高中物理带电粒子在磁场中的运动解题技巧及练习题(含答案)及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理带电粒子在磁场中的运动解题技巧及练习题(含答案)及解析
一、带电粒子在磁场中的运动专项训练
1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求: (1)带电粒子的初速度;
(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBL
v m
=;(2)41(1)45m t qB π=+ 【解析】 【详解】
(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:
5sin37o QC L =
15sin37O
OQ
O Q L =
=
在y 轴左侧磁场中做匀速圆周运动,半径为1R ,
11R O Q QC =+
2
1
v qvB m
R =
解得:8qBL
v m
=
; (2)由公式2
2
v qvB m R =得:2mv R qB =,解得:24R L =
由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t
5cos37o PC L =
1PC
t v
=
带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t
12m
T qB
π=
21
37360
o
o t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t
22·2m m
T q B qB
ππ=
= 3212
t T =
从P 点到再次回到P 点所用的时间为t
12222t t t t =++
联立解得:41145
m
t qB π⎛⎫=+
⎪⎝
⎭。
2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射
出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:
(1)带电粒子入射速度的大小;
(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.
【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB d
m θ
【解析】 【分析】
画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】
(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .
由几何关系可知:cos d R
θ=
洛伦兹力做向心力:20
0v qv B m R
=
解得0cos qBd
v m θ
=
(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d x
θ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θ
θ
=
(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B
解得2qB d
E mcos θ
=
【点睛】
此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.
3.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.
(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;
(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)
(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eU
v v m
=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】
(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=
ne
I t
求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B.
【详解】
(1)对电子经 CA 间的电场加速时,由动能定理得
2211
22
e e U mv mv =
- 解得:22e eU
v v m
=
+ (2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =
ne I t
224d dN
n N a a
ππ=
=⨯
解得4alt
N ed
π=
(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为
B .设此轨迹圆的半径为 r ,则
222
(2)a r r a -=+
2
v Bev m r
=
解得:43mv
B ae
=
4.如图所示,在xOy 平面内,以O ′(0,R )为圆心,R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P ,Q 两点在坐标轴上,且O ,P 两点间的距离大于2R ,在圆形磁场的左侧0<y <2R 的区间内,均匀分布着质量为m ,电荷量为+q 的一簇带电粒子,当所有粒子均沿x 轴正向以速度v 射入圆形磁场区域时,粒子偏转后都从O 点进入x 轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:
(1)磁场的磁感应强度B 的大小; (2)挡板端点P 的坐标;
(3)挡板上被粒子打中的区域长度.
【答案】(1)mv
qR (2)(21),0R ⎡⎤+⎣⎦ (3)21042R +- 【解析】 【分析】 【详解】
(1)设一粒子自磁场边界A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线长度为r ,C 为该轨迹圆的圆心.连接AO ˊ、CO ,可证得ACOO ˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,
由2
v qvB m r
=
得:mv B qR
=
(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点
2DP R =(21)OP R =
P 点的坐标为((21)R ,0 )
(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①
过O 点做挡板的垂线交于G 点,
22(21)(1OG R R ==+② 225-22=2
FG OF OG R
=-③
2
2
EG R =
④ 挡板上被粒子打中的区域长度l =FE 2R +5-222R 2+10-42R ⑤
5.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、
Q 两点之间的距离为
2
L
,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;
(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。
【答案】(1)2U E L =
,M eU
v m
=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3
348M R L m t v eU
ππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】
(1)在加速电场中,从P 点到Q 点由动能定理得:2
012
eU mv = 可得02eU
v m
=
电子从Q 点到M 点,做类平抛运动, x 轴方向做匀速直线运动,02L m t L v eU
==y 轴方向做匀加速直线运动,2122L eE t m
=⨯ 由以上各式可得:2U E L
=
电子运动至M 点时:22
0(
)M Ee v v t m
=+即:M eU
v m
=设v M 的方向与x 轴的夹角为θ,
02cos 2
M v v θ=
= 解得:θ=45°。
(2)如图甲所示,电子从M 点到A 点,做匀速圆周运动,因O 2M =O 2A ,O 1M =O 1A ,且O 2A ∥MO 1,所以四边形MO 1AO 2为菱形,即R =L
由洛伦兹力提供向心力可得:
2
M M
v ev B m
R
=
即
2
M
mv mv
B
eR L e
==
3
3
4
8
M
R L m
t
v eU
ππ
==。
(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x轴方向上的位移恰好等于轨道半径2R',即222
R L
'=
因电子在磁场中的运动具有周期性,如图丙所示,电子到达N点且速度符合要求的空间条件为:22)2
n R L
'=(n=1,2,3,…)
电子在磁场中做圆周运动的轨道半径
M
mv
R
eB
'=
解得:
22
n emU
B=n=1,2,3,…)
电子在磁场变化的半个周期内恰好转过
1
4
圆周,同时在MN间的运动时间是磁场变化周期
的整数倍时,可使粒子到达N点且速度满足题设要求,应满足的时间条件是
1
42
T
T=
又0
2m
T
eB
π
=
则T 的表达式为22
T n emU
=
(n =1,2,3,…)。
6.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里
的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷
q
m
=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.
