连云港市八年级上学期期末模拟数学试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连云港市八年级上学期期末模拟数学试题
一、选择题
1.下列调查中适合采用普查的是( ) A .了解“中国达人秀第六季”节目的收视率
B .调查某学校某班学生喜欢上数学课的情况
C .调查我市市民知晓“礼让行人”交通新规的情况
D .调查我国目前“垃圾分类”推广情况
2.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )
A .
B .
C .
D .
3.在平面直角坐标系中,点P (﹣3,2)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )
A .3
B 7
C .4
D 11
5.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )
A .12y y <
B .12y y =
C .12y y >
D .不能确定 6.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三
B .二、三、四
C .一、二、四
D .一、三、四 7.下列运算正确的是( )
A .236a a a ⋅=
B .235()a a -=-
C .109(0)a a a a ÷=≠
D .4222()()bc bc b c -÷-=- 8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )
A .∠A=∠D
B .AB=D
C C .∠ACB=∠DBC
D .AC=BD
9.如图,动点P 从点A 出发,按顺时针方向绕半圆O 匀速运动到点B ,再以相同的速度沿直径BA 回到点A 停止,线段OP 的长度d 与运动时间t 的函数图象大致是( )
A .
B .
C .
D .
10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )
A .A
B =A
C B .B
D =CD C .∠B =∠C D .∠BDA =∠CDA
二、填空题
11.在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是_____.
12.写出一个比4大且比5小的无理数:__________.
13.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.
14.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.
15.计算:52x x ⋅=__________.
16. 在实数范围内分解因式35x x -=___________.
17.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线
AB
BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.
18.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩
的解是________.
19.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.
20.若分式2223
x x -+的值为零,则x 的值等于___. 三、解答题 21.先化简再求值:21111a a a ⎛⎫-÷
⎪+-⎝⎭,其中2a =. 22.已知:如图,点B ,D 在线段AE 上,AD=BE ,AC ∥EF ,∠C=∠H.求证:BC=DH.
23.(问题背景)
如图,在平面直角坐标系xOy 中,点A 的坐标是(0,1),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形,且90CAP ∠=︒(点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)
(1)写出点B 的坐标______.
(2)点C 在x 轴上移动过程中,当等腰直角三角形ACP 的顶点P 在第四象限时,连接BP . 求证:AOC ABP ∆∆≌;
(深入探究)
(3)当点C 在x 轴上移动时,点P 也随之运动.经过探究发现,点P 的横坐标总保持不变,请直接写出点P 的横坐标:______.
(拓展延伸)
(4)点C 在x 轴上移动过程中,当POB ∆为等腰三角形时,直接写出此时点C 的坐标.
备用图
24.如图,在平面直角坐标系中,长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,D 是BC 的中点,动点P 从O 点出发,以每秒1个单位长度的速度,沿着O A B D →→→运动,设点P 运动的时间为t 秒(013t <<).
(1)点D 的坐标是______;
(2)当点P 在AB 上运动时,点P 的坐标是______(用t 表示);
(3)求POD 的面积S 与t 之间的函数表达式,并写出对应自变量t 的取值范围.
25.已知21a =+,求代数式223a a -+的值.
四、压轴题
26.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:
(1)用含有t 的代数式表示CP 和BQ 的长度;
(2)当2t =时,请说明//PQ BC ;
(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式.
27.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .
拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)
实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.
28.阅读下列材料,并按要求解答.
(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.
(模型应用)
应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.
应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.
(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;
(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析
式.
29.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.
(1)求P点的坐标;
(2)求△APB的面积;
(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.
30.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.
(1)求证:AE=BD;
(2)试探究线段AD、BD与CD之间的数量关系;
(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD36,求线段AB 的长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;
B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;
C、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;
D、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;
故选:B.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2.A
解析:A
【解析】
【分析】
由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的
性质来判断.
【详解】
由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除B选项,
由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C、D选项,
故选A.
【点睛】
本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.3.B
解析:B
【解析】
【分析】
根据各象限的点的坐标的符号特征判断即可.
【详解】
∵-3<0,2>0,
∴点P(﹣3,2)在第二象限,
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.
4.C
解析:C
【解析】
【分析】
首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB=DC
1
2
=CB,AD⊥BC,再利
用勾股定理求出AD的长.
【详解】
∵AB=AC,AD是边BC上的中线,
∴DB=DC
1
2
=CB=3,AD⊥BC,
在Rt△ABD中,
∵AD2+BD2=AB2,
∴AD==4.
故选:C.
【点睛】
本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证
出△ADB 是直角三角形.
5.C
解析:C
【解析】
【分析】
根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.
【详解】
解:∵一次函数1y =+的系数k <0,y 随x 增大而减小,
又∵两点的横坐标2<3,
∴12y y >
故选C.
【点睛】
本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.
6.C
解析:C
【解析】
试题分析:直线y=﹣5x+3与y 轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.
故选C .
考点:一次函数的图象和性质.
7.C
解析:C
【解析】
【分析】
根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.
【详解】
A. a 2⋅a 3=a 5,故A 错误;
B. (−a 2)3=−a 6,故B 错误;
C. a 10÷a 9=a(a≠0),故C 正确;
D. (−bc)4÷(−bc)2=b 2c 2,故D 错误;
故答案选C.
【点睛】
本题考查了同底数幂的相关知识点,解题的关键是熟练的掌握同底数幂的乘法与除法的运算.
8.D
解析:D
【解析】
A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;
B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;
C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;
D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.
故选D.
9.B
解析:B
【解析】
【分析】
根据P点半圆O、线段OB、线段OA这三段运动的情况分析即可.
【详解】
解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;
②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;
③当P点在OA段运动时,OP长度越来越大,B答案符合.
故选B.
【点睛】
本题主要考查动点问题的函数图象,熟练掌握是解题的关键.
10.B
解析:B
【解析】
试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;
B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定
△ABD≌△ACD;故B符合题意;
C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;
D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.
故选B.
考点:全等三角形的判定.
二、填空题
11.(3,﹣2).
【解析】
【分析】
根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可
【详解】
设P(x ,y),
∵点P 到x 轴的距离为2,到y 轴的距离为3,
∴,
∵点P
解析:(3,﹣2).
【解析】
【分析】
根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,可得答案.
【详解】
设P(x ,y),
∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴32x y ==,
, ∵点P 在第四象限内,即:00x y ><,
∴点P 的坐标为(3,﹣2),
故答案为:(3,﹣2).
【点睛】
本题主要考查平面直角坐标系中,点的坐标,掌握“点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值”,是解题的关键.
12.答案不唯一,如:
【解析】
【分析】
根据无理数的定义即可得出答案.
【详解】
∵42=16,52=25,∴到之间的无理数都符合条件,如:.
故答案为答案不唯一,如:.
【点睛】
本题考查了无理数的
解析:
【解析】
【分析】
根据无理数的定义即可得出答案.
【详解】
∵42=16,52=25.
故答案为.
本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
13.8
【解析】
【分析】
先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.
【详解】
解:由题意得,斜边长AB===10米,
则少走(6+8-10)×2=8步路,
故答案为8.
【点睛】

