过程设备设计课后习题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程设备设计(第二版)
1.压力容器导言
思考题
1.压力容器主要由哪几部分组成?分别起什么作用?
答:压力容器由筒体、封头、密封装置、开孔接管、支座、安全附件六大部件组成。

筒体的作用:用以储存物料或完成化学反应所需要的主要压力空间。

封头的作用:与筒体直接焊在一起,起到构成完整容器压力空间的作用。

密封装置的作用:保证承压容器不泄漏。

开孔接管的作用:满足工艺要求和检修需要。

支座的作用:支承并把压力容器固定在基础上。

安全附件的作用:保证压力容器的使用安全和测量、控制工作介质的参数,保证压力容器的使用安全和工艺过程的正常进行。

2.介质的毒性程度和易燃特性对压力容器的设计、制造、使用和管理有何影响?
答:介质毒性程度越高,压力容器爆炸或泄漏所造成的危害愈严重,对材料选用、制造、检验和管理的要求愈高。

如Q235-A或Q235-B钢板不得用于制造毒性程度为极度或高度危害介质的压力容器;盛装毒性程度为极度或高度危害介质的容器制造时,碳素钢和低合金钢板应力逐进行超声检测,整体必须进行焊后热处理,容器上的A、B类焊接接头还应进行100%射线或超声检测,且液压试验合格后还得进行气密性试验。

而制造毒性程度为中度或轻度的容器,其要求要低得多。

毒性程度对法兰的选用影响也甚大,主要体现在法兰的公称压力等级上,如部介质为中度毒性危害,选用的管法兰的公称压力应不小于1.0MPa;部介质为高度或极度毒性危害,选用的管法兰的公称压力应不小于1.6MPa,且还应尽量选用带颈对焊法兰等。

易燃介质对压力容器的选材、设计、制造和管理等提出了较高的要求。

如Q235-A·F不得用于易
燃介质容器;Q235-A不得用于制造液化石油气容器;易燃介质压力容器的所有焊缝(包括角焊缝)均应采用全焊透结构等。

3.《压力容器安全技术监察规程》在确定压力容器类别时,为什么不仅要根据压力高低,还要视压力与容积的乘积pV大小进行分类?
答:因为pV乘积值越大,则容器破裂时爆炸能量愈大,危害性也愈大,对容器的设计、制造、检验、使用和管理的要求愈高。

4.《压力容器安全技术监察规程》与GB150的适用围是否相同?为什么?
答:不相同。

《压力容器安全技术监察规程》的适用围:○1最高工作压力≥0.1MPa(不含液体静压力);○2直径(非圆形截面指其最大尺寸)≥0.15m,且容积≥0.025m3;○3盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的液体。

GB150的适用围:○10.1MPa≤p≤35MPa,真空度不低于0.02MPa;○2按钢材允许的使用温度确定(最高为700℃,最低为-196℃);○3对介质不限;○4弹性失效设计准则和失稳失效设计准则;○5以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;○6最大应力理论;○7不适用疲劳分析容器。

GB150是压力容器标准是设计、制造压力容器产品的依据;《压力容器安全技术监察规程》是政府对压力容实施安全技术监督和管理的依据,属技术法规畴。

5.GB150、4732和/T4735三个标准有何不同?它们的适用围是什么?
答:/T4735《钢制焊接常压容器》与GB150《钢制压力容器》属于常规设计标准;4732《钢制压力容器—分析设计标准》是分析设计标准。

/T4735与GB150及4732没有相互覆盖围,但GB150与4732相互覆盖围较广。

GB150的适用围:○1设计压力为0.1MPa≤p≤35MPa,真空度不低于0.02MPa;○2设计温度为按钢材允许的使用温度确定(最高为700℃,最低为-196℃);○3对介质不限;○4采用弹性失效设计准则和失稳失效
设计准则;○5应力分析方法以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;○6采用
最大应力理论;○7不适用疲劳分析容器。

4732的适用围:○1设计压力为0.1MPa≤p<100MPa,真空度不低于0.02MPa;○2设计温度为低于以钢材蠕变控制其设计应力强度的相应温度(最高为475℃);○3对介质不限;○4采用塑性失效设计准则、失稳失效设计准则和疲劳失效设计准则,局部应力用极限分析和安定性分析结果来评定;○5应力分析方法是弹性有限元法、塑性分析、弹性理论和板壳理论公式、实验应力分析;○6采用切应力理论;○7适用疲劳分析容器,有免除条件。

/T4735的适用围:○1设计压力为-0.02MPa≤p<0.1MPa;○2设计温度为大于-20~350℃(奥氏体高合金钢制容器和设计温度低于-20℃,但满足低温低应力工况,且调整后的设计温度高于-20℃的容器不受此限制);○3不适用于盛装高度毒性或极度危害的介质的容器;○4采用弹性失效设计准则和失稳失效设计准则;○5应力分析方法以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;○6采用最大应力理论;○7不适用疲劳分析容器。

2.压力容器应力分析
思考题
1.一壳体成为回转薄壳轴对称问题的条件是什么?
答:几何形状、承受载荷、边界支承、材料性质均对旋转轴对称。

2.推导无力矩理论的基本方程时,在微元截取时,能否采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面?为什么?
答:不能。

