2-DE

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双向电泳
双向电泳(two-dimensional electrophoresis)是等电聚焦电泳和SDS-PAGE 的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。

蛋白质组研究
蛋白质组研究的发展以双向电泳技术作为核心. 双向电泳由O’Farrell’s于1975年首次建立并成功地分离约1 000个E.coli蛋白,并表明蛋白质谱不是稳定的,而是随环境而变化. 双向电泳原理简明,第一向进行等电聚焦,蛋白质沿pH梯度分离,至各自的等电点;随后,再沿垂直的方向进行分子量的分离. 目前,随着技术的飞速发展,已能分离出10 000个斑点(spot). 当双向电泳斑点的全面分析成为现实的时候,蛋白质组的分析变得可行.
样品制备(sample prepareation)和溶解同样事关2-DE的成效,目标是尽可能扩大其溶解度和解聚,以提高分辨率. 用化学法和机械裂解法破碎以尽可能溶解和解聚蛋白,两者联合有协同作用. 对IEF(isoelectric focusing)样品的预处理涉及溶解、变性和还原来完全破坏蛋白间的相互作用,并除去如核酸等非蛋白物质. 理想的状态是人们应一步完成蛋白的完全处理. 而离液剂2 mol/L硫脲和表面活性剂4%CHAPS的混合液促使疏水蛋白从IPG(immobilized pH gradients)胶上的转换. 三丁基膦(Tributyl phosphine,TBP )取代β-巯基乙醇或DTT完全溶解链间或链内的二硫键,增强了蛋白的溶解度,并导致转至第二向的增加]. 两者通过不同的方法来增加蛋白的溶解度,作为互补试剂会更有效. 在保持样品的完整性的前提下,可利用超离和核酸内切酶去除核酸(DNA). 除此之外,机械力被用来对蛋白分子解聚,如超声破碎]等. 另外,添加PMSF等蛋白酶抑制剂,可保持蛋白完整性. 由于商品化的IPG胶条是干燥脱水的,可在其水化的过程中加样,覆盖整个IPG胶,避免在样品杯中的沉淀所致的样品丢失]. 此外,低丰度蛋白(low abundance protein)在细胞内可能具有重要的调节功能,代表蛋白质组研究的“冰山之尖”,故分离低丰度蛋白是一种挑战. 亚细胞分级和蛋白质预分级、提高加样量(已达到1~15 mg级的标准)、应用敏感性检测,可以提高其敏感性. 如一种多肽免疫2-DE印迹(MI-2DE)是利用几种单克隆抗体技术来分析和检测. 提高组蛋白和核糖体蛋白等碱性蛋白(basic proteins)的分离是另一难点. 由于碱性pH 范围内凝胶基质的不稳定及逆向电渗流(EOF)的产生,对PI(等电点)超过10的碱性蛋白,通过产生?0~10%?的山梨醇梯度和16%的异丙醇可减少之. 亦可用双甲基丙烯酰胺来增加基质的稳定性.
蛋白质组研究
蛋白质组研究的发展以双向电泳技术作为核心. 双向电泳由
O’Farrell’s于1975年首次建立并成功地分离约1 000个E.coli蛋白,并表明蛋白质谱不是稳定的,而是随环境而变化. 双向电泳原理简明,第一向进行等电聚焦,蛋白质沿pH梯度分离,至各自的等电点;随后,再沿垂直的方向进行分子量的分离. 目前,随着技术的飞速发展,已能分离出10 000个斑点(spot). 当双向电泳斑点的全面分析成为现实的时候,蛋白质组的分析变得可行.