解析:8
【解析】
【分析】
先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.
【详解】
解:由题意得,斜边长米,
则少走(6+8-10)×2=8步路,
故答案为8.
【点睛】
本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.
14.5×108
【解析】
试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.
点睛:科学记数法的表示形式为的形式,其中 为整数.
解析:5×108
【解析】
试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.
故答案为:1.5×108.
点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数. 15.【解析】
【分析】
根据同底数幂相乘底数不变指数相加的法则即可得解.
【详解】
,
故答案为:.
【点睛】
本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键.
解析:7x
【解析】
【分析】
根据同底数幂相乘底数不变指数相加的法则即可得解.
【详解】
52527x x x x +⋅==,
故答案为:7x .
【点睛】
本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键. 16.【解析】
提取公因式后利用平方差公式分解因式即可,
即原式=.故答案为
解析:(x x x -
【解析】
提取公因式后利用平方差公式分解因式即可,
即原式=2(5)(x x x x x -=-.故答案为(.x x x
17.11
【解析】
【分析】
根据函数图象可以直接得到AB 、BC 和三角形ADB 的面积,从而可以求得AD 的长,作辅助线CE⊥AD,从而可得CD 的长,进而求得点P 从开始到停止运动的总路程,本题得以解决.

解析:11
【解析】
【分析】
根据函数图象可以直接得到AB 、BC 和三角形ADB 的面积,从而可以求得AD 的长,作辅助线CE ⊥AD,从而可得CD 的长,进而求得点P 从开始到停止运动的总路程,本题得以解决.
【详解】
解:作CE⊥AD于点E,如下图所示,
由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是21
2
,由B到C运动的路程为3,

321 222 AD AB AD
⨯⨯
==
解得,AD=7,
又∵BC//AD,∠A=90°,CE⊥AD,
∴∠B=90°,∠CEA=90°,
∴四边形ABCE是矩形,
∴AE=BC=3,
∴DE=AD-AE=7-3=4,
∴2222
345,
CD CE DE
=+=+=
∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.
故答案为:11
【点睛】
本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.
18..
【解析】
【分析】
利用方程组的解就是两个相应的一次函数图象的交点坐标求解.
【详解】
∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),
∴关于x,y的方程组的解是.
解析:
2
1 x
y
=