如果采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面,这两截面与壳体的两表面相交后得到的两壳体表面间的距离大于实际壳体厚度,不是实际壳体厚度。

建立的平衡方程的力与这两截面正交,而不是与正交壳体两表面的平面正交,在该截面上存在正应力和剪应力,而不是只有正应力,使问题复杂化。

3.试分析标准椭圆形封头采用长短轴之比a/b=2的原因。

答:a/b=2时,椭圆形封头中的最大压应力和最大拉应力相等,使椭圆形封头在同样壁厚的情况下承受的
压力最大,因此GB150称这种椭圆形封头为标准椭圆形封头
Rt
4.何谓回转壳的不连续效应?不连续应力有哪些特征,其中β与两个参数的物理意义是什么?答:回转壳的不连续效应:附加力和力矩产生的变形在组合壳连接处附近较大,很快变小,对应的边缘应力也由较高值很快衰减下来,称为“不连续效应”或“边缘效应”。

不连续应力有两个特征:局部性和自限性。

局部性:从边缘力引起的应力的表达式可见,这些应力是 的函数随着距连接处距离的增大,很快衰减至0。

不自限性:连续应力是由于毗邻壳体,在连接处的薄膜变形不相等,两壳体连接边缘的变形受到弹性约束所致,对于用塑性材料制造的壳体,当连接边缘的局部产生塑性变形,弹性约束开始缓解,变形不会连续发展,不连续应力也自动限制,这种性质称为不连续应力的自限性。

β的物理意义:(
)Rt
4
2
13μβ-=反映了材料性能和壳体几何尺寸对边缘效应影响围。

该值越大,边缘效
应影响围越小。

Rt 的物理意义:该值与边缘效应影响围的大小成正比。

反映边缘效应影响围的大小。

5. 单层厚壁圆筒承受压时,其应力分布有哪些特征?当承受压很高时,能否仅用增加壁厚来提高承载能力,为什么?
答:应力分布的特征:○1周向应力σθ及轴向应力σz 均为拉应力(正值),径向应力σr 为压应力(负值)。

在数值上有如下规律:壁周向应力σθ有最大值,其值为:1
1
22max
-+=K K p i θσ,而在外壁处减至最小,其
值为1
2
2
min -=K p i
θσ,外壁σθ之差为p i ;径向应力壁处为-p i ,随着r 增加,径向应力绝对值逐渐减小,在外壁处σr =0。


2轴向应力为一常量,沿壁厚均匀分布,且为周向应力与径向应力和的一半,即2
θ
σσσ+=
r z 。


3除σz 外,其他应力沿厚度的不均匀程度与径比K 值有关。

不能用增加壁厚来提高承载能力。

因壁周向应力σθ有最大值,其值为:1
1
22max
-+=K K p i θσ,随K 值增
加,分子和分母值都增加,当径比大到一定程度后,用增加壁厚的方法降低壁中应力的效果不明显。

6. 单层厚壁圆筒同时承受压p i 与外压p o 用时,能否用压差o
i p p p -=∆代入仅受压或仅受外压的厚壁圆
筒筒壁应力计算式来计算筒壁应力?为什么? 答:不能。

从Lam è公式
x
e β-
()()2
2
020
02222
02
0202202002222
02
020********
1
i i i z i i i i i i i i i i i i r R R R p R p r R R R R p p R R R p R p r R R R R p p R R R p R p --=--+--=-----=σσσθ 可以看出各应力分量的第一项与压力和外压力成正比,并不是与
o
i p p p -=∆成正比。

而径向应力
与周向应力的第二项与o
i p p p -=∆成正比。

因而
不能用
o
i p p p -=∆表示。

7. 单层厚壁圆筒在压与温差同时作用时,其综合应力沿壁厚如何分布?筒壁屈服发生在何处?为什么?
答:单层厚壁圆筒在压与温差同时作用时,其综合应力沿壁厚分布情况题图。

压加热时,综合应力的
最大值为周向应力,在外壁,为拉伸应力;轴向应力的最大值也在外壁,也是拉伸应力,比周向应力值小;径向应力的最大值在外壁,等于0。

压外加热,综合应力的最大值为周向应力,在壁,为拉伸应力;轴向应力的最大值也在壁,也是拉伸应力,比周向应力值小;径向应力的最大值在壁,是压应力。

筒壁屈服发生在:压加热时,在外壁;压外加热时,在壁。

是因为在上述两种情况下的应力值最大。

8. 为什么厚壁圆筒微元体的平衡方程
dr d r
r
r σσσθ=-,在弹塑性应力分析中同样适用?
答:因平衡方程的建立与材料性质无关,只要弹性和弹塑性情况下的其它假定条件一致,建立的平衡方程完全相同。

9. 一厚壁圆筒,两端封闭且能可靠地承受轴向力,试问轴向、环向、径向三应力之关系式2
θ
σσσ+=
r z ,
对于理想弹塑性材料,在弹性、塑性阶段是否都成立,为什么? 答:对于理想弹塑性材料,在弹性、塑性阶段都成立。

