大学物理下知识点总结

合集下载

大学物理下册知识点总结

大学物理下册知识点总结

大学物理下册学院:姓名:班级:第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。

气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。

垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。

单位 Pa(2)体积V:从几何角度来描写状态。

分子无规则热运动所能达到的空间。

单位m 3(3)温度T:从热学的角度来描写状态。

表征气体分子热运动剧烈程度的物理量。

单位K。

二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV RTM'=;P nkT=8.31JR k mol=g;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=g四、理想气体压强公式:23ktp nε=212ktmvε=分子平均平动动能五、理想气体温度公式:21322ktmv kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。

2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。

5.一个分子的平均动能为:2kikTε=五. 理想气体的内能(所有分子热运动动能之和)1.1mol理想气体2iE RT=5.一定量理想气体(2i mE RTMνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。

(完整word版)《大学物理》下册复习资料

(完整word版)《大学物理》下册复习资料

《大学物理》(下) 复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律 dtd m i Φ-=ε , 多匝线圈dt d i ψ-=ε, m N Φ=ψ。

i ε方向即感应电流的方向,在电源内由负极指向正极。

由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。

①对闭合回路,i ε方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i ε)(1) 动生电动势(B 不随t 变化,回路或导体L运动) 一般式:() d B v b ai ⋅⨯=ε⎰; 直导线:()⋅⨯=εB v i动生电动势的方向:B v ⨯方向,即正电荷所受的洛仑兹力方向。

(注意)一般取B v⨯方向为 d 方向。

如果B v ⊥,但导线方向与B v⨯不在一直线上(如习题十一填空2.2题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。

(2) 感生电动势(回路或导体L不动,已知t /B ∂∂的值):⎰⋅∂∂-=s i s d t Bε,B与回路平面垂直时S t B i ⋅∂∂=ε 磁场的时变在空间激发涡旋电场i E :⎰⎰⋅∂∂-=⋅L s i s d t B d E(B增大时t B ∂∂[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出t 时刻穿过回路的磁通量⎰⋅=ΦSm S d B ,再用dtd m i Φ-=ε求电动势,最后指出电动势的方向。

(不用法拉弟定律:①直导线切割磁力线;②L不动且已知t /B ∂∂的值)[注] ①此方法尤其适用动生、感生兼有的情况;②求m Φ时沿B 相同的方向取dS ,积分时t 作为常量;③长直电流r π2I μ=B r /;④i ε的结果是函数式时,根据“i ε>0即m Φ减小,感应电流的磁场方向与回路中原磁场同向,而i ε与感应电流同向”来表述电动势的方向:i ε>0时,沿回路的顺(或逆)时针方向。

2. 自感电动势dtdI Li -=ε,阻碍电流的变化.单匝:LI m=Φ;多匝线圈LI N =Φ=ψ;自感系数I N I L m Φ=ψ= 互感电动势dt dI M212-=ε,dtdIM 121-=ε。