(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;
(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.
【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21
n
m s n -⨯+ (其中n =
0、1、2、3、4)第二种情况:v 0=53.20.8()10/21
n
m s n -⨯+ (其中n =0、1、2、3).
【解析】 【详解】
(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则
竖直方向2
1··
2Eq d t m
= 得2md
t qE
=
代入数据解得t =1.0×10-
6s
水平位移x =v 0t 代入数据解得x =0.80m
因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=
L
v =0.5×10-6s , 竖直位移2
01··
2Eq y t m
==0.0125m 所以粒子从P′点下方0.0125m 处射出.
(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2md
qE
粒子进入磁场时,垂直边界的速度 v 1=
qE m ·t =2qEd m
设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =
1
v sin α
在磁场中由qvB =m 2
v R
得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 0
2md qE 、R =mv qB 、v =1v sin α、12qEd
v m =
代入解得 v 0=L·
2Eq
md
-E B v 0=3.6×105m/s.
(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα)
把R =mv qB 、v =1v sin α、12qEd
v m
=代入解得
12(1cos )12tan sin 2
mEd mEd y B q B q αα
α-∆=
=
可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)
1max 212mv m qEd mEd
y qB qB m B q
∆=
== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.
若粒子速度较小,周期性运动的轨迹如下图所示:
粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t
把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m
= 代入解得 0221221L qE n E v n md n B
=
-⋅++
v 0= 4.00.821n n -⎛⎫
⎪+⎝⎭
×105
m/s(其中n =0、1、2、3、4)
第二种情况:
L =n(2v 0t +2Rsinα)+v 0t +2Rsinα 把2md t qE =
、R =mv qB 、v 1=vsinα、12qEd v m
=代入解得
02(1)21221L qE n E v n md n B
+=
-⋅++
v 0= 3.20.821n n -⎛⎫
⎪+⎝⎭
×105
m/s(其中n =0、1、2、3).