样品制备(sample prepareation)和溶解同样事关2-DE的成效,目标是尽可能扩大其溶解度和解聚,以提高分辨率. 用化学法和机械裂解法破碎以尽可能溶解和解聚蛋白,两者联合有协同作用. 对IEF(isoelectric focusing)样品的预处理涉及溶解、变性和还原来完全破坏蛋白间的相互作用,并除去如核酸等非蛋白物质. 理想的状态是人们应一步完成蛋白的完全处理. 而离液剂2 mol/L硫脲和表面活性剂4%CHAPS的混合液促使疏水蛋白从IPG(immobilized pH gradients)胶上的转换. 三丁基膦(Tributyl phosphine,TBP )取代β-巯基乙醇或DTT完全溶解链间或链内的二硫键,增强了蛋白的溶解度,并导致转至第二向的增加]. 两者通过不同的方法来增加蛋白的溶解度,作为互补试剂会更有效. 在保持样品的完整性的前提下,可利用超离和核酸内切酶去除核酸(DNA). 除此之外,机械力被用来对蛋白分子解聚,如超声破碎]等. 另外,添加PMSF等蛋白酶抑制剂,可保持蛋白完整性. 由于商品化的IPG胶条是干燥脱水的,可在其水化的过程中加样,覆盖整个IPG胶,避免在样品杯中的沉淀所致的样品丢失]. 此外,低丰度蛋白(low abundance protein)在细胞内可能具有重要的调节功能,代表蛋白质组研究的“冰山之尖”,故分离低丰度蛋白是一种挑战. 亚细胞分级和蛋白质预分级、提高加样量(已达到1~15 mg级的标准)、应用敏感性检测,可以提高其敏感性. 如一种多肽免疫2-DE印迹(MI-2DE)是利用几种单克隆抗体技术来分析和检测. 提高组蛋白和核糖体蛋白等碱性蛋白(basic proteins)的分离是另一难点. 由于碱性pH范围内凝胶基质的不稳定及逆向电渗流(EOF)的产生,对PI(等电点)超过10的碱性蛋白,通过产生?0~10%?的山梨醇梯度和16%的异丙醇可减少之. 亦可用双甲基丙烯酰胺来增加基质的稳定性.
2-DE面临的挑战
2-DE面临的挑战是高分辨率和重复性. 高分辨率确保蛋白最大程度的分离,高重复性允许进行凝胶间配比(match). 对2-DE而言,有3种方法分离蛋白:1)ISO-DALT(isoelectric focus)以O’Farrell’s技术为基础. 第一向应用载体两性电解质(carrier ampholyte, CA),在管胶内建立pH
梯度. 随着聚焦时间的延长,pH梯度不稳,易产生阴极漂移. 2) NEPHGE(non-equilibrium pH gradient electrophoresis)用于分离碱性蛋白(pH>7.0). 如果聚焦达到平衡状态,碱性蛋白会离开凝胶基质而丢失. 因此,在等电区域的迁移须在平衡状态之前完成,但很难控制. 3)IPG-DALT 发展于80年代早期. 由于固相pH梯度(Immobilized pH gradient, IPG)的出现解决了pH梯度不稳的问题. IPG通过immobiline共价偶联于丙烯酰胺产生固定的pH梯度,克服了IEF的缺点,从而达到高度的重复性. 目前可以精确制作线性、渐进性和S型曲线,范围或宽或窄的pH梯度. 新的酸性pH 3~5或碱性pH 6~11的IPG凝胶梯度联合商品化的pH 4~7的梯度可对蛋白质形成蛋白质组重叠群(proteomic contigs)从而有效分离.
分离后的斑点检测
分离后的斑点检测(spot detection)亦很重要. 所采用的检测策略和分离后所采用的方法的相互作用是很重要的. 此外,还需考虑反应的线性、饱和阈/动态范围、敏感性、对细胞蛋白群的全体定量分析的适应性、可行性. 目前,没有一种蛋白染色覆盖广泛的浓度和PI及分离后分析技术. 银染已成为一种检测2-DE的流行方法,可检测少到2~5ng的蛋白,因此较考马斯亮蓝R-250敏感. 多数糖蛋白不能被考马斯亮蓝染色,一些有机染料不适于PVDF膜. 放射性标记不依赖其代谢的活性,并仅适于对合成的蛋白质检测. 另有一种改良的2-DE(差异凝胶电泳),即应用两种不同的染料荧光标记两个样品,使在同一凝胶上电泳后的凝胶图象为两个,避免了几种2-DE的比较,可在纳克级进行检测.
较早期相比,2-DE有两个主要的进步:首先,极高的重复性使有机体的参考图谱,可通过Internet获得,来比较不同组织类型、不同状态的基因表达;其次,高加样量使得2-DE成为一项真正的制备型技术.
常见问题及其解答
重泡胀后的胶可以不用转移到另一个电泳槽,直接跑2D 的一向吗?
一般情况下是可以的。