大一下大学物理期末知识点

大一下大学物理期末知识点

大一下大学物理期末知识点在大一下学期的大学物理课程中,我们学习了许多重要知识点。

这些知识点不仅在期末考试中占据了重要的比重,同时也为我们打下了后续学习和研究物理的基础。

接下来,我们将回顾这些重要的知识点,并对各个主题进行适当的概述与分析。

1. 动力学动力学是物理学中研究物体运动的分支。

在大一下学期的物理课程中,我们学习了牛顿力学,并进行了深入的探讨。

重要的知识点包括牛顿三定律、动量和动量守恒定律以及应用力学原理解决问题的方法。

我们还学习了力的合成、合力和分力的概念,以及运动学和动力学之间的关系。

2. 热学热学是物理学中研究热量传递与转化的分支。

在大一下学期的物理课程中,我们学习了热传导、热辐射和热对流等热量传递方式。

我们还学习了热力学中的温度、热量和热功,以及理想气体定律和内能的概念。

此外,我们还学习了热平衡、热容量和相变等重要概念。

3. 光学光学是物理学中研究光的传播与性质的分支。

在大一下学期的物理课程中,我们学习了光的波动性和粒子性,以及光的干涉、衍射和偏振等现象。

我们还学习了光的反射和折射定律,以及镜像、透镜和光的成像等重要知识。

此外,我们还学习了光的色散、光的吸收和光的发射等概念。

4. 电磁学电磁学是物理学中研究电荷与电磁场相互作用的分支。

在大一下学期的物理课程中,我们学习了库仑定律和电场的概念,以及电势能、电势差和电势的关系。

我们还学习了电流和电阻、电流和电场的关系,以及电阻和电功耗等重要知识。

此外,我们还学习了安培定律和法拉第电磁感应定律,以及电磁感应和电磁振荡等概念。

5. 原子物理学原子物理学是物理学中研究原子和原子核结构以及原子核与电子相互作用的分支。

在大一下学期的物理课程中,我们学习了玻尔模型和量子力学的基本概念。

重要的知识点包括电子能级、波尔半径和波尔频率,以及能级跃迁和光谱分析等内容。

我们还学习了原子核结构和放射性衰变等重要概念。

以上是大一下学期物理课程的一些重要知识点。

通过回顾和梳理这些知识点,我们可以更好地理解物理学的基本概念和原理,并为后续学习打下坚实的基础。

《大学物理下》重要知识点归纳

《大学物理下》重要知识点归纳

《大学物理下》重要知识点归纳第一部分一、简谐运动的运动方程: 振幅A : 取决于初始条件 角频率ω:反映振动快慢,系统属性。

初相位ϕ: 取决于初始条件二、简谐运动物体的合外力: (k : 比例系数) 简谐运动物体的位移:简谐运动物体的速度: 简谐运动物体的加速度: 三、旋转矢量法(旋转矢量端点在x 轴上投影作简谐振动)矢量转至一、二象限,速度为负矢量转至三、四象限,速度为正四、振动动能: 振动势能: 简谐振动总能量守恒.....: 五、平面简谐波波函数的几种标准形式:][)(cos o u x t A y ϕω+= ][2 cos o x t A ϕλπω+=0ϕ:坐标原点处质点的初相位 x 前正负号反映波的传播方向六、波的能量不守恒...! 任意时刻媒质中某质元的 动能 = 势能 !)(cos ϕω+=t A x202)(ωv x A +=Tπω2=mk =2ω)(cos ϕω+=t A x )(sin ϕωω+-==t A dtdxv )(cos 222ϕωω+-==t A dtx d a kxF -=221kx E p=)(cos 21 22 ϕω+=t A k pk E E E +=2 21A k =)(sin 2121 222ϕω+==t kA mv E ka,c,e,g 点: 能量最大! b,d,f 点: 能量最小!七、波的相干条件:1. 频率相同;2. 振动方向相同;3.相位差恒定。

八、驻波:是两列波干涉的结果波腹点:振幅最大的点 波节点:振幅最小的点相邻波腹(或波节)点的距离:2λ相邻波腹与波节的距离:λ九、光程:nr L = n:折射率 r :光的几何路程光程是一种折算..,把光在介质中走的路程折算成相同时间....光在真空中走的路程即光程,所以,与光程或光程差联系在一起的波长永远是真空..中的波长0λ。

十、光的干涉:光程差:),2,1,0(2)12(⋅⋅⋅=⎪⎩⎪⎨⎧→+±→±=∆k k k 干涉相消,暗纹干涉相长,明纹λλ十一、杨氏双缝干涉相邻两条明纹(或暗纹)的间距:λndd x '=∆ d ´: 缝与接收屏的距离 d : 双缝间距 λ:光源波长 n :介质的折射率十二、薄膜干涉中反射光2、3的光程差:*22122)2(sin 2λ+-=∆i n n dd : 膜的厚度等号右侧第二项*)2(λ由半波损失引起,当2n 在三种介质中最大或最小时, 有这一项,否则没有这一项。