在弹性阶段成立在教材中已经有推导过程,该式是成立的。

由拉美公式可见,成立的原因是轴向、环向、径向三应力随外压力变化,三个主应力方向始终不变,三个主应力的大小按同一比例变化,由式
思考题7图
2
θ
σσσ+=
r z 可见,该式成立。

对理想弹塑性材料,从弹性段进入塑性段,在保持加载的情况下,三个
主应力方向保持不变,三个主应力的大小仍按同一比例变化,符合简单加载条件,根据塑性力学理论,可用全量理论求解,上式仍成立。

10. 有两个厚壁圆筒,一个是单层,另一个是多层圆筒,二者径比K 和材料相同,试问这两个厚壁圆筒的爆破压力是否相同?为什么?
答:从爆破压力计算公式看,理论上相同,但实际情况下一般不相同。

爆破压力计算公式中没有考虑圆筒焊接的焊缝区材料性能下降的影响。

单层圆筒在厚壁情况下,有较深的轴向焊缝和环向焊缝,这两焊缝的焊接热影响区的材料性能变劣,不易保证与母材一致,使承载能力下降。

而多层圆筒,不管是采用层板包扎、还是绕板、绕带、热套等多层圆筒没有轴向深焊缝,而轴向深焊缝承受的是最大的周向应力,圆筒强度比单层有轴向深焊缝的圆筒要高,实际爆破时比单层圆筒的爆破压力要高。

11. 预应力法提高厚壁圆筒屈服承载能力的基本原理是什么?
答:使圆筒层材料在承受工作载荷前,预先受到压缩预应力作用,而外层材料处于拉伸状态。

当圆筒承受工作压力时,筒壁的应力分布按拉美公式确定的弹性应力和残余应力叠加而成。

壁处的总应力有所下降,外壁处的总应力有所上升,均化沿筒壁厚度方向的应力分布。

从而提高圆筒的初始屈服压力,更好地利用材料。

12. 承受横向均布载荷的圆形薄板,其力学特征是什么?其承载能力低于薄壁壳体的承载能力的原因是什么?
答:承受横向均布载荷的圆形薄板,其力学特征是:○
1承受垂直于薄板中面的轴对称载荷;○2板弯曲时其中面保持中性;○
3变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线上各点间的距离不变;○
4平行于中面的各层材料互不挤压。

其承载能力低于薄壁壳体的承载能力的原因是:薄板的应力分布是线性的弯曲应力,最大应力出现有板面,其值与()2
t R p 成正比;而薄壁壳体的应力分布是均匀分布,其值与()t R p 成正比。

同样的()t R 情况下,
按薄板和薄壳的定义,()()t R t R >>2
,而薄板承受的压力p 就远小于薄壳承受的压力p 了。

13. 试比较承受均布载荷作用的圆形薄板,在周边简支和固支情况下的最大弯曲应力和挠度的大小和位置。

答:○
1周边固支情况下的最大弯曲应力和挠度的大小为: 2
2max
43t pR =σD pR w f '=644
max
○2周边简支情况下的最大弯曲应力和挠度的大小为:
()
2
2
max8
3
3
t
pR
μ
σ
+
=
μ
μ
+
+
'
=
1
5
64
4
max D
pR
w s
○3应力分布:周边简支的最大应力在板中心;周边固支的最大应力在板周边。

两者的最大挠度位置均在圆形薄板的中心。

○4周边简支与周边固支的最大应力比值
()
()65.1
2
33.0
max
max−
−→

+
==μ
μ
σ
σ
f
r
s
r
周边简支与周边固支的最大挠度比值
08
.4
3.0
1
3.0
5
1
53.0
max
max=
+
+

−→

+
+
==μ
μ
μ
f
s
w
w
其结果绘于下图
14.试述承受均布外压的回转壳破坏的形式,并与承受均布压的回转壳相比有何异同?
答:承受均布外压的回转壳的破坏形式主要是失稳,当壳体壁厚较大时也有可能出现强度失效;承受均布压的回转壳的破坏形式主要是强度失效,某些回转壳体,如椭圆形壳体和碟形壳体,在其深度较小,出现在赤道上有较大压应力时,也会出现失稳失效。

15.试述有哪些因素影响承受均布外压圆柱壳的临界压力?提高圆柱壳弹性失稳的临界压力,采用高强度材料是否正确,为什么?
答:影响承受均布外压圆柱壳的临界压力的因素有:壳体材料的弹性模量与泊松比、长度、直径、壁厚、
圆柱壳的不圆度、局部区域的折皱、鼓胀或凹陷。

提高圆柱壳弹性失稳的临界压力,采用高强度材料不正确,因为高强度材料的弹性模量与低强度材料的弹性模量相差较小,而价格相差往往较大,从经济角度不合适。

但高强度材料的弹性模量比低强度材料的弹性模量还量要高一些,不计成本的话,是可以提高圆柱壳弹性失稳的临界压力的。

16. 求解压壳体与接管连接处的局部应力有哪几种方法? 答:有:应力集中系数法、数值解法、实验测试法、经验公式法。

17. 圆柱壳除受到压力作用外,还有哪些从附件传递过来的外加载荷?
答:还有通过接管或附件传递过来的局部载荷,如设备自重、物料的重量、管道及附件的重量、支座的约束反力、温度变化引起的载荷等。