但当上样量特别大时,可能会有一部分蛋白质没有被胶条吸收,这样跑完1D 和2D 胶后,会有很多横向条纹。

所以在这种情况下,最好在重泡胀后,将胶条转移到另外一个电泳漕中进行电泳。

为什么我在等电聚焦前加的矿物油在聚焦后会减少,暴露出了胶条的背面?
这是因为BioRad 的电泳槽有个盖子。

为了固定电泳槽中的胶条,这个盖子上设计了对应的突起,以便压住胶条。

由于虹吸作用,这个突起会导引矿物油到相邻的空
电泳槽,从而降低有胶条的电泳槽中的矿物油液面。

如果由此把胶条暴露在空气中,那对等电聚焦的影响将是毁灭性的。

为了防止这个现象的发生,可以在相邻的空电泳槽里,也加入适量(80 %满)的矿物油。

跑第一向时,为什么要设定一个电流的最大值电压(50 μ A/ 胶)?
电流的平方和功率成正比。

电流增大,功率增大,放出的热量也随之增大,就会导致胶条的温度增加。

当温度超过30 摄氏度时,缓冲液里的尿素就容易解离,产生一些极性分子,从而对等电聚焦产生影响。

跑第一向时,为什么刚开始的电压比较低,而后逐渐增高?
刚开始时,体系内的带电小分子比较多(比如无机盐和双极性分子)。

所以在这个阶段,电流主要是由这些小分子的移动所产生的。

由于这些分子质量小,移动他们不需要很高的电压。

当这些小分子移动到他们的目的地时(无机盐移动到极性相反的电极;两性分子移动到对应的pH 条带),体系内的蛋白质才开始肩负起运载电流的任务,逐渐向所对应的pH 区域移动。