=


【解析】
【分析】
利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】
∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),
∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩
的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨
=⎩
. 【点睛】
本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 19.4
【解析】
【分析】
根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形,EC =EA =4,在直角三角形ABE 中由勾股定理可求出AB .
【详解】
解:∵四边形ABCD 是矩形,
∴AB=CD ,B
解析:4
【解析】
【分析】
根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形,EC =EA =4,在直角三角形ABE 中由勾股定理可求出AB .
【详解】
解:∵四边形ABCD 是矩形,
∴AB =CD ,BC =AD ,∠A =∠B =∠C =∠D =90°,
由折叠得:AD =AD ′,CD =CD ′,∠DAC =∠D ′AC ,
∵∠DAC =∠BCA ,
∴∠D ′AC =∠BCA ,
∴EA =EC =5,
在Rt △ABE 中,由勾股定理得,
AB
4,
故答案为:4.
【点睛】
本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形是解此题的关键.
20.【解析】
【分析】
当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.
解:∵分式的值为零,且
∴x﹣2=0,
解得:x =2.
故答案为:2.
【点睛】
本题考查了分式值为0的
解析:【解析】
【分析】
当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.
【详解】 解:∵分式
2223
x x -+的值为零,且2230x +≥ ∴x ﹣2=0,
解得:x =2.
故答案为:2.
【点睛】 本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.
三、解答题
21.1a -+,-1.
【解析】
【分析】
先对括号里的减法运算进行通分,再把除法运算转化为乘法运算,约去分子分母中的公因式,化为最简形式,再把a 的值代入求解.
【详解】 原式1(1)1(1)(1)
a a a a a --=÷++- (1)(1)1a a a a a
-+-=⋅+ 1a =-+.
当a =2时,原式=-2+1=-1.
【点睛】
本题考查了分式的化简求值.掌握分式的混合运算法则是解答本题的关键.
22.证明见解析.
【解析】
【分析】
利用AAS 证明△ABC ≌△EDH ,再根据全等三角形的性质即可得.
∵AD=BE ,
∴AD-BD=BE-BD ,
即AB=DE.
∵AC ∥EH ,
∴∠A=∠E ,
在△ABC 和△EDH 中
C H A E AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴△ABC ≌△EDH(AAS),
∴BC=DH.
【点睛】
本题考查了全等三角形的送定与性质,熟练掌握全等三角形的判定方法是解题的关键.
23.(1)(1,1);(2)证明见解析;(3)1;(4
)(2,0)(--.
【解析】
【分析】
根据等腰直角三角形的性质,OA=AB ,题干中已知A 点坐标,即可求得OB 的长度,表示出B 点坐标即可.
根据等腰直角三角形的性质得到90CAP OAB ︒∠=∠=,再根据等角的余角相等,得出角12∠=∠,最后利用三角形全等的判定方法进行判定即可.
根据(2)的结论△ABP 也为直角三角形,且AB 垂直BP ,且AB=OB=1,即可得出P 点的横坐标.
先根据题意,确定B 点、A 点坐标,设出P 点和C 点坐标,分情况进行讨论,当OP=OB 时,当OB=BP 时,当OP=BP 时,分别利用两点间距离公式求出点P 点的坐标,然后分别算出AP 的长,最后利用AP=AC 计算出A 点坐标即可.
【详解】
解:(1)∵点A 的坐标为(0,1)
△OAB 是等腰直角三角形,且OA=AB ,OA⊥BA
∴B 点坐标为(1,1).
(2)证明:在等腰直角三角形ACP 中,AC AP =,90CAP ∠=︒
在等腰直角三角形AOB 中,AO AB =,90OAB ∠=︒
90CAP OAB ︒∠=∠=
CAP OAP OAB OAP ∴∠-∠=∠-∠
12∠∠∴=
在AOC ∆和ABP ∆中
2AC AP AO AB =⎧⎪∠=∠⎨⎪=⎩
()AOC ABP SAS ∴∆∆≌
(3)AOC ABP ∆∆≌(已证)