7.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。
现使一个电量大小为q 、质量为m 的带正电粒子从坐标(﹣2a ,a )处以沿+x 方向的初速度v 0出发,该粒子恰好能经原点进入y 轴右侧并在随后经过了点P ,不计粒子的重力。
(1)求粒子经过原点时的速度; (2)求磁感应强度B 的所有可能取值
(3)求粒子从出发直至到达P 点经历时间的所有可能取值。
【答案】(12v 0,方向:与x 轴正方向夹45°斜向下; (2)磁感应强度B 的所有可能取值:0
nmv B qL
=
n =1、2、3……;
(3)粒子从出发直至到达P 点经历时间的所有可能取值:023(1)24a m m t k k v qB qB
ππ=++- k =1、2、3……或02324a m m
t n n v qB qB
ππ=++ n =1、2、3……。
【解析】 【详解】
(1)粒子在电场中做类平抛运动,水平方向:2a =v 0t , 竖直方向:2
y v a t =
,
解得:v y =v 0,tan θ=
y v v =1,θ=45°,
粒子穿过O
点时的速度:0v ==;
(2)粒子在第四象限内做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:
2
v qvB m r
= ,
粒子能过P 点,由几何知识得:L =nr cos45° n =1、2、3……, 解得:0
nmv B qL
=
n =1、2、3……; (3)设粒子在第二象限运动时间为t 1,则:t 1=0
2a
v ;
粒子在第四、第一象限内做圆周运动的周期:12m T qB π=
,2m
T qB
π=, 粒子在下方磁场区域的运动轨迹为1/4圆弧,在上方磁场区域的运动轨迹为3/4圆弧, 若粒子经下方磁场直接到达P 点,则粒子在磁场中的运动时间:t 2=
1
4
T 1, 若粒子经过下方磁场与上方磁场到达P 点,粒子在磁场中的运动时间:t 2=1
4T 1+34
T 2, 若粒子两次经过下方磁场一次经过上方磁场到达P 点:t 2=2×
1
4T 1+34T 2, 若粒子两次经过下方磁场、两次经过上方磁场到达P 点:t 2=2×1
4T 1+2×34
T 2, ………… 则23(1)24m
m
t k k qB
qB
ππ=+- k =1、2、3 (2324)
m
t n
n
qB qB
ππ=+ n =1、2、3…… 粒子从出发到P 点经过的时间:t =t 1+t 2,
解得:0
23(1)2
4a m m t k k v qB qB
ππ=++- k =1、2、3…… 或02324a m m t n n v qB qB
ππ=
++ n =1、2、3……;
8.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0<y<d 的区域Ⅰ内的磁感应强度大小为B ,在y>d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q 的粒子以速度
qBd
m
从O 点沿y 轴正方向射入区域Ⅰ.不计粒子重力.
(1) 求粒子在区域Ⅰ中运动的轨道半径: (2) 若粒子射入区域Ⅰ时的速度为2qBd
v m
= ,求粒子打在x 轴上的位置坐标,并求出此过程中带电粒子运动的时间;
(3) 若此粒子射入区域Ⅰ的速度qBd
v m
>
,求该粒子打在x 轴上位置坐标的最小值. 【答案】(1)R d =(2) (43OP d = 23m
t qB
π=(3)min 3x d =
【解析】 【分析】 【详解】
(1)带电粒子在磁场中运动,洛仑磁力提供向心力:20
01
v qv B m r =
把0qBd
v m
=
,代入上式,解得:R d = (2) 当粒子射入区域Ⅰ时的速度为02v v =时,如图所示
在OA 段圆周运动的圆心在O 1,半径为12R d = 在AB 段圆周运动的圆心在O 2,半径为R d = 在BP 段圆周运动的圆心在O 3,半径为12R d =
可以证明ABPO 3为矩形,则图中30θ=,由几何知识可得:
132cos303OO d d ==
所以:323OO d d =-
所以粒子打在x 轴上的位置坐标()
133243OP O O OO d =+=- 粒子在OA 段运动的时间为:13023606m m
t qB qB
ππ==
粒子在AB 段运动的时间为2120236023m m
t q B qB
ππ=
=
粒子在BP 段运动的时间为313023606m m
t t qB qB
ππ==
=
在此过程中粒子的运动时间:12223m
t t t qB
π=+=
(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图
可得粒子打在x 轴上位置坐标:(
22
222x R R d R d =--化简得:222340R Rx x d -++=
把上式配方:2
22213033R x x d ⎛⎫--+= ⎪⎝⎭ 化简为:2
22213033R x x d ⎛⎫-=-≥ ⎪⎝
⎭
则当2
3
R x =
时,位置坐标x 取最小值:min 3x d =
9.如图所示,虚线MN 为匀强电场和匀强磁场的分界线,匀强电场场强大小为E 方向竖直向下且与边界MN 成θ=45°角,匀强磁场的磁感应强度为B ,方向垂直纸面向外,在电场中有一点P ,P 点到边界MN 的竖直距离为d 。
现将一质量为m 、电荷量为q 的带正电粒子从P 处由静止释放(不计粒子所受重力,电场和磁场范围足够大)。
求: (1)粒子第一次进入磁场时的速度大小;
(2)粒子第一次出磁场处到第二次进磁场处的距离;
(3)若粒子第一次进入磁场后的某时刻,磁感应强度大小突然变为'B ,但方向不变,此后粒子恰好被束缚在该磁场中,则'B 的最小值为多少?
