大学物理(振动波动学知识点总结).

合集下载

振动与波知识点总结

振动与波知识点总结

振动与波知识点总结一、振动的基本概念振动是物体围绕某一平衡位置来回摆动或者来回重复运动的现象。

振动是物体相对平衡位置的周期性运动,也就是说,振动是由物体周期性地向着某一方向偏离平衡位置,然后再向着相反方向偏离平衡位置并且这个过程一直不断地重复。

振动的基本要素包括振动物体、平衡位置和振动的幅度、周期和频率等。

振动的产生是由于外力的作用或者物体本身的内部力的作用。

二、振动的表征和描述1. 振动的幅度:振动物体在振动过程中离开平衡位置的最大距离称为振幅,用A表示。

振幅是一个振动过程中最大的位移值,代表了振动物体最大偏离平衡位置的距离。

2. 振动的周期:振动物体完成一个完整的往复运动所需要的时间称为振动周期,用T表示。

振动周期是一个振动过程完成一次往复运动所需要的时间。

3. 振动的频率:振动物体完成一个往复运动所需要的次数称为振动频率,用f表示。

振动频率是一个振动过程在单位时间内完成的往复运动的次数。

4. 振动的角速度:振动物体单位时间内完成的角度偏移称为角速度,用ω表示。

角速度是一个振动过程单位时间内振动物体完成的角度偏移。

5. 振动的相位:描述振动在某一时刻相对于起始位置的位置状态的概念,通常用角度来表示。

相位是一种描述振动物体在振动过程中某一时刻相对于起始位置的相对状态的概念。

三、振动的共振现象当外力的频率与振动系统自身的振动频率相同时,振动系统会出现共振现象。

共振现象会使振动系统产生很大的振幅,甚至导致系统的破坏。

共振现象在实际生活中有很多应用,比如音乐中的共振现象会增加声音的响亮度,而机械振动中的共振现象则可能导致机械系统的破坏。

四、波的基本概念波是由物质的振动或者波的传播介质本身的运动所产生的,波是一种传播能量和动量的方式。

波可以分为机械波和电磁波两种类型。

1. 机械波:需要通过介质来传播的波称为机械波,比如水波、声波等。

2. 电磁波:不需要介质来传播的波称为电磁波,比如光波、无线电波等。

波的传播可以分为横波和纵波两种类型。

大学物理(不容错过的考点) 第四篇 振动 波动和波动光学

大学物理(不容错过的考点) 第四篇 振动 波动和波动光学

振动学基础
例题:书P99 例11-1 ,书P103 例11-3 作业: A(2):书 P 128 11-3,11-4, 11-5,辅 P 274 3,6 C(2):书 P 128 11-3,11-4, 11-5,辅 P 211 3,6
2012-9-2
P.12/66
1 书P99例11-1:一质点沿x轴作简谐运 π x0 A t = 0 时, 2 动,振幅为12cm,周期为2s。当t = 3 v 0 0 0时, 位移为6cm,且向x轴正方向运 动。求: 则振动表达式: π (1) 振动表达式; x 0.12 cos( π t ) m 3 (2) t = 0.5s时,质点的位置、速度和 (2) π π 加速度; x t 0.5s 0.12 cos 0.10 m (3)如果在某时刻质点位于x=-0.6cm, 2 3 且向x轴负方向运动,求从该位置回 dx v t 0.5s 到平衡位置所需要的时间。
P.8/66
振动学基础
二、简谐运动的旋转矢量 (rotating vector ) • t =0时, 与x轴的夹角即为简谐振 A 表示法:简谐运动的几何描述法 动的初相位。 自 OX 轴的原点O作一矢量 A, A 绕O点作逆时针方向的匀速转动。 • 旋转矢量 A 旋转一周,P点完成一 次全振动。 2π 周期: T t 旋转矢量 A 的端点M在X轴上的投影 点P的运动为简谐运动。 旋转一周 A x (逆时针方向),P完成一次全振动。
振动学基础
4、f 或ν:频率(frequency) 单位时间内往复振动的次数; 单位:赫兹(Hz) 5、T:周期(period) 往复振动一次的时间。 单位:秒(s) 周期、频率与角频率关系:

大学物理知识点总结:振动及波动

大学物理知识点总结:振动及波动
超声治疗
利用超声波的能量作用于人体组织,产生热效应、机械效应等,达到治疗目的,如超声碎石、超声刀 等。
地震监测和预测中振动分析
地震波监测
通过监测地震波在地球内部的传播情况和变化特征,研究地震的发生机制和震源性质。
振动传感器应用
在地震易发区域布置振动传感器,实时监测地面振动情况,为地震预警和应急救援提供 数据支持。
图像
简谐振动的图像是正弦或余弦曲线,表示了物体的位移随时间的变化关系。
能量守恒原理在简谐振动中应用
能量守恒
在简谐振动中,系统的机械能(动能 和势能之和)保持不变。
应用
利用能量守恒原理可以求解简谐振动 的振幅、角频率等物理量。
阻尼振动、受迫振动和共振现象
阻尼振动
当物体受到阻力作用时,其振动会逐渐减弱,直至停止。 这种振动称为阻尼振动。
惠更斯原理在波动传播中应用
01
惠更斯原理指出,波在传播过程中,每一点都可以看作是新的 波源,发出子波。
02
惠更斯原理可以解释波的反射、折射等现象,并推导出斯涅尔
定律等波动传播规律。
在实际应用中,惠更斯原理被为波动现象的研究提供了重要的理论基础。
04
干涉、衍射和偏振现象
误差分析
分析实验过程中可能出现的误差来源,如仪 器误差、操作误差等;对误差进行定量评估 ,了解误差对实验结果的影响程度;提出减 小误差的方法和措施,提高实验精度和可靠
性。
感谢您的观看
THANKS
实例
钟摆的摆动、琴弦的振动、地震波的传播等 。
振动量描述参数
振幅
描述振动大小的物理量,表示物体离开平衡 位置的最大距离。
频率
描述振动快慢的物理量,表示单位时间内振 动的次数。

大学物理振动和波动第二章波动学基础

大学物理振动和波动第二章波动学基础

x
t
x u
y( x,t )
A cos[ ( t
x u
)
]
9
x ♠ 沿 轴正向传播的简谐波的波函数:
(已知平衡位置在 x 0 处质点振动方程 yx0 Acos(t ) )
y(x,t)
A cos[ ( t
x)]
u
Acos[2 ( t x ) ] T
Acos[(t kx) ]
波数:k 2
2
( c)驻波各点相位由 A' 的正负决定
43
驻波特点:
A. 有的点始终不动(干涉减弱)称波节;
有的点振幅最大(干涉加强)称波腹;
其余的点振幅在0与最大值之间。
B. 波形只变化不向前传
故称驻波。
驻波能量: 波形无走动、能量无流动
振动状态(位相)特点 同一段同相位 相邻段反相位
作业:2.15 2.16 2.17 2.18
2
2
o
y
A
t , 3
2
tt ,
作业:P108~109 2.2 2.3 2.5 2.6
23
练习.一沿X轴负向传播的平面简谐波在
t=2s时的波形曲线如图所示,写出质
点O的振动方程和平面简谐波的波动
方程。
y
u=1.00m/s
0.5
0
X
-1
1
2
3
y( x0)
0.5cos(
2
t
) 2
y 0.5cos[ (t x) ]
坐标 t
横轴为质点平
x 衡位置坐标
17
x( y)
振动曲线
y t
t t0
x
波形曲线(波形图)

大学物理振动波动学知识点总结-2024鲜版

大学物理振动波动学知识点总结-2024鲜版

目录
CONTENTS
2
01
振动学基本概念与分类
BIG DATA EMPOWERS TO CREATE A NEW
ERA
2024/3/28
3
振动定义及特点
振动定义
振动是指物体在其平衡位置附近所作 的周期性或往复性运动。
振动特点
振动具有周期性、往复性、能量传递 性等特点。
2024/3/28
4
振动系统组成要素
图像表示
简谐振动的图像是一条正弦或余弦曲线,表示物体的位移随时间的变化规律。
2024/3/28
10
能量守恒原理在简谐振动中应用
机械能守恒
在简谐振动过程中,物体的动能和势能相互转化,但总机械能保持不变。
能量转化
在振动过程中,物体的动能和势能不断转化,当物体运动到最大位移处时,动能全部转化为势能;当物体通过平 衡位置时,势能全部转化为动能。
BIG DATA EMPOWERS TO CREATE A NEW
ERA
2024/3/28
13
波动现象及产生条件
波动现象
指振动在介质中的传播过程,包括机械波和电磁波。
2024/3/28
产生条件
振源和介质。振源提供能量,使介质中的质点产生周期性振动;介质则负责传递这种振 动。
14
波速、波长和频率关系式推导
1 2
电子衍射实验
通过电子衍射实验,验证微观粒子(如电子)具 有波动性,是波动力学的重要实验基础。
中子干涉实验
利用中子干涉实验,进一步验证微观粒子的波动 性,并探索其在量子力学等领域的应用。
物质波概念及应用
3
根据德布罗意物质波原理,所有微观粒子都具有 波动性,这一概念在粒子物理学、凝聚态物理等 领域有广泛应用。