跑第一向时,为什么会产生一条蓝色的条带,并逐渐向酸性端移动?
蓝色条带是缓冲液中痕量的溴酚蓝被聚焦所产生的。

溴酚蓝也是pH 指示剂,当它移动到酸性区时(pH4 ),颜色会变成黄色。

溴酚蓝的这个移动过程大体上发生在极性小分子的聚焦之后,蛋白质大分子聚焦之前。

跑第一向时,为什么电压总达不到预定值?
当上样量比较大时或体系内盐分比较多时,聚焦的电压有可能达不到所设定的数值。

跑第一向时,在电压达到预定值后,电流为什么会降低?
当上样量比较少时,所有蛋白在较短的时间内就移动到所对应的pH 值区域值,从而变成中性分子。

这样,体系的电阻越来越大,在恒定的电压下,电流就会越来越小。

跑第一向时,为什么在两个电极丝附近有气泡产生?
等电聚焦完成后,所有的蛋白质都移动到了相应的pI 值区域,而成为中心分子。

这是加在体系上的电压就开始电解水分子,在阳极产生氧气,在阴极产生氢气。

重泡胀缓冲液(rehydration buffer)中的硫脲的作用是什么,双极性分子的作用是什么?
硫脲的作用是增加蛋白质的溶解性,特别是碱性蛋白的溶解性。

双极性分子的作用也是增加蛋白质的溶解性。

当蛋白移动到相应的pH 值后,就变成了中性分子。

而不带电荷的蛋白质分子容易聚集,从而降低其在随后的二向胶时的迁移效率,可能会造成竖的脱尾。

而硫脲和双极性小分子则会鉴定中性蛋白质之间的相互作用,防止它们的聚集。

怎样估计2D 胶上蛋白质点的分子量和pI 值?
可以用BioRad 生产的2D 胶标准蛋白来校准。

也可以用体系内已知蛋白来做比对。

为什么2D 胶上的蛋白点有横的和竖的脱尾?
横的脱尾可能是: 1 )一向等电聚焦不完全; 2 )某些蛋白质本身的原因(糖蛋白); 3 )蛋白的丰度太高。

竖的脱尾是因为跑二向时,蛋白的溶解度不好。

什么成分会影响2D 胶的效果?
核酸,盐,去垢剂等等。

2D 胶的上样量应该在什么范围?
上样量和样品有关。

样品内蛋白种类多的上样量要大些,这样每个点才有足够的量被检测到。

一般的全细胞裂解体系,上样量大概在100 微克(银染)到500 微克(考染)之间。

我的蛋白质浓度很低,应该用什么方法来浓缩?
蛋白质的浓缩有很多方法。

大致有超滤法,沉淀法和透析法。

超滤比较温和,对蛋白质不会有修饰和改变,蛋白的种类一般不会有丢失。

它的缺点是总样品的量可能会减少(被膜所吸附)。

另外超滤对样品的要求比较高。

甘油,去垢剂都会堵塞滤膜,影响超滤的效果。

沉淀法比较快速,容易操作,对盐,甘油,去垢剂的耐受性好。

缺点是可能会有部分种类的蛋白没有被沉淀下来(丢失)。

沉淀法中,又以TCA 法最为普遍使用。

使用TCA 法时,一定要用冷的纯丙酮清洗蛋白沉淀两次,去处残留的TCA 和其他沉淀下来的杂质。

透析法只使用于量比较大的样品,量小时,操作困难。

透析法可以和超滤法联用。

先把样品透析到一个比较干净的环境(不含盐,甘油,去垢剂或其它杂质,比如碳酸氢氨溶液),然后再进行超滤。

附:双向电泳完整的操作步骤
第一向等电聚焦
1. 从冰箱中取-20℃冷冻保存的水化上样缓冲液(I)(不含DTT,不含Bio-Lyte)一小管(1ml/管),置室温溶解。

2. 在小管中加入0.01g DTT,Bio-Lyte 4-6、5-7各2.5ml,充分混匀。

3. 从小管中取出400ml水化上样缓冲液,加入100ml样品,充分混匀。

4. 从冰箱中取-20℃冷冻保存的IPG预制胶条(17cm pH 4-7),室温中放置10分钟。

5. 沿着聚焦盘或水化盘中槽的边缘至左而右线性加入样品。

在槽两端各1cm左右不要加样,中间的样品液一定要连贯。

注意:不要产生气泡。

否则影响到胶条中蛋白质的分布。

6. 当所有的蛋白质样品都已经加入到聚焦盘或水化盘中后,用镊子轻轻的去除预制IPG胶条上的保护层。

7. 分清胶条的正负极,轻轻地将IPG胶条胶面朝下置于聚焦盘或水化盘中样品溶液上,使得胶条的正极(标有+)对应于聚焦盘的正极。

确保胶条与电极紧密接触。

不要使样品溶液弄到胶条背面的塑料支撑膜上,因为这些溶液不会被胶条吸收。

同样还要注意不使胶条下面的溶液产生气泡。

如果已经产生气泡,用镊子轻轻地提起胶条
的一端,上下移动胶条,直到气泡被赶到胶条以外。

8. 在每根胶条上覆盖2-3ml矿物油,防止胶条水化过程中液体的蒸发。

需缓慢的加入矿物油,沿着胶条,使矿物油一滴一滴慢慢加在塑料支撑膜上。

9. 对好正、负极,盖上盖子。

设置等电聚焦程序。

10.聚焦结束的胶条。

立即进行平衡、第二向SDS-PAGE电泳,否则将胶条置于样品水化盘中,-20℃冰箱保存。

第二向SDS-PAGE电泳
1. 配制10%的丙烯酰胺凝胶两块。

配80ml凝胶溶液,每块凝胶40ml,将溶液分别注入玻璃板夹层中,上部留1cm的空间,用MilliQ水(没有milliq的话ddh2o也行,注,水云深浪按)、乙醇或水饱和正丁醇封面,保持胶面平整。