大学物理下知识点归纳

大学物理下知识点归纳

大学物理下知识点归纳大学物理下知识点归纳静电场知识点:◎掌握库仑定律,掌握电场强度及电场强度叠加原理,掌握点电荷的电场强度公式◎理解电通量的概念,掌握静电场的高斯定理及应用,能计算无限长带电直线、带点平面、带电球面及带电球的场强分布.◎理解静电力做功的特征,掌握电势及电势叠加原理,能计算一些简单电荷分布的电势◎理解电场强度与电势的关系,掌握静电场的环路定理◎理解导体的静电平衡条件,能计算一些简单导体上的电荷分布规律和周围的电场分布◎能进行简单电容器电容的计算(*平行板电容器电容)◎掌握各向同性电介质中D、E的关系及介质中的高斯定理◎掌握平行板电容器储存的静电能的计算重点:叠加原理求电场强度,静电场的高斯定理及应用,电势及电势的计算,静电场的环路定理,简单电容器电容的计算,介质中的高斯定理,电容器储存的静电能稳恒磁场知识点◎掌握毕奥萨伐尔定律,能计算直线电流、圆形电流的磁感应强度◎理解磁通量的概念,掌握稳恒磁场的高斯定理,掌握安培环路定理及其应用◎掌握洛仑兹力和安培力公式,能分析运动电荷在均匀磁场中的受力和运动,了解霍尔效应,掌握载流平面线圈在均匀磁场中的磁矩和力矩计算。

◎掌握磁场强度、各向同性磁介质中H、B的关系及介质中的安培环路定理重点:毕奥萨伐尔定律及计算,安培环路定理及其应用,安培定律及应用,磁力矩,磁介质中的安培环路定理电磁感应知识点:◎掌握法拉第电磁感应定律及应用◎掌握动生电动势及计算、理解感生电场与感生电动势,◎理解自感和互感,能进行简单的自感和互感系数的计算◎掌握磁场能量◎理解位移电流和全电流环路定理◎理解麦克斯韦方程组的积分形式及物理意义重点:法拉第电磁感应定律及应用,动生电动势及计算,磁场能量,麦克斯韦方程组的积分形式扩展阅读:大学物理知识点总结大学物理知识点总结第一章声现象知识归纳1.声音的发生:由物体的振动而产生。

振动停止,发声也停止。

2.声音的传播:声音靠介质传播。

真空不能传声。

大学物理下册基本概念定律归纳总结

大学物理下册基本概念定律归纳总结

大学物理下册基本概念定律归纳总结大学物理下册基本概念定律归纳总结大学物理下册基本概念定律归纳总结一.1. 电偶极子模型:是指电量为q、相距为d的一对正负点电荷组成的电结构,电偶极子的方向为从负电荷指向正电荷。

2. 电介质模型(木有)3. 电容器是装电的容器,是一种容纳电荷的器件。

4. 磁偶极子模型:磁偶极子是类比而建立的物理模型。

由于没有发现单独存在的磁单极子,因此磁偶极子的物理模型不是两个磁单极子,而是一段封闭回路电流。

磁偶极子模型能够很好地描述小尺度闭合电路元产生的磁场分布[1] 。

5. 抗磁质:磁介质中的磁感应强度由于磁介质的存在而削弱了,这类磁介质称为抗磁质。

顺磁质:磁介质中的磁感应强度由于磁介质的存在而增强了,这类磁介质称为顺磁质。

铁磁质:磁介质中的磁感应强度由于磁介质的存在而增强了成千上万倍,这类磁介质称为铁磁质。

6. 位移电流是电位移矢量随时间的变化率对曲面的积分。

7. 涡旋电场:涡旋电场是由变化的磁场所产生,既变化的磁场在其周围也会激发一电场,叫做感应电场或涡旋电场。

8. 霍尔效应:当电流垂直于外磁场方向通过导体时,在垂直于磁场和电流方向的导体的两个端面之间出现电势差的现象称为霍尔效应9. 光栅由大量等宽等间距的平行狭缝构成的光学器件称为光栅。