振动与波动基础

振动与波动基础

振动与波动基础振动与波动是物理学中重要的基础概念,它们在我们日常生活中无处不在,并且在各个领域都有着广泛的应用。

本文将介绍振动与波动的概念、特性以及其在自然界和科学研究中的应用。

一、振动的概念与特性振动是物体在某一固定点周围的周期性往复运动。

振动有以下几个基本特性:1. 振动的周期性:振动是具有周期性的运动,即在一定时间内,物体会重复经历相同的运动过程。

例如,钟摆在沿着一定路径来回摆动时,就是一种周期性的振动。

2. 振动的频率与周期:振动的频率指的是单位时间内振动完成的次数,单位为赫兹(Hz)。

而周期是指振动完成一个完整往复运动所需要的时间,单位为秒(s)。

频率与周期之间满足倒数关系,即频率等于1除以周期。

3. 振幅:振幅是指振动过程中物体离开平衡位置的最大距离。

振幅越大,物体的振动范围就越大;振幅越小,物体的振动范围就越小。

4. 谐振与非谐振:谐振是指振动中所受迫力与振动频率相同的情况。

当一个物体受到与其振动频率相同的外力作用时,会出现谐振现象,此时振幅会不断增大。

非谐振则是指振动中所受迫力与振动频率不同的情况。

二、波动的概念与特性波动是物理学中描述能量在空间传播的过程。

波动有以下几个基本特性:1. 波长与周期:波长是指在一个完整波动过程中,波的长度。

波长的单位通常是米(m),常用符号是λ。

周期是指波的一个完整循环所需要的时间,单位是秒(s)。

波长与周期之间满足长度与时间的倒数关系。

2. 频率与波速:频率是指波动中单位时间内波的个数,单位是赫兹(Hz)。

波速是指波动中波传播的速率,单位是米每秒(m/s)。

频率与波速之间满足长度与时间的正比关系。

3. 波的振幅:波的振幅是指波动中波的最大偏离程度。

波的振幅越大,波动的能量传递越强。

4. 波的传播方式:波动可以分为机械波和电磁波两种类型。

机械波是需要介质媒介传播的波动,如水波、声波等;电磁波则是不需要介质传播的波动,如光波、无线电波等。

三、振动与波动在自然界和科学研究中的应用振动与波动在自然界和科学研究中有着广泛的应用。

大学物理中的波动与振动

大学物理中的波动与振动

大学物理中的波动与振动波动和振动是大学物理中重要的概念,涉及到许多实际应用和现象。

在本文中,将以波动和振动为主题,深入探讨其相关理论和应用。

1. 波动的概念和特征波动是指一种在介质中传播的物理量的周期性变化。

它具有以下几个特征:1.1 频率和周期波动的频率是指在单位时间内波动重复出现的次数,用赫兹(Hz)来表示。

而周期则是指波动完成一次完整振动所需要的时间。

频率和周期之间存在着倒数的关系,即频率 = 1/周期。

1.2 波长和振幅波长是指波动中相邻两个相位相同的点之间的距离,通常用λ表示。

振幅则是波动中物理量变化的最大值。

1.3 传播速度波动在介质中的传播速度与介质的性质有关,例如在空气中的声波传播速度约为343m/s,而在真空中的电磁波传播速度为光速。

2. 波动理论的应用波动理论在现实世界中有着广泛的应用,下面将介绍其中几个典型的应用领域。

2.1 声学声波是一种机械波,通过介质的分子之间的振动传播。

声学研究声波的传播、共振和声音的产生原理等。

它不仅应用于音乐、语言等艺术领域,也广泛应用于声纳、超声波医学成像等技术中。

2.2 光学光是一种电磁波,是波动的重要表现形式之一。

光学研究光的传播、折射、干涉等现象,也包括光的成像原理和光学仪器的设计与制造。

光学在光通信、激光技术、光学仪器等领域都有着重要的应用。

2.3 电磁波电磁波是一种由电场和磁场相互作用而产生的波动现象。

电磁波的频率范围很广,包括了射频波、微波、红外线、可见光、紫外线、X射线和γ射线等。

电磁波的应用非常广泛,涉及到电视、无线通信、微波炉、医疗影像等多个领域。

3. 振动的概念和应用振动是指物体在平衡位置附近作往复运动的现象。

它具有以下几个重要特征。

3.1 频率和周期振动的频率是指在单位时间内振动重复出现的次数,用赫兹(Hz)来表示。

周期则是指振动完成一次完整往复运动所需要的时间。

3.2 阻尼和共振振动中