聚合30分钟。

一般凝胶与上方液体分层后,表明凝胶已基本聚合。

2. 待凝胶凝固后,倒去分离胶表面的MilliQ水、乙醇或水饱和正丁醇,用MilliQ 水冲洗。

3. 从-20℃冰箱中取出的胶条,先于室温放置10分钟,使其溶解。

4. 配制胶条平衡缓冲液I。

5.在桌上先放置干的厚滤纸,聚焦好的胶条胶面朝上放在干的厚滤纸上。

将另一份厚滤纸用MilliQ水浸湿,挤去多余水分,然后直接置于胶条上,轻轻吸干胶条上的矿物油及多余样品。

这可以减少凝胶染色时出现的纵条纹。

6. 将胶条转移至溶涨盘中,每个槽一根胶条,在有胶条的槽中加入5ml胶条平衡缓冲液I。

将样品水化盘放在水平摇床上缓慢摇晃15分钟。

7. 配制胶条平衡缓冲液II。

8. 第一次平衡结束后,彻底倒掉或吸掉样品水化盘中的胶条平衡缓冲液I。

并用滤纸吸取多余的平衡液(将胶条竖在滤纸上,以免损失蛋白或损坏凝胶表面)。

再加入胶条平衡缓冲液II,继续在水平摇床上缓慢摇晃15分钟。

9. 用滤纸吸去SDS-PAGE聚丙烯酰胺凝胶上方玻璃板间多余的液体。

将处理好的第二向凝胶放在桌面上,长玻璃板在下,短玻璃板朝上,凝胶的顶部对着自己。

10.将琼脂糖封胶液进行加热溶解。

11.将10×电泳缓冲液,用量筒稀释10倍,成1×电泳缓冲液。

赶去缓冲液表面的气泡。

12.第二次平衡结束后,彻底倒掉或吸掉样品水化盘中的胶条平衡缓冲液II。

并用滤纸吸取多余的平衡液(将胶条竖在滤纸上,以免损失蛋白或损坏凝胶表面)。

13.将IPG胶条从样品水化盘中移出,用镊子夹住胶条的一端使胶面完全浸末在1×电泳缓冲液中。

然后将胶条胶面朝上放在凝胶的长玻璃板上。

其余胶条同样操作。

14.将放有胶条的SDS-PAGE凝胶转移到灌胶架上,短玻璃板一面对着自己。

在凝胶的上方加入低熔点琼脂糖封胶液。

15.用镊子、压舌板或是平头的针头,轻轻地将胶条向下推,使之与聚丙烯酰胺
凝胶胶面完全接触。

注意不要在胶条下方产生任何气泡。

在用镊子、压舌板或平头针头推胶条时,要注意是推动凝胶背面的支撑膜,不要碰到胶面。

16.放置5分钟,使低熔点琼脂糖封胶液彻底凝固。

17.在低熔点琼脂糖封胶液完全凝固后。

将凝胶转移至电泳槽中。

18.在电泳槽加入电泳缓冲液后,接通电源,起始时用的低电流(5mA/gel/17cm)或低电压,待样品在完全走出IPG胶条,浓缩成一条线后,再加大电流(或电压)(20-30mA/gel/17cm),待溴酚蓝指示剂达到底部边缘时即可停止电泳。

19.电泳结束后,轻轻撬开两层玻璃,取出凝胶,并切角以作记号(戴手套,防止污染胶面)。

20.进行染色。

双向电泳操作步骤及相关溶液配置
一、实验原理:2-DE的第一向电泳等电聚焦是基于等电点不同而将蛋白粗步分离,第二向SDS-PA GE是基于蛋白质分子量不同,而将一向分离后的蛋白进一步分离。

这样就可以得到蛋白质等电点和分子量的信息。

二、实验步骤:
1. 样品的溶解
取纯化后的晶体蛋白3.0mg,加入300ul裂解液(1mg蛋白:100ul裂解液)振荡器上振荡10min
左右,共处理一个小时。