10. 偏振光:我们把光在与传播方向相垂直的平面内的各种振动状态称为光的偏振。

11. 光电子:光电子学是指光波波段,即、可见光、和软X射线波段的电子学。

(没有光电子)12. 德布罗意波:物质波,又称德布罗意波,是,指空间中某点某时刻可能出现的几率,其中概率的大小受波动规律的支配。

13. 量子力学波函数:指给定系统的能够完整描述该系统的,即描述该系统的全部可测量的物理量的具体情况,亦即该系统的能量、动量、角动量、位置等等物理量到底是多少乃至它们怎样随时间而变。

二.1. 电场:是电荷及变化周围空间里存在的一种特殊物质。

它是客观存在的,电场具有通常物质所具有的力和能量等客观属性。

大学物理(下)知识点总结

大学物理(下)知识点总结

大学物理(下)1简谐运动:1.1定义:物体运动位移(或角度)符合余弦函数规律,即:;1.2特征:回复力;=令;1.3简谐运动:=1.4描述简谐运动的物理量:I振幅A:物体离开平衡位置时的最大位移;II频率:是单位时间震动所做的次数(周期和频率仅与系统本身的弹性系数和质量有关);III相位:称为初相,相位决定物体的运动状态1.5常数A和的确定:I解析法:当已知t=0时x和v;II旋转矢量法(重点):运用参考圆半径的旋转表示;2单摆和复摆2.1复摆:任意形状的物体挂在光滑水平轴上作微小()的摆动。

I回复力矩;(是物体的转动惯量)II方程:;2.2单摆:单摆只是复摆的特殊情况所以推导方法相同,单摆的惯性矩3求简谐运动周期的方法(1) 建立坐标,取平衡位置为坐标原点;(2) 求振动物体在任一位置所受合力(或合力矩);(3) 根据牛顿第二定律(或转动定律)求出加速度与位移的关系式2a x ω=-4 简谐运动的能量:4.1 简谐运动的动能: ; 4.2 简谐运动的势能: ; 4.3 简谐运动的总能量: ;(说明:①简谐运动强度的标志是A ②振动动能和势能图像的周期为谐振动周期的一半) 5 简谐振动的合成5.1 解析法:①和振幅 ②5.2 旋转矢量法:①和振幅 ②由几何关系求出初相6 波6.1 定义:振动在空间的传播过程;分为横波 纵波;6.2 波传播时的特点:①沿波传播的方向各质点相位依次落后②各质点对应的相位以波速向后传播;6.3 描述波的物理量:I 波长(λ):相位相差2π的两质点之间的距离,反应了波的空间周期性;II 周期(T ):波前进一个波长所需要的时间(常用求解周期的方法 ); III 频率(ν):单位时间内通过某点周期的个数; IV 波速(u ):振动在空间中传播的速度;6.4 波的几何描述I 波线:波的传播方向;II 波面:相同相位的点连成的曲面。

特例—波前(面)6.5 平面简谐波的波动方程I 波方程常见形式一:(波沿x 轴正方向运动,若波沿X 轴反方向运动则把“-”改为“+”) II 波方程常见形式二: π ; III 平面简谐波的速度:; IV 平面简谐波的加速度:V 讨论:i 当x 一定时:某一特定质点---表示在x 处质点的振动方程; ii 当t 一定时: ---表示各点在t 时刻离开平衡位置的位移;iii 当x 和t 都变时:方程表示各个质点在所有位置和时间离开平衡位置时的位移6.6 波的能量I 波的动能等于势能,且在平衡位置时动能和势能最大 II 波的任何一个体积元都在不断地吸收和放出能量,由于是个开放的系统,能量并不守恒;6.7 波的能量密度w (描述能量的空间分布):单位体积中的平均能量密度2212w A ρω=; 6.8 能流P :单位时间内通过某面积S 的能量;平均能流 ;6.9 能流密度I (描述波能量的强弱):通过垂直于波传播方向的平均能流。