18. 组合载荷作用下,壳体上局部应力的求解的基本思路是什么?试举例说明。

答:组合载荷作用下,壳体上局部应力的求解的基本思路是:在弹性变形的前提下,壳体上局部应力的总应力为组合载荷的各分载荷引起的各应力分量的分别叠加,得到总应力分量。

如同时承受压和温度变化的厚壁圆筒的综合应力计算。

习题
1. 试应用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体压p ,壳体中面半径为R ,壳体厚度为t )。

若壳体材料由
20R (
MPa MPa s b 245,400==σσ)改为16MnR

MPa MPa s b 345,510==σσ)时,圆柱壳中的应力如何变化?为什么?
解:○
1求解圆柱壳中的应力 应力分量表示的微体和区域平衡方程式:
δ
σσθ
φ
z
p R R -
=+
2
1
φσππφsin 220
t r dr rp F k r z k
=-=⎰
圆筒壳体:R 1=∞,R 2=R ,p z =-p ,r k =R ,φ=π/2
t
pR
pr t
pR
k 2sin 2==
=
φδσσφθ

2壳体材料由20R 改为16MnR ,圆柱壳中的应力不变化。

因为无力矩理论是力学上的静定问题,其基本方程是平衡方程,而且仅通过求解平衡方程就能得到应力解,不受材料性能常数的影响,所以圆柱壳中的应力分布和大小不受材料变化的影响。

2. 对一标准椭圆形封头(如图所示)进行应力测试。

该封头中面处的长轴D=1000mm ,厚度t=10mm ,测得E 点(x=0)处的周向应力为50MPa 。

此时,压力表A 指示数为1MPa ,压力表B 的指示数为2MPa ,试问哪一个压力表已失灵,为什么?
解:○
1根据标准椭圆形封头的应力计算式计算E 的压力: 标准椭圆形封头的长轴与短轴半径之比为2,即a/b=2,a=D/2=500mm 。

在x=0处的应力式为:
MPa a bt p bt
pa 1500250
102222
2
=⨯⨯⨯==
=
θθσσ

2从上面计算结果可见,容器压力与压力表A 的一致,压力表B 已失灵。

3. 有一球罐(如图所示),其径为20m (可视为中面直径),厚度为20mm 。

贮有液氨,球罐上部尚有3m 的气态氨。

设气态氨的压力p=0.4MPa ,液氨密度为640kg/m 3
,球罐沿平行圆A-A 支承,其对应中心角为120°,试确定该球壳中的薄膜应力。

解:○
1球壳的气态氨部分壳体应力分布: R 1=R 2=R ,p z =-p
MPa
t pR t
pR
pr t
pR k 10020
210000
4.022sin 2=⨯⨯===⇒
=
=
=
+θφφθφσσφδσσσ
○2支承以上部分,任一φ角处的应力:R 1=R 2=R ,p z =-[p+ ρg R (cos
φ0-cos φ)],r=Rsin φ,dr=Rcos φd φ
7.0cos 10
5110710sin 0220==
-=φφ
由区域平衡方程和拉普拉斯方程:
φ0
h
()[]()()()()
()()()()()
(
)
()()()()()
⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+--
-+=--+=-=+⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=
-+-+=-+-+=-+=-+=⎰⎰⎰03
3022002220003
30220022220
3322
02200
3330220223002cos cos 31sin sin 2cos sin sin 2sin cos cos cos cos cos cos 31sin sin 2cos sin sin 2sin sin 3cos cos sin 2sin sin cos cos cos 3
2
sin sin cos sin cos 2cos 2cos cos 2sin 20
φφφφφρφφφρφφσρφφσσσφφφφφρφφφφ
φφρφφφφρσφφρπφφφρπφ
φφρπφρπρφφπφσπφ
θφθφφ
φφg R p t R R t
g R p R t
g R p t
R
p g R p t R t g R t g R p R g R g R p R d g R rdr g R p rdr
g R p t R z
r r r
r ()()()
()
{()()
()(){}
()(){}
[]
MPa g R p t R 042.12cos 1.2sin 2.22sin 50.343cos 2.151.0sin 22.2sin 50.343cos 2092851.0sin 221974.4sin 5007.0cos 3151.0sin 35.081.94060151.0sin 102.0sin 02.010cos cos 31sin sin 2cos sin sin 2sin 322
322
322
332262
03
302200222-+=-⨯+-⨯≈-⨯+-⨯=⎭