其中每隔10~15分钟振荡一次,然后13200rpm离心15min除杂质,取上清分装,每管70ul,-80℃保存。

2. Bradford法测蛋白含量
取0.001g BSA(牛血清白蛋白)用1ml超纯水溶解,测定BSA标准曲线及样品蛋白含量。

取7个10ml的离心管,首先在5个离心管中按次序加入0ul,5ul,10ul,15ul,20ul 的BSA溶解液,另2管中分别加入2 ul的待测样品溶液,再在每管中加入相应体积的双蒸水(总体积为80ul),然后,各管中分别加入4ml的Bradford液(原来配好的Bradford液使用前需再取需要的剂量过滤一遍方能使用),
摇匀,2min在595nm下,按由低到高的浓度顺序测定各浓度BSA的OD值,再测样品OD值。

(测量过程要在一个小时内完成)。

3. 双向电泳第一向——IEF(双向电泳中一律使用超纯水)
3.1 水化液的制备
称取2.0mg 的DTT,用700ul水化液储液溶解后,加入8ul 0.05% 的溴酚兰,3.5ul(0.5%v/v)I PG buffer (pH 3-10)振荡混匀,13200rpm离心15min 除杂质,取上清。

在含300ug 蛋白(经验值)的样品溶解液中加入水化液,至终体积为340ul,振荡器上振荡混合,1 3200rpm离心15min除杂质,取上清。

3.2 点样,上胶
分两次吸取样品,每次170ul, 按从正极到负极的顺序加入点样槽两侧,再用镊子拨开Immobiline DryStrip gels (18cm,pH 3-10)胶条,从正极到负极将胶条压入槽中,胶面接触加入的样品。

注意:胶条使用前,要在室温中平衡30分钟;加样时,正极要多加样,以防气泡的产生;压胶时不能产生气泡;酸性端对应正极,碱性端对应负极;样品加好后,加同样多的覆盖油(Bio-Rad),两个上样槽必须与底线齐平。

3.3 IPG聚焦系统跑胶程序的设定(跑胶温度为20℃)
S1 (30v, 12hr, 360vhs, step)
S2 (500v, 1hr, 500vhs, step)
S3 (1000v, 1hr, 1000vhs, step)
S4 (8000v, 0.5hr, 2250vhs, Grad)
S5 (8000v, 5hr, 40000vhs, step)共计44110vhs, 19.5小时
其中S1用于泡胀水化胶条,S2和S3用于去小离子,S4和S5用于聚焦
3.4 平衡
用镊子夹出胶条,超纯水冲洗后,在滤纸上吸干(胶面,即接触样品那一面不能接触滤纸,如果为1 8cm的胶条要将两头剪去),再以超纯水冲洗,滤纸吸干(再次冲洗过程也可省略),然后用镊子夹住胶条以正极端(即酸性端)向下,负极端(即碱性端)向上,放入用来平衡的试管中(镊子所夹的是碱性端,酸性端留有溴酚兰作为标记),用平衡液A,平衡液B先后平衡15min. 注:平衡时要注意保持胶面始终向上,不能接触平衡管壁。

平衡第二次时,在沸水中煮Marker 3min,剪两个同样大小的小纸片,长度与一向胶条的宽度等同,然后吸取煮好的Marker,转入SDS-PAGE胶面上,保持紧密贴合;同样在第二次平衡时,煮5%的琼脂糖10ml.
4. 双向电泳第二向——SDS-PAGE
4.1 配胶(两根胶条所用剂量)
分离胶:(T=8% 80 ml):溶液于真空机中抽气后再加APS和TEMED
30 % 丙烯酰胺储液21.28ml
分离胶buffer 20ml 10%APS 220ul TEMED 44 ul
双蒸水38.72ml
浓缩胶:(T=4.8% 10ml)
30 % 丙烯酰胺储液 1.6ml
浓缩胶buffer 2.5ml 10%APS 30ul TEMED 5ul
双蒸水 5.9ml
4.2 灌胶
将玻璃板洗净后,室温晾干,然后,将电泳槽平衡好,玻璃板夹好,再在玻璃板底部涂上凡士林以防漏胶,倒入正丁醇压胶,凝胶后(这时会出现三条线),用注射器吸去正丁醇,超纯水洗两次,再用滤纸除水后,倒入浓缩胶,正丁醇压胶,凝胶后,用注射器吸去正丁醇,超纯水洗两次,再加入超纯水,用保险膜封好。

