昌乐县三中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昌乐县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是(

A .(﹣∞,1]
B .[0,1]
C .(﹣2,﹣1)∪(﹣1,1]
D .(﹣∞,﹣2)∪(﹣1,1]
2. 将函数(其中)的图象向右平移
个单位长度,所得的图象经过点
x x f ωsin )(=0>ω4
π
,则的最小值是( ))0,43(
π
ωA . B .
C .
D .
31
3
5
3. 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单
位:cm ),则此几何体的表面积是(

A .8cm 2
B . cm 2
C .12 cm 2
D . cm 2
4. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )
A .
B .
C .
D .
5. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( )A .2
B .﹣2
C .8
D .﹣8
6. 给出函数,如下表,则的值域为(

()f x ()g x (())f g x
A .
B .
C .
D .以上情况都有可能
{}4,2{}1,3{}1,2,3,47. 执行下面的程序框图,若输入,则输出的结果为(

2016x =-A .2015
B .2016
C .2116
D .2048
8. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( )
A .C .D .时,函数f (x )的最大值与最小值的和为( )
A .a+3
B .6
C .2
D .3﹣a
 9. 不等式
≤0的解集是(

A .(﹣∞,﹣1)∪(﹣1,2)
B .[﹣1,2]
C .(﹣∞,﹣1)∪[2,+∞)
D .(﹣1,2]
10.下列哪组中的两个函数是相等函数( )
A .
B .()()4
f x x =
g ()()24
=
,22
x f x g x x x -=-+
C .
D .()()1,0
1,1,0x f x g x x >⎧==⎨<⎩
()()=f x x x =
,g 11.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为(

A .M ∪N
B .(∁U M )∩N
C .M ∩(∁U N )
D .(∁U M )∩(∁U N )
12.若如图程序执行的结果是10,则输入的x 的值是(

A .0
B .10
C .﹣10
D .10或﹣10
二、填空题
13.1785与840的最大约数为 .
14.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .
15.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .
16.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[

]上恒成立,则实数m 的取值范
围是 . 
17.给出下列命题:
(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :

其中叙述正确的是 .(填上所有正确命题的序号)18.【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为__________.()2
1ln 2
f x x x =
-三、解答题
19.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了
两个问题,规定:被抽签抽到的答
题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问
题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对
问题的概率分别为

(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.
20.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).
21.已知椭圆:的长轴长为,为坐标原点.
(Ⅰ)求椭圆C的方程和离心率;
(Ⅱ)设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值.
22.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).
(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.
23.已知矩阵A=,向量=.求向量,使得A2=.
24.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2. 
昌乐县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】D
【解析】解:∵函数f (x )=﹣x 2+2ax 的对称轴为x=a ,开口向下,∴单调间区间为[a ,+∞)
又∵f (x )在区间[1,2]上是减函数,∴a ≤1
∵函数g (x )=在区间(﹣∞,﹣a )和(﹣a ,+∞)上均为减函数,
∵g (x )=
在区间[1,2]上是减函数,
∴﹣a >2,或﹣a <1,即a <﹣2,或a >﹣1,
综上得a ∈(﹣∞,﹣2)∪(﹣1,1],故选:D
【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围. 
2. 【答案】D

点:由的部分图象确定其解析式;函数的图象变换.()ϕω+=x A y sin ()ϕω+=x A y sin 3. 【答案】C
【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,
故此几何体的表面积S=2×2+4××2×2=12cm 2,故选:C .
【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键.
4. 【答案】D
【解析】解:设F 2为椭圆的右焦点
由题意可得:圆与椭圆交于P ,并且直线PF 1(F 1为椭圆的左焦点)是该圆的切线,所以点P 是切点,所以PF 2=c 并且PF 1⊥PF 2.又因为F 1F 2=2c ,所以∠PF 1F 2=30°,所以.
根据椭圆的定义可得|PF 1|+|PF 2|=2a ,所以|PF 2|=2a ﹣c .所以2a ﹣c=,所以e=