⎥⎦⎤⎢⎣⎡-+-⨯⨯⨯⨯+-⨯⨯⨯=⎭
⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=
φφφ
φφφφφφφφφφ
φφφφφρφφφσφ
()()()(
)[]
MPa
g R p t R R t
g
R p 042.12cos 1.2sin 2.22sin 5
cos 392.31974.221cos cos 31sin sin 2cos sin sin 2sin cos cos 322
03
302200222
0-+-
⨯-=⎭
⎬⎫
⎩⎨⎧⎥⎦⎤⎢⎣
⎡-+-+--
-+=
φφφ
φφφφφφρφφφρφφσθ ○
3支承以下部分,任一φ角处的应力 (φ>120°) : R 1=R 2=R ,p z =-[p+ ρg R (cos φ0-cos φ)],r=Rsin φ,dr=Rcos φd φ
()[]()()()[]
()()()
()[]
()()()
()()(
)()()()()()
⎥⎦
⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---

⎬⎫
⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+--
-+=--+=-=+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝
⎛--+

⎬⎫
⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=⎥⎦
⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+
-+
-+==--+-+-+=--+-+=--+-+=⎰⎰⎰R h h R t g
g R p t R R t
g R p R t
g R p t
R
p R h h R t g
g R p t R R h h R t g
t g R t g R p R t R V h R h R g g R g R p R h R h R g
d g R rdr g R p g
h R h g R rdr g R p V z
r r r r 34sin 6cos cos 31sin sin 2cos sin sin 2sin cos cos cos cos 34sin 6cos cos 31sin sin 2
cos sin sin 2sin 34sin 6sin 3cos cos sin 2sin sin cos sin 2343
cos cos 3
2
sin sin cos 343
sin cos 2cos 233
1
34cos cos 2222
03302
200222
00222
03302
200222
22220
332202202230
33302202232302300
00
φρφφφφφρφφφρφφσρφφσσσφρφφφφφρφφφφρφφφρφφφφρσφ
σππρφφρπφφφρππρφφφρπφρπρπρπρφφπφ
θφθφφφφ
()()(
)(){()
(
)
()(){}
()(){}
[]
()()()()
()()(){}
()[]
[]
MPa g R p t R R h h R t g
R t g R p MPa R h h R t g g R p t R 14.8cos 1.2sin 2.22sin 5
cos 31.392-221.97414.8cos 1.2sin 2.22sin 5cos 7.0392.31200sin 19.6566240.343cos 2.151.0sin 22.2sin 5cos 7.0392.31200cos cos 31sin sin 2cos sin sin 2sin 34sin 6cos cos 14.8cos 1.2sin 2.22sin 5 3.90.343cos 2.151.0sin 22.2sin 539313.2480.343cos 2092851.0sin 221974.4sin 500sin 19656624
7.0cos 3151.0sin 35.081.94060151.0sin 102.0sin 02.010
34sin 6cos cos 31sin sin 2cos sin sin 2sin 322
3
22
23
2203
30220022222203
22
3
22
322
2332262
22203
302200222
-⨯+⨯-⨯=-⨯+⨯--⨯+=-
-⨯+-⨯--⨯+=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+--⎥⎦⎤⎢⎣
⎡⎪⎭⎫ ⎝⎛---
-+=
-⨯+⨯=+-⨯+-⨯≈+-⨯+-⨯=+

⎬⎫⎥⎦⎤⎢⎣⎡-+-⨯⨯⨯⨯+-⨯⨯⨯=
⎥⎦
⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎭
⎬⎫
⎩⎨⎧⎥⎦⎤⎢⎣
⎡-+-+-=
φφφ
φφφφφφφφφφφφφφφρφφφφ
ρρφφσφφφ
φφφφφφφφφφφ
φρφφφφφρφφφσθφ 4. 有一锥形底的圆筒形密闭容器,如图所示,试用无力矩理论求出锥形底壳中的最大薄膜应力σθ与σφ的值及相应位置。

已知圆筒形容器中面半径R ,厚度t ;锥形底的半锥角α,厚度t ,装有密度为ρ的液体,液面高度为H ,液面上承受气体压力p c 。

解:圆锥壳体:R 1=∞,R 2=r/cos α(α半锥顶角),p z =-[p c +ρg(H+x)],φ=π/2-α,αxtg R r -=
()()
()()
()()α
αρααραρρσα
σπρπ
ρπφφcos 23cos 231
cos 232222
222222t xtg R g tg x xRtg R x g H p R rt g
Rr r R x g H p R t r g Rr r R x g H p R F c c c -⎪⎪⎭⎫ ⎝⎛+-++=
++++=
=+++
+=
()[]()
()()[]{}()α
ρααρρασσσαα
ρσρααασαραρα
σα
αρσσσθφθθθθθθ
φ
cos 2210cos 2210cos 1
cos max
2
22
1
t g tg p Htg R g g p H tg R H p 。

,。

x t gtg dx d g tg p Htg R tg x dx d :tg g x H p xtg R g t dx d t xtg R g x H p t p R R c c c c c c z ⎪⎪⎭⎫ ⎝⎛
++⎪⎭
⎪⎬⎫⎪⎩
⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-++=∞<-=⎥⎦⎤⎢⎣⎡--==++--=
-++=
-
=+
其值为的最大值在锥顶有最大值处在令 5. 试用圆柱壳有力矩理论,求解列管式换热器管子与管板连接边缘处(如图所示)管子的不连续应力表达式(管板刚度很大,管子两端是开口的,不承受轴向拉力)。