大学物理下学期知识点总结

大学物理下学期知识点总结

大学物理下学期知识点总结.docx恒定磁场一、基本公式1)毕奥-萨伐尔定律dB=2)磁场叠加原理3)磁场中高斯定理(S是闭合曲面)4)安培环路定律(真空中)(介质中)H=BrB=HH=B=r-真空磁导率(4_10-7N/A2)r介质磁导率5)安培定律dF=IdlBsin方向判断:右手四指由Idl的方向经小于角转向B的方向,右螺旋前进的方向即为dFma_的方向6)磁通量匀强磁场中通过平面:7)磁矩若多匝线圈8)磁力矩M=PmBsin=BISsin9)洛伦兹力公式带电粒子受电磁力10)运动电荷产生的磁场二、典型结果1、有限长载流直导线在距其为r的一点产生的磁场2、无限长载流直导线在距其为r的一点产生的磁场3、半限无长载流直导线在距其一端距离为r的一点产生的磁场4、载流圆环在环心产生的磁场5、载流圆弧(已知弧长L和圆心角)在弧心产生的磁场6、长直密绕螺线管内磁场第十一章电磁感应电磁场一、基本公式1)电动势定义2)法拉第电磁感应定律作用:计算闭合回路上的大小和方向方向的判断:首先确定回路绕行方向,如果dBdt0,0,则i=-ddt=-SdBdt0,则表明积分路径是沿着非静电性场强的方向进行的,因此B点电势比A点电势低。

4)感生电动势:产生根源(非静电力)为涡旋电场力或感生电场力公式5)自感:自感系数,若为长l,横截面为S,N匝,介质磁导率为的螺线管,B=NlI;L=N2V(其中V为螺线管体积)感生电动势6)互感:互感系数M,互感磁通量,互感电动势21=-d21dt=-MdI1dt12=-d12dt=-MdI2dt7)磁场能量密度磁场能量一个自感为L,通过电流为I的线圈,其中所储存的磁能为Wm=12LI2=12n2I2V(其中V表示长直螺线管的体积)第十二章机械振动1)谐振动方程:谐振子:,,的求解方法:解析法和旋转矢量法2)同方向同频率简谐振动的合成总位移,合振动解析法,3)振动总能量,振动势能振动动能Ek=12mv2=13kA2sin2(t+)第十章机械波1)若已知波源O点振动方程yo=Acos(t+),则该波的波动方程为2)体积元的能量平均能量密度平均能流密度(波动强度)(u 为波速)平均能流(V为介质体积,为介质长度,S为介质侧面积)3)波的干涉条件:振动方向相同,频率相同和位相差恒定=2干涉加强22r2-r1=2kk=0、1、2A=A1+A2干涉减弱22r2-r1=2k+1k=0、1、2A=A1-A24)驻波含义:振幅相同,沿同一直线上相向传播的两列相干波产生的干涉5)以丛波为例,设两列相干波的波动方程为6)相邻波节间各点位相相同,波节两侧点位相相反。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流分布 直 无限长 电 流 半无限长
导线所在直线上
圆 圆心处 电 流 弧电流圆心 长直载流密绕螺线管 载流密绕细螺绕环
磁场分布
B μ0 I 2πa
B 0I 4 a
B0
BO
0 I
2R
BO
0 I
2R
2
B内 0nI B内 0nI
B外 0 B外 0
1、B 、H 关系:
磁介质概要
对各向同性磁介质: B H
L L
di dt
(1)自感磁能:Wm
1 2
LI 2
(2)磁能密度:wm
1 2
B2
1 H 2
2
1 BH 2
磁能:Wm wmdV V
6、Maxwell位移电流假说: 实质:变化电场→ 磁场
平板电容器中总位移电流:
Jd
D t
Id
C dU dt
0 S板
dE dt
全电流定律:
H dl
L
Ic Id
n
点电荷系场: u ui 无连限续大带或电无体限场长: 带ui电1 体q du不能q 使4d用q0r该(方u法 0)
计算量
q
E
4
r2
0
r0
E
i
qi
40ri2
r0i
dq
E 40r 2 r0
1
S
E dS
0
qi
s内
Up
U0 E dl p
q U
4 0r
U
i
qi
4
0
ri
U
dq
40r
Q1 ,R1 Q2 ,R2 R1 R2
场强分布
E 2 0a
E
2 0
E内
0
E外
q
4 0r 2