【答案】(1)2qEd
m
=v 2)42CA x d =(3)('222B B = 【解析】 【详解】
(1)设粒子第一次进入磁场时的速度大小为v ,由动能定理可得2
12
qEd mv =, 解得2qEd
v m
=
(2)粒子在电场和磁场中的运动轨迹如图所示,粒子第一次出磁场到第二次进磁场,两点间距为CA x
由类平抛规律x vt =,2
12Eq y t m
=
由几何知识可得x=y ,解得2md
t Eq
=
两点间的距离为2CA x vt =,代入数据可得42CA x d =
(3)由2
mv qvB R
=可得mv R qB =,即12mEd R B q =
由题意可知,当粒子运动到F 点处改变磁感应强度的大小时,粒子运动的半径又最大值,即'B 最小,粒子的运动轨迹如图中的虚线圆所示。
设此后粒子做圆周运动的轨迹半径为r ,则有几何关系可知22
4
r R += 又因为'mv r qB =
,所以'mv
B qr
=, 代入数据可得()
'222B B =-
10.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
(1)求此电场的场强大小E ;
(2)若粒子能在OL 与x 轴所围区间内返回到虚线OL 上,求粒子从M 点出发到第二次经过OL 所需要的最长时间。
【答案】(1);(2).
【解析】
试题分析:根据粒子只受电场力作用,沿电场线方向和垂直电场线方向建立坐标系,利用类平抛运动;根据横向位移及纵向速度建立方程组,即可求解;由(1)求出在电场中运动的时间及离开电场时的位置;再根据粒子在磁场中做圆周运动,由圆周运动规律及几何关系得到最大半径,进而得到最长时间;
(1)粒子在电场中运动,不计粒子重力,只受电场力作用,;
沿垂直电场线方向X和电场线方向Y建立坐标系,
则在X方向位移关系有:,所以;
该粒子恰好能够垂直于OL进入匀强磁场,所以在Y方向上,速度关系有
,
所以,,则有.
(2)根据(1)可知粒子在电场中运动的时间;
粒子在磁场中只受洛伦兹力的作用,在洛伦兹力作用下做圆周运动,设圆周运动的周期为T
粒子能在OL与x轴所围区间内返回到虚线OL上,则粒子从M点出发到第二次经过OL在磁场中运动了半个圆周,所以,在磁场中运动时间为;
粒子在磁场运动,洛伦兹力作为向心力,所以有,;
根据(1)可知,粒子恰好能够垂直于OL进入匀强磁场,速度v就是初速度v0在X方向上的分量,即;
粒子在电场中运动,在Y方向上的位移,所以,粒子进入磁场的位置在OL上距离O点;根据几何关系,
可得,即
;
所以
;
所以,粒子从M 点出发到第二次经过OL 所需要的最长时间
.
11.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷
9110q
m
=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:
(1)粒子源发射的粒子进入磁场时的速度大小;
(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);
(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.
【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】
(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2
v qvB m R
=求解速度;
(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】
(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,
由2
v qvB m
R
= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s
(2)粒子在磁场中运动的时间61121044
R t s v ππ-=
⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间
62 1.010x
t s v
-=
=⨯ 总时间6612110 1.8104t t t s s π--⎛⎫
=+=+⨯=⨯
⎪⎝⎭
(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qE
a m s m
==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫=
=⨯⨯⨯= ⎪⨯⎝⎭
打在屏上的纵坐标为0.75;
经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带
电粒子打在荧光屏上的纵坐标区域为0.75≤y≤1.75.