设管压力为p ,管外压力为零,管子中面半径为r ,厚度为t 。

解:○
1管板的转角与位移 0
0000
1
1
1111======M Q p M Q p w w w φ
φ
φ

2压作用下管子的挠度和转角 压引起的周向应变为:
()
Et
pR w Et
pR R R w R p p p
2
2
2222-
==
--=πππεθ转角:
02
=p
φ

3边缘力和边缘边矩作用下圆柱壳的挠度和转角 x
r
20
3
2
21121
21
2
2
02
02Q D M D Q D w M D w Q M Q M '
='
='
-='
-
=βφ
βφ
ββ

4变形协调条件 0000002
2
22
2
2=++=++M Q p M Q p
w
w
w φ
φ
φ

5求解边缘力和边缘边矩 Et
pR D Q Et
pR D M Q D M D Q D M D Et pR o 23
22002
003
02242021
102121'
-='
=='
+'='-'--ββββββ

6边缘力表达式 ()()
()
x
e Et
p D R Q M M x x e Et
p D R M x x p x x e Et
p D R N N x
x x
x
x x x
x ββμβββββββββθβββθcos 4cos sin 2cos sin Re cos sin 40
232234----'-==-'-=+-=+'-== ○
7边缘力引起的应力表达式 ()()()x e z t Et p D R z t t
Q z x x e Et D R x x e t pR t M t N z x x e Et
p D R z t M t N x
x
x z x
x x x x x ββτσββμβββσβββσβββθθθβcos 424460
cos sin 24cos sin 12cos sin 241222
4232233
234
223----⎪⎪⎭
⎫ ⎝⎛-'-=⎪⎪⎭⎫ ⎝⎛-==⎥⎦
⎤⎢⎣⎡-'±+-=±=-'±=±=

8综合应力表达式
()()()x e z t Et p D R z t t Q z x x e Et D R x x e t pR t M t N t pR z
x x e Et p D R t pR z t M t N t pR x
x
x z
x x x
x x x ββτσ
ββμβββσβββσβββθ
θθβcos 424460
cos sin 24cos sin 112cos sin 24212222423223
3
23
4223----⎪⎪⎭
⎫ ⎝⎛-'-=⎪⎪⎭⎫ ⎝⎛-==⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-'±+-=±+=-'±=±+=∑∑∑∑
6. 两根几何尺寸相同,材料不同的钢管对接焊如图所示。

管道的操作压力为p ,操作温度为0,环境温度为t c ,而材料的弹性模量E 相等,线膨胀系数分别α1和α2,管道半径为r ,厚度为t ,试求得焊接处的不连续应力(不计焊缝余高)。

解:○
1压和温差作用下管子1的挠度和转角 压引起的周向应变为:
()
()μμπππεθ
--=⎪


⎝⎛-=--=22212222
1
1Et
pr w t pr t pr E r r w r p p p
温差引起的周向应变为:
()
()t r w t
t t r
w r r w r t
c t
t t
∆-=∆=-=-=--=∆∆∆∆1110111222αααπππεθ
()t r Et
pr w
t
p ∆---=∆+12
1
22αμ 转角:
01=∆+t p φ

2压和温差作用下管子2的挠度和转角 压引起的周向应变为:
()
()μμπππεθ
--=⎪


⎝⎛-=--=22212222
2
2Et
pr w t pr t pr E r r w r p p p
温差引起的周向应变为:
()
()t r w t
t t r
w r r w r t
c t
t t
∆-=∆=-=-=--=∆∆∆∆2220222222αααπππεθ
()t r Et
pr w
t
p ∆---=∆+22
2
22αμ 转角:
02=∆+t p φ

3边缘力和边缘边矩作用下圆柱壳1的挠度和转角 0
20
3
2
121
121
21
1
1
010Q D M D Q D w M D w Q
M
Q M '
='
-='
=
'
-
=βφβφββ ○
4边缘力和边缘边矩作用下圆柱壳2的挠度和转角 0
20
3
2
21121
21
2
2
02
02Q D M D Q D w M D w Q M Q M '
='
='
-='
-
=βφ
βφ
ββ

5变形协调条件 00000
0002
2
2
1
1
1
2
22111M Q t p M Q t p M Q t p M Q t p w w w w w w φ
φ
φ
φ
φ
φ
++=++++=++∆+∆+∆+∆+

6求解边缘力和边缘边矩 ()()()()
210300200
2003
022********
21121121
2122212122ααβββββββαμββαμ--'=='+'='+'-'-'-∆---='+'-∆---c o t t D r Q M Q D M D Q D M D Q D M D t r Et pr Q D M D t r Et pr ○
7边缘力表达式
()()()()()()()
x x t t e D r Q M M x t t e D r M x
t t e Et N N c x x x
c x x c x
x ββααβμβααββααβθββθsin cos sin cos 2
21032102210---'==--'=--==---