,
E外
q
4 0r 2

,
E内 0
E内
r 3 0
E外
2 0r

,
E内 0
电势概要
1、静电场的环路定理: E dl 0
L
静电场是保守场,无旋场
静电场力是保守力,做功与路径无关
2、电势能:
c
电势能: Wa q0 E dl q0ua a
6、均匀磁场中载流线圈(所受合力为0):
(1)试验线圈:线度小、电流小
Pm B
7、 带电粒子在电场或磁场中的运动:F
qE
qv
B
v0
均匀E
均匀 B
∥ 匀变直运动
匀直运动

类平抛运动
匀速圆周 运动
R
mv0 qB
T 2m
qB
等螺距螺旋运动
v0
θ
U Q1 Q2
40r
E 20r
导体与介质概要
1、静电平衡导体的特点:
(1)导体的静电平衡条件
场强:E内 0
E表
0

E内 0
等势体
等 势 面
E表面 导体表面
电势:导体是一个等势体,表面是等势面
(2)电荷分布: (静电屏蔽、尖端放电、辟雷针解释) 净电荷只能分布在表面。
实心导体: 分布在外表面。
典型电场
E
q
40r 2
r0
E 0 (r R)
Q
E
(r R)
4 0r 2
r R1 E 0
R1 r R2
E
Q1
40r 2
r R2
E
Q1 Q2
40r 2
E
2 0
U q
4 0r
Q U
4 0 R
Q U
40r
(r R)
(r R)
U Q1 Q2
40R1 40R2
U Q1 Q2
40r 40R2
全电流总连续。
Id 与Ic的区别:
Id
d D
dt
D
t
B( 2 )
Maxwell方程组和电磁 波概要
1、Maxwell方程组:
D dS q0
S
E dl
i
B
dS
L
S t
(会写会解释)
B dS 0
S H d l
L
S
(
Jc
D t
) dS
电磁波是横波。
热学
重点: 1.理想气体状态方程、压强与温度公式 2.三种速率、平均碰撞频率与自由程 3.热力学第一定律及四种过程中的功、热、内能增量 4.热机循环过程效率的计算 5.热力学第二定律的各种表述、实质及其微观解释
磁场概要 1、磁感应强度 B : (1)定义: 利用洛仑兹力或磁力矩(或安培力) (2)B 线特点:闭合,与I套连,符合右螺关系。
2、磁通量及磁场的Gauss定理:
m dm B dS
S
S
B dS 0 S
磁场是无源场,磁感线是无头无尾的 闭合曲线
3. 安培环路定律
真空中
B
2、磁介质的分类:
1——µr 大,为变量,铁磁质
2——µr 略>1,顺磁质
3——µr
r
略<1,抗磁质
B 0 B0
3、H的环路定理: H d l Ic
L
电磁感应
重点: 1. 法拉第电磁感应定律 2. 动生电动势的计算(两种方法) 3.感生电动势的计算(法拉第电磁感应定律方法) 4. 磁场能量 5. 麦克斯韦两个假设、方程组及其解释
导体空腔(内无电荷) :分布在外表面。
导体空腔(内有电荷):内表面有等量异号电荷。
E表面
0
孤立导体静电平衡时,表面曲率大(曲率半
径小)处电荷面密度也大。
处理导体静电平衡问题时常用到电荷守恒定律。
2、介质极化的微观机制 (1)有极分子电介质:取向极化
(2)无极分子电介质: 位移极化
3、D的高斯定理
电磁感应
两类电动势