故选D .
【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义. 
5. 【答案】B
【解析】解:∵f (x+4)=f (x ),∴f (2015)=f (504×4﹣1)=f (﹣1),又∵f (x )在R 上是奇函数,∴f (﹣1)=﹣f (1)=﹣2.故选B .
【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题. 
6. 【答案】A 【解析】
试题分析:故值域为
()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========.
{}4,2考点:复合函数求值.7. 【答案】D 【解析】
试题分析:由于,由程序框图可得对循环进行加运算,可以得到,从而可得,由于
20160-<2x =1y =,则进行循环,最终可得输出结果为.1
20151>2y y =2048考点:程序框图.8. 【答案】A
【解析】A .C .D .恰有11个零点,可得5π≤ω•<6π,
求得10≤ω<12,故选:A .
9.【答案】D
【解析】解:依题意,不等式化为,
解得﹣1<x≤2,
故选D
【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.
10.【答案】D111]
【解析】
考点:相等函数的概念.
11.【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},
∴∁U M={0,1},
∴N∩(∁U M)={0,1},
故选:B.
【点评】本题主要考查集合的子交并补运算,属于基础题.
12.【答案】D
【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,
当x<0,时﹣x=10,解得:x=﹣10
当x≥0,时x=10,解得:x=10
故选:D.
二、填空题
13.【答案】 105 .
【解析】解:1785=840×2+105,840=105×8+0.
∴840与1785的最大公约数是105.
故答案为105
14.【答案】 3 .
【解析】解:直线l的方程为ρcosθ=5,化为x=5.
点(4,)化为.
∴点到直线l的距离d=5﹣2=3.
故答案为:3.
【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.
15.【答案】 2016 .
【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,
∴数列{a n}是以e为公差的等差数列,
则a1=a3﹣2e=4e﹣2e=2e,
∴a2015=a1+2014e=2e+2014e=2016e.
故答案为:2016e.
【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.
16.【答案】 [5,+∞) .
【解析】二项式定理.
【专题】概率与统计;二项式定理.
【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.
【解答】解:由题意可得f(x)=x6=x3.
由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,
由于x2在区间[,]上的最大值为5,故m≥5,
即m的范围为[5,+∞),
故答案为:[5,+∞).
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.
17.【答案】 (4) 
【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,
(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,
(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,
(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,
故答案为:(4)
【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.
0,1
18.【答案】()
【解析】
三、解答题
19.【答案】
【解析】【知识点】随机变量的期望与方差随机变量的分布列
【试题解析】(Ⅰ)的可能取值为.


分布列为:
(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.



分布列为:

应先回答所得分的期望值较高.
20.【答案】
【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k 1x,g(x)=k2,(k1,k2≠0;x≥0)
由图知f(1)=,∴k1=
又g(4)=,∴k2=
从而f(x)=,g(x)=(x≥0)
(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元
y=f(x)+g(10﹣x)=,(0≤x≤10),
令,∴(0≤t≤)
当t=,y max≈4,此时x=3.75
∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.
【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.
21.【答案】
【解析】【知识点】圆锥曲线综合椭圆
【试题解析】(Ⅰ)因为椭圆C:,
所以,,
故,解得,
所以椭圆的方程为.
因为,
所以离心率.
(Ⅱ)由题意,直线的斜率存在,设点,
则线段的中点的坐标为,
且直线的斜率,
由点关于直线的对称点为,得直线,
故直线的斜率为,且过点,
所以直线的方程为:,
令,得,则,
由,得,
化简,得.
所以

当且仅当,即时等号成立.
所以的最小值为.
22.【答案】
【解析】解:(Ⅰ)根据直线l的参数方程为(t为参数),
消去参数,得
x+y﹣=0,
直线l的直角坐标方程为x+y﹣=0,
∵圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).
∴(x+)2+(y+)2=r2(r>0).
∴圆C的直角坐标方程为(x+)2+(y+)2=r2(r>0).
(Ⅱ)∵圆心C(﹣,﹣),半径为r,…(5分)
圆心C到直线x+y﹣=0的距离为d==2,
又∵圆C上的点到直线l的最大距离为3,即d+r=3,
∴r=3﹣2=1.
【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识. 
23.【答案】=
【解析】A2=.
设=.由A2=,得,从而
解得x=-1,y=2,所以=
24.【答案】
【解析】解:
∴z1=2﹣i
设z2=a+2i(a∈R)
∴z1z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i
∵z1z2是实数
∴4﹣a=0解得a=4
所以z2=4+2i
【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0. 。

相关文档
最新文档