∴(2x ﹣1)2=3
∴4x2﹣4x+1=3
∴4(x2﹣x )=2 ∴x2﹣x=
故答案为
【点
解析:
12
【解析】
【分析】
根据完全平方公式以及整体的思想即可求出答案.
【详解】
解:∵2x ﹣

∴(2x ﹣1)2=3
∴4x 2﹣4x+1=3
∴4(x 2﹣x )=2
∴x 2﹣x=
12
故答案为12
【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.
16.【解析】
原式=.
故答案为.
【解析】
原式=20152015=
17.-16
【解析】
试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16
解析:-16
【解析】
试题分析:根据分式的有意义和二次根式有意义的条件,可知x 2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-
16,因此可得5x+6y=5×(-3)+6×(-16
)=-15-1=-16. 故答案为:-16.
点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解. 18.【解析】
试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.
解析:15-
【解析】
试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=
52,y=-3,代入可得2xy =-2×52
×3=-15. 19.【分析】
由,且,即知,,据此根据二次根式的性质化简可得.
【详解】
∵,且,即,
∴,,
∴,
故答案为:.
【点睛】
本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.
解析:-【分析】
由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.
【详解】
∵0xy >,且20xy -≥,即•0y xy -≥,
∴0x <,0y <,
==-
故答案为:-
【点睛】
本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.
20.x≥4
【解析】
试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.
故答案为x≥4.
点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然
解析:x≥4
【解析】
试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.
点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.
三、解答题
21.无
22.无
23.无
24.无
25.无
26.无
27.无
28.无。

相关文档
最新文档