变化的磁场产生电场
B t
Ei线是环绕 磁感线的一组闭合曲线E,i
且绕向与 B 成左螺关系。
t
计算量
i
d
dt
i
d
dt
N
i l (v B) dl
l vBsin cosdl
v, B
vB
dl
dl
vB
4、互感与自感:(会解释)
(1)自感:L
i
5、磁场能量
L
dl
0
I内
磁介质中
H dl L
I 0内
B H 0r H
当电流I的方向与回路l的方向符合右手螺旋关 系时, I为正,否则为负.
4、洛仑兹力与安培力:
Fm qv B dF Id l B
I nS q v
5、均匀磁场中一段载流导 线: (1)直导线: F Il B (2)曲导线:与起、止点一样的直导线受力相同
应用举例
3、求场强
(1)利用场强叠加原理
点电荷
E
1
4 0
q r2

n
点电荷系 E Ei i 1
连续带电体:E (2)利用Gauss定理
dE
q
1
4 0
drq2 rˆ
典型场 无限长均匀 带电直线 无限大均匀 带电平面 无限大均匀带等量 异号电荷平行板
均匀带电球面
均匀带电球体
无限长均匀 带电圆柱面
并联:C Ci i 1
5、电场能量:
电容器的能量 :
W
1 Q2
1 CU 2 1 UQ
2C 2
2
电场能量密度: w 1 E 2 1 ED 1 D2
2
2
2
电场能量 W dW wdV V
稳恒磁场
重点: 1.用积分法求磁感强度B 2.用环路定理求B 3.安培力与磁力矩的计算 4. 常见电流的磁场公式
(Wc 0 )
3.电势 零势点
(1)电势的定义 up p E dl
对有限大小的带电体,取无穷远处为零势点,则
(2) 电势差
up
E dl
p
b
uab ua ub
E dl
a
(3) 电势叠加原理 (4) 点电荷的电势
u ui (标量叠加)
u q
4 0r
(取无穷远处为零势点)
4、求电势
4.卡诺(循环)热机的效率
1 Q2 1 T2
Q1
T1
六. 热力学第二定律 1.开尔文表述:不可能制作循环动作的热机只从单一
热源吸收热量,使 之完全转化为功,而不引起其它 变化。
2.克劳修斯表述:热量不可能从低温物体传向高温 物体 ,而不引起其它变化。 3.不可逆过程:若对于某一过程,用任何方法都不能
大学物理下 知识点概要
伍振海 2016.12
静电场
重点: 1.场强叠加原理积分算简单带电体场强 2.高斯定理求场强 3.用定义式和叠加原理求电势 4.导体的性质及计算,静电屏蔽、尖端放电等解释 5.电场能量 6.常见带电体的场强与电势公式
静电场概要 1、物理模型: (1)点电荷 (2)试验电荷
(3)电偶极子: p ql
(1)利用电势的定义
c
电势: ua E dl (uc 0 )
a
b
电势差: uab ua ub E dl
a
(与参考点的 选择无关)
电场力的功: Aab q0uab (Wb Wa )
对有限大小的带电体的场,通常选u∞ =0.
(2)利用电势叠加原理
点电荷场: u q
4 0 r
(u 0)
等压
p(V2 V1 )
R(T2 T1
)
C
p
相关文档
最新文档