∴∠ABP=90°
∴PB 垂直AB ,P 点在过B 点且垂直与AB 的垂线上,
∵点B 的坐标为(1,1)
∴P 点的横坐标为1.
(4)由题意和(1)可知()01(11)
A B ,,,, 设P (1,y ),C (x ,0),
当OB=OP ()()221-1+12y -= 解得:21y =或21y =+, 则()2212113AP =++-=()2212113AP =+-+-=
解得:2x =±
所以C 点坐标为(2,02,0)
同理当OB=OP 时,可得C 点坐标为(-2,0)
当BP=OP 时,可得C 点坐标为(-1,0) 故答案为:(2,0)(2,0)(1,0)(2,0)---
【点睛】
本题考查了等腰三角形的性质,三角形全的的判定方法,计算两点间距离,动点问题,解决本题的关键是熟练掌握等腰三角形的性质,能够得到相等的线段和角,动点问题要注意分类进行讨论,根据情况确定答案.
24
.(1)(3,4);(2)(6,t -6)(3)()()()
2063216102
2621013t t S t t t t ⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩
【解析】
【分析】
(1)根据长方形的性质和A 、B 的坐标,即可求出OA=BC=6,OC=AB=4,再根据中点的定义即可求出点D 的坐标;
(2)画出图形,易知:点P 的横坐标为6,然后根据路程=速度×时间,即可求出点P 的运动路程,从而求出AP 的长,即可得出点P 的坐标;
(3)分别求出点P 到达A 、B 、D 三点所需时间,然后根据点P 运动到OA 、AB 、BD 分类讨论,并写出t 对应的取值范围,然后画出图形,利用面积公式即可求出各种情况下S 与t 之间的函数表达式.
【详解】
解:(1)∵长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,
∴OA=BC=6,OC=AB=4,BA ⊥x 轴,BC ⊥y 轴
∵D 是BC 的中点,
∴CD=BD=12
BC=3 ∴点D 的坐标为(3,4)
故答案为:(3,4);
(2)当点P 在AB 上运动时,如下图所示
易知:点P 的横坐标为6,
∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t
∴点P 运动的路程OA +AP=t
∴AP=t -6
∴点P 的坐标为(6,t -6)
故答案为:(6,t -6);
(3)根据点P 的速度可知:点P 到达A 点所需时间为OA ÷1=6s
点P 到达B 点所需时间为(OA+AB )÷1=10s
点P 到达D 点所需时间为(OA+AB+BD )÷1=13s
①当点P 在OA 上运动时,此时06t <≤,过点D 作DE ⊥x 轴于E
∴DE=4 ∵动点P 从O 点出发,以每秒1个单位长度的速度, ∴OP=t
∴122
S OP DE t =•=; ②当点P 在AB 上运动时,此时610t <≤,
由(2)知AP=t -6
∴BP=AB -AP=10-t
∴OCD OAP BDP OABC S S S S S =---△△△长方形
=111222
OA AB OC CD OA AP BD BP •-
•-•-• =()()111644366310222
t t ⨯-⨯⨯-⨯⨯--⨯⨯- =3212
t -+; ③当点P 在BD 上运动时,此时1013t <<,
∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t ∴点P 运动的路程OA +AB +BP=t
∴BP=t -OA -AB=t -10
∴DP=BD -BP=13-t
12S OC
DP =• =
()14132
t ⨯- =262t - 综上所述:()()()
2063216102
2621013t t S t t t t ⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩
【点睛】
此题考查的是平面直角坐标系与长方形中的动点问题,掌握行程问题公式:路程=速度×时间、数形结合的数学思想和分类讨论的数学思想是解决此题的关键.
25.4
【解析】
试题分析:先将223a a -+变形为(a-1)2+2,再将21a =
+代入求值即可.
试题解析:223a a -+=221a a -++2=(a-1)2+2
当a=2+1时,原式=(2+1-1)2+2=(2)2+2=2+2=4. 四、压轴题
26.(1)CP=3t ,BQ=8-t ;(2)见解析;(3)S=16-2t .
【解析】
【分析】
(1)直接根据距离=速度⨯时间即可;
(2)通过证明
PCQ BQC ≅,得到∠PQC=∠BCQ,即可求证; (3)过点C 作CM⊥AB,垂足为M ,根据等腰直角三角形的性质得到CM=AM=4,即可求解.
【详解】
解:(1)CP=3t ,BQ=8-t ;
(2)当t=2时,CP=3t=6,BQ=8-t=6
∴CP=BQ
∵CD ∥AB
∴∠PCQ=∠BQC
又∵CQ=QC
∴PCQ BQC