8边缘力引起的应力表达式 ()()()()()()()x x t t e D z t t r z t t
Q x D r t z x E t t e z t M t N x t t e D r t z z t M t N c x
x
x z c x c x
x x x ββααβτσββμβαασβααβσββθθθβsin cos 46460sin 12cos 212sin 1212210322
32232
3
210321023
3---'⎪
⎪⎭
⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==⎪⎭⎫ ⎝⎛'±--=±=--'±=±=---

9综合应力表达式 ()()()()()()()x x t t e D z t t r z t t Q x D r t z x E t t e t pr z t
M t N t pr x t t e D r t z t pr z t M t N t pr c x
x
x z
c x c x x
x x ββααβτσ
ββμβαασβααβσββθ
θθβsin cos 46460
sin 12cos 212sin 1221222103223223
2321032102
33---'⎪
⎪⎭
⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==⎪⎭
⎫ ⎝⎛'±--+=±+
=--'±=±+=---∑∑∑∑
7. 一单层厚壁圆筒,承受压力p i =36MPa 时,测得(用千分表)筒体外表面的径向位移w 0=0.365mm ,圆筒外直径D 0=980mm ,E=2×105
MPa ,μ=0.3。

试求圆筒外壁面应力值。

解:周向应变
()θθ
εθ
θ
θεr w r
w rd rd d w r ==-+=
物理方程
()[]()[]z r z r E
r
r w E
σσμσεσσμσεθθθθ+-=
=+-=
1
仅承受压时的Lam è公式
1
11111122202220
22202202220
22202202-=
-=⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭
⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=K p R R R p r R K p r R R R R p r R K p r R R R R p i
i i i z i i i i i i i i r σσσθ 在外壁面处的位移量及径:
()
()()()412.538mm 188
.1490 1.188365
.01023.024*********
0500
2
0===
=⨯⨯-⨯⨯+=-+==--=
=K R R Ew R p K w K E R p w i i i R r μμ 壁面处的应力值:
()
87.518MPa
1
188.136
1211.036MPa 1188.11188.1361136222
22
2=-=-==-+⨯=+-=-=-=K p K K p MPa
p i z i i r σσσθ 外壁面处的应力值:
87.518MPa 1
188.136
1175.036MPa 1188.136
2120
2
22
2=-=-==-⨯=-=
=K p K p i z i r σσσθ 8. 有一超高压管道,其外直径为78mm ,直径为34mm ,承受压力300MPa ,操作温度下材料的 σ
b
=1000MPa ,σs =900MPa 。

此管道经自增强处理,试求出最佳自增强处理压力。

解:最佳自增强处理压力应该对应经自增强处理后的管道,在题给工作和结构条件下,其最大应力取最小值时对应的塑性区半径Rc 情况下的自增强处理压力。

对应该塑性区半径Rc 的周向应力为最大拉伸应力,其值应为经自增强处理后的残余应力与压力共同作用下的周向应力之和:
⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭

⎝⎛+-+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭

⎝⎛+=2
2
2022
02202
2
2
1ln 2113c
i i i i c c
i
i c c
s R R
R R R p R R R R
R R R R R R R σσθ 令其一阶导数等于0,求其驻点
02113
2ln 213232022022022022020
2022022032
0=--⎪⎭⎪⎬⎫⎪
⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭
⎫ ⎝⎛-=∂∂c i i i c c i i c c s i c c i i c c
s c R R R R R p R R R R R R R R R R R R R R R R R R R R R R σσσθ
解得:R c =21.015mm 。

根据残余应力和拉美公式可知,该值对应周向应力取最大值时的塑性区半径。

由自增强压pi 与所对应塑性区与弹性区交界半径Rc 的关系,最佳自增强处理压力为:
MPa R R R R R p i
c o
c S i 083.589ln
232
2
20=⎪⎪⎭


⎛+-=
σ 9. 承受横向均布载荷的圆平板,当其厚度为一定时,试证明板承受的总载荷为一与半径无关的定值。

证明:○
1周边固支情况下的最大弯曲应力为 ()
2
2222max
434343t P
t R p t pR πππσ===

2周边简支情况下的最大弯曲应力为: ()()()
()2
2222max
833833833t
P
t R p t pR πμππμμσ+=+=+= 10. 有一周边固支的圆板,半径R=500mm ,板厚=38mm ,板面上承受横向均布载荷p=3MPa ,试求板的最大挠度和应力(取板材的E=2×105
MPa ,μ=0.3) 解:板的最大挠度:
()()
2.915mm 10005.164500
364101.0053
.0112381021129
4
4max 9
2
3
523=⨯⨯⨯='=
⨯=-⨯⨯⨯=-='D pR w Et D f
μ
板的最大应力:
389.543M Pa 38450033432
222max
=⨯⨯⨯==t pR σ
11. 上题中的圆平板周边改为简支,试计算其最大挠度和应力,并将计算结果与上题作一分析比较。

解:板的最大挠度:
11.884mm 2.9154.077915.23
.013.0515644max
=⨯=⨯++=++'=μμD pR w
s
板的最大应力:
()()()642.746M Pa 389.5431.65543.38923.0338850033.0338332
222max
=⨯=⨯+=⨯⨯⨯+=+=t pR μσ
简支时的最大挠度是固支时的4.077倍;简支时的最大应力是固支时的1.65倍。