12.如图所示,y,N为水平放置的平行金属板,板长和板间距均为2d.在金属板左侧板间中点处有电子源S,能水平发射初速为V0的电子,电子的质量为m,电荷量为e.金属板右侧有两个磁感应强度大小始终相等,方向分别垂直于纸面向外和向里的匀强磁场区域,两磁场的宽度均为d.磁场边界与水平金属板垂直,左边界紧靠金属板右侧,距磁场右边界d处有一个荧光屏.过电子源S作荧光屏的垂线,垂足为O.以O为原点,竖直向下为正方向,建立y轴.现在y,N两板间加上图示电压,使电子沿SO方向射入板间后,恰好能够从金属板右侧边缘射出.进入磁场.(不考虑电子重力和阻力)
(1)电子进人磁场时的速度v;
(2)改变磁感应强度B的大小,使电子能打到荧光屏上,求
①磁场的磁感应强度口大小的范围;
②电子打到荧光屏上位置坐标的范围.
【答案】(1)
2v,方向与水平方向成45°
(2)①
()0
12mv
B
ed
+
<,②4224
d d d
-→
【解析】
试题分析:(1)电子在MN 间只受电场力作用,从金属板的右侧下边沿射出,有(1分)
(1分)
(1分)
(1分)
解得(1分)
速度偏向角(1分)
(1分)
(2)电子恰能(或恰不能)打在荧光屏上,有磁感应强度的临界值
B,此时电子在磁场中作圆周运动的半径为R
(2分)
又有2
0mv qvB R =(2分) 由⑦⑧解得:00(12)m B v +=(1分) 磁感应强度越大,电子越不能穿出磁场,所以取磁感应强度0(12)m B v ed +<
时电子能打在荧光屏上(得0(12)m B v ed
+≤不扣分). (1分) 如图所示,电子在磁感应强度为0B 时,打在荧光屏的最高处,由对称性可知,电子在磁场右侧的出射时速度方向与进入磁场的方向相同,
即. (1分)
出射点位置到SO 连线的垂直距离
12sin 45y d R =-︒(1分)
电子移开磁场后做匀速直线运动,则电子打在荧光屏的位置坐标
021tan 45y y d =+(1分)
解得2422y d d =-(1分)
当磁场的磁感应强度为零时,电子离开电场后做直线运动,打在荧光屏的最低点,其坐标
为033tan 454y d d d =+=(1分)
电子穿出磁场后打在荧光民屏上的位置坐标范围为:
422d d -到4d (2分)
考点:带电粒子在磁场中受力运动.
13.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。
两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量
为+q 的粒子由小孔下方
2
d 处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。
不计粒子的重力。
(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;
(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mv qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.
【答案】(1)2
mv qd
(2)4mv qD 或43mv qD (3)5.5πD 【解析】
【分析】
【详解】
(1)粒子在电场中,根据动能定理2122
d Eq mv ⋅=,解得2mv E qd = (2)若粒子的运动轨迹与小圆相切,则当内切时,半径为/2
E R 由2
11
v qvB m r =,解得4mv B qD = 则当外切时,半径为e R
由2
12
v qvB m r =,解得43mv B qD = (2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为0010016819
U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2
v qvB m r
=; 设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:
1112R T v π=;034
r L =
据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;60α=
粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间
分别为t 1、t 2,可得:r U ∝
;1056
U L U L =
设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2)
联立上述各式可得:s=5.5πD
14.(17分)在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。
一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP=d )射入磁场(不计重力影响)。
(1)如果粒子恰好从A 点射出磁场,求入射粒子的速度。
(2)如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线的夹角为φ(如图)。
求入射粒子的速度。
【答案】1)(2)
【解析】
试题分析:(1)由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。
设入射粒子的速度为v1,由洛仑兹力的表达式和牛顿第二定律得:
①
由①式解得:②
(2)设O’是粒子在磁场中圆弧轨道的圆心,连接O’Q,设O’Q=R’。
由几何关系得:∠OQO’=③
而OO’=R’-,=d-R
所以OO’= R’+R-d ④
由余弦定理得:⑤
由⑤式解得:⑥
设入射粒子的速度为v2,由⑦
由⑦式解得:⑧
考点:带电粒子在匀强磁场中的运动.
15.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂直于磁场的方向射入磁场,运动到GA边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m1和m2(m1>m2),电荷量均为q.加速电场的电势差为U,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.。