∴∠PQC=∠BCQ
∴PQ∥BC
(3)过点C作CM⊥AB,垂足为M
∵AC=BC,CM⊥AB
∴AM=11
84
22
AB=⨯=(cm)
∵AC=BC,∠A CB=90︒∴∠A=∠B=45︒
∵CM⊥AB
∴∠AMC=90︒
∴∠ACM=45︒
∴∠A=∠ACM
∴CM=AM=4(cm)

11
8t4162 22
BCQ
S BQ CM t ==⨯-⨯=-
因此,S与t之间的关系式为S=16-2t.
【点睛】
此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.
27.(1)证明见解析;(2)DE=BD+CE;(3)B(1,4)
【解析】
【分析】
(1)证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;
(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;
(3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】
(1)证明:∵BD⊥直线m,CE⊥直线m,
∴∠ADB=∠CEA=90°
∵∠BAC=90°
∴∠BAD+∠CAE=90°
∵∠BAD +∠ABD =90°
∴∠CAE =∠ABD
∵在△ADB 和△CEA 中
ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△ADB ≌△CEA (AAS )
∴AE =BD ,AD =CE
∴DE =AE +AD =BD +CE
即:DE =BD +CE
(2)解:数量关系:DE =BD +CE
理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD ,
∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC ,
∴∠ABD=∠CAE ,
在△ABD 和△CAE 中,
ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△ABD ≌△CAE (AAS )
∴AE=BD ,AD=CE ,
∴DE=AD+AE=BD+CE ;
(3)解:如图,作AE ⊥x 轴于E ,BF ⊥x 轴于F ,
由(1)可知,△AEC ≌△CFB ,
∴CF=AE=3,BF=CE=OE-OC=4,
∴OF=CF-OC=1,
∴点B 的坐标为B (1,4).
【点睛】
本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.
28.模型建立:见解析;应用1:652:(1)Q (1,3),交点坐标为(52
,0);(2)y =﹣x+4
【解析】
【分析】
根据AAS证明△BEC≌△CDA,即可;
应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;
应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出
Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.
【详解】
如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,
∴∠ADC=∠BEC=90°,
∴∠ACD+∠DAC=∠ACD+∠BCE=90°,
∴∠DAC=∠BCE,
∵AC=BC,
∴△BEC≌△CDA(AAS);
应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,
∵∠ADC=90°,AD=6,CD=8,
∴AC=10,
∵BC=10,AB2=200,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∵∠ADC=∠BHC=∠ACB=90°,
∴∠ACD=∠CBH,
∵AC=BC=10,
∴△ADC≌△CHB(AAS),
∴CH=AD=6,BH=CD=8,
∴DH=6+8=14,
∵BH⊥DC,
∴BD=
应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,
由题意易:△OKQ≌△QHP(AAS),
设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,
又∵OK=y,
∴6﹣y=y,y=3,
∴Q(1,3),
∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,
∴点M是OP的中点,
∵P(4,2),
∴M(2,1),
设直线Q M的函数表达式为:y=kx+b,
把Q(1,3),M(2,1),代入上式得:
21
3
k b
k b
+=