12. 一穿流式泡沫塔其径为1500mm ,塔板上最大液层为800mm (液体密度为ρ=1.5×103
kg/m 3
),塔板厚度为6mm ,材料为低碳钢(E=2×105
MPa ,μ=0.3)。

周边支承可视为简支,试求塔板中心处的挠度;若挠度必须控制在3mm 以下,试问塔板的厚度应增加多少? 解:周边简支圆平板中心挠度
()()
61.14mm 3
.013.051039.56647500.01215640.012M Pa
11772Pa 81.915008.010
39.563.01126102112544max
5
2
3523=++⨯⨯⨯=++'===⨯⨯==⨯=-⨯⨯⨯=-='μμρμD pR w
g h p Et D s
挠度控制在3mm 以下需要的塔板厚度
()()
mm E D t D ::
4.1610
210
806.23283.011211210806.23281056.3938.2038.203
14
.6135
5
23255=⨯⨯⨯-⨯='-=⨯=⨯⨯='=μ需要的塔板刚度塔板刚度需增加的倍数
需增加10.4mm 以上的厚度。

13. 三个几何尺寸相同的承受周向外压的短圆筒,其材料分别为碳素钢(σs =220MPa ,E=2×105
MPa ,μ=0.3)、铝合金(σs =110MPa ,E=0.7×105
MPa ,μ=0.3)和铜(σs =100MPa ,E=1.1×105
MPa ,μ=0.31),试问哪一个圆筒的临界压力最大,为什么?
答:碳素钢的大。

从短圆筒的临界压力计算式
t
D LD Et p cr 0
259.2=
可见,临界压力的大小,在几何尺寸相同的情况下,其值与弹性模量成正比,这三种材料中碳素钢的E 最大,因此,碳素钢的临界压力最大。

14. 两个直径、厚度和材质相同的圆筒,承受相同的周向均布外压,其中一个为长圆筒,另一个为短圆筒,试问它们的临界压力是否相同,为什么?在失稳前,圆筒中周向压应力是否相同,为什么?随着所承受的周向均布外压力不断增加,两个圆筒先后失稳时,圆筒中的周向压应力是否相同,为什么?
答:○
1临界压力不相同。

长圆筒的临界压力小,短圆筒的临界压力大。

因为长圆筒不能受到圆筒两端部的
支承,容易失稳;而短圆筒的两端对筒体有较好的支承作用,使圆筒更不易失稳。


2在失稳前,圆筒中周向压应力相同。

因为在失稳前圆筒保持稳定状态,几何形状仍保持为圆柱形,壳体的压应力计算与承受压的圆筒计算拉应力相同方法。

其应力计算式中无长度尺寸,在直径、厚度、材质相同时,其应力值相同。


3圆筒中的周向压应力不相同。

直径、厚度和材质相同的圆筒压力小时,其壳体的压应力小。

长圆筒的临界压力比短圆筒时的小,在失稳时,长圆筒壳的压应力比短圆筒壳的压应力小。

15. 承受均布周向外压力的圆筒,只要设置加强圈均可提高其临界压力。

对否,为什么?且采用的加强圈愈多,壳壁所需厚度就愈薄,故经济上愈合理。

对否,为什么?
答:○
1承受均布周向外压力的圆筒,只要设置加强圈均可提高其临界压力,对。

只要设置加强圈均可提高圆筒的刚度,刚度提高就可提高其临界压力。


2采用的加强圈愈多,壳壁所需厚度就愈薄,故经济上愈合理,不对。

采用的加强圈愈多,壳壁所需厚度就愈薄,是对的。

但加强圈多到一定程度后,圆筒壁厚下降较少,并且考虑腐蚀、制造、安装、使用、维修等要求,圆筒需要必要的厚度,加强圈增加的费用比圆筒的费用减少要大,经济上不合理。

16. 有一圆筒,其径为1000mm ,厚度为10mm ,长度为20m ,材料为20R (σb =400MPa ,σs =245MPa ,E=2×105
MPa ,μ=0.3)。

○1在承受周向外压力时,求其临界压力p cr 。

○2在承受压力时,求其爆破压力p b ,并比较其结果。

解:○1临界压力p cr 20m 12m 12052.75mm 10
1020102017.117.11020102100000
0<≈=⨯⨯===⨯+=t D D L mm
D cr 属长短圆筒,其临界压力为 0.415M Pa 1020101022.22.23
530=⎪⎭⎫ ⎝⎛⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛=D t E p cr ○2承受压力时,求其爆破压力p b ,(Faupel 公式)
7.773MPa 10001020ln 400245232452ln 232=⨯⎪⎭⎫ ⎝⎛-⨯⨯=⎪⎪⎭
⎫ ⎝⎛-=K p b s s b σσσ 承受压时的爆破压力远高于承受外压时的临界压力,高出18.747倍。

17. 题16中的圆筒,其长度改为2m ,再进行上题中的○
1、○2的计算,并与上题结果进行综合比较。

解:○
1临界压力p cr ,属短圆筒,其临界压力为。

相关文档
最新文档