4.3 转移
剪两个小的滤纸片,吸取Marker后,放入SDS-PAGE胶面的一端。

然后,将平衡好的IPG胶条贴靠在玻璃板上,加少量的5%的琼脂糖溶液在胶面上(琼脂糖凝胶在转移前十几分钟的时候配好,水浴加热溶解,并保持烧杯中水处于沸腾状态,至用之前再拿出来),再将IPG胶条缓缓加入SDS-PAGE胶面,其中不断补加5%的琼脂糖溶液,注意不能产生气泡。

4.4 跑胶
浓缩胶13mA 分离胶20mA 共约5.5个小时
5. 银染(两根胶条所用剂量)(银染特别注意用超纯水)
5.1 固定30min 无水乙醇200ml+乙酸50ml,用超纯水定容至500ml
5.2 敏化30min 无水乙醇150ml
Na2S2O3·5H2O 1.5688g
无水乙酸钠34g
先用水溶解Na2S2O3·5H2O和乙酸钠,再加乙醇,最后定容至500ml
5.3 洗涤5min ×3次
5.4 银染20min AgNO3 1.25g 用超纯水定容至500ml
5.5 洗涤1min ×2次
5.6 显影无水Na2CO312.5g 用超纯水定容至500ml
甲醛(37%)0.1ml,临时加
5.7 终止10min EDTA-Na2?2H2O 7.3g 用超纯水定容至500ml
5.8 洗涤5min ×3次
注:整个双向电泳实验中全部使用超纯水,尽量减少离子的影响。

实验相关试剂配制
1.Bradford 工作液
95%乙醇25ml 先用乙醇溶解考马斯亮兰G250,溶解完后再加磷85%磷酸52ml 酸,最后超纯水定容至500ml.过滤后置于棕色瓶
考马斯亮兰G250 0.035g 外加油皮纸保存(Bradford不稳定,一周内有效)
2.裂解液
尿素8M
硫脲2M
CHAPS 4%
DTT 60 mM
Tris-base 40 mM(如果有条件可以添加PMSF 0.5mM和5%的Pharmalate)3. 水化液储液
尿素8M
硫脲2M
CHAPS 4%
Tris-base 40 mM
4. 分离胶buffer(pH8.8)250ml
SDS 0.4% 1g
Tris-HCl 1.5M 45.4275g
5. 浓缩胶buffer (pH
6.8)100ml
SDS 0.4% 0.4g
Tris-HCl 0.5M 6.07g
6.凝胶储存液(30%的丙烯酰胺)250ml
Acr 29.2% 73g
Bis 0.8% 2g
7. 电极缓冲液(跑一次要配制2500ml)
甘氨酸43.2g 36g
Tris 9g 或7.5g
SDS 3g 2.5g
超纯水定容至3000ml 超纯水定容至2500ml
8. 0.5M Tris -HCl pH 6.8储液
6.1g Tris先用30ml超纯水溶解,再用46ml,3M HCl调pH6.8,再加水定容至100ml 9.平衡液储液
脲(即尿素)36g
甘油30% 30ml
SDS 1% 1g
0.5M Tris-HCl pH6.8 10ml 超纯水定容至100ml
10. 平衡液A(一根胶条)
DTT 20mg
平衡液储液10ml
11.平衡液B(一根胶条)
碘乙酰氨300mg
平衡液储液10ml
0.05%溴酚兰15ul (平衡液A、B均需临时配制)12.0.5%琼脂糖10ml
琼脂糖0.05g
电极缓冲液10ml
溴酚兰25ul
补:4、5、6的溶液需过滤后储存于4℃备用。

相关文档
最新文档