+=

,解得:
2
5
k
b
=-


=

∴直线l的函数表达式为:y=﹣2x+5,
∴该直线l与x轴的交点坐标为(5
2
,0);
(2)∵△OKQ≌△QHP,
∴QK=PH,OK=HQ,
设Q(x,y),
∴KQ=x,OK=HQ=y,
∴x+y=KQ+HQ=4,
∴y=﹣x+4,
∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+4,
故答案为:y=﹣x+4.
【点睛】
本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.
29.(1)P(﹣1,﹣1);(2)3
2
;(3)T(1,0)或(﹣2,0).
【解析】
【分析】
(1)解析式联立构成方程组,该方程组的解就是交点坐标;(2)利用三角形的面积公式解答;
(3)求得C的坐标,因为S△ATP=S△APB,S△ATP=S△ATC+S△PTC=|x+1
2
|,所以|x+
1
2
|=
3
2
,解
得即可.【详解】
解:(1)由
21
2
y x
y x
=+


=--

,解得
1
1
x
y
=-


=-


所以P(﹣1,﹣1);
(2)令x=0,得y1=1,y2=﹣2∴A(0,1),B(0,﹣2),
则S△APB=1
2
×(1+2)×1=
3
2

(3)在直线l1:y1=2x+1中,令y=0,解得x=﹣1
2

∴C(﹣1
2
,0),
设T(x,0),
∴CT=|x+1
2 |,
∵S△ATP=S△APB,S△ATP=S△ATC+S△PTC=1
2
•|x+
1
2
|•(1+1)=|x+
1
2
|,
∴|x+1
2
|=
3
2

解得x=1或﹣2,
∴T(1,0)或(﹣2,0).
【点睛】
本题考查一次函数与二元一次方程组,解题的关键是准确将条件转化为二元一次方程组,并求出各点的坐标.
30.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=+4.
【解析】
【分析】
(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;
(2)利用全等三角形的性质及勾股定理即可证得结论;
(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.
【详解】
(1)证明:∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∴∠ACB﹣∠ACD=∠ECD﹣∠ACD
∴∠ACE=∠BCD,
∴△ACE≌△BCD(SAS),
∴AE=BD.
(2)解:由(1)得△ACE≌△BCD,
∴∠CAE=∠CBD,
又∵△ABC是等腰直角三角形,
∴∠CAB=∠CBA=∠CAE=45°,
∴∠EAD=90°,
在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,
∴BD 2+AD 2=ED 2,
∵ED =2CD ,
∴BD 2+AD 2=2CD 2,
(3)解:连接EF ,设BD =x ,
∵BD :AF =1:2AF =2x ,
∵△ECD 都是等腰直角三角形,CF ⊥DE ,
∴DF =EF , 由 (1)、(2)可得,在Rt △FAE 中,
EF 22AF AE +22(22)x x +3x ,
∵AE 2+AD 2=2CD 2,
∴222(223)2(36)x x x ++=,
解得x =1,
∴AB =2+4.
【点睛】
此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。

相关文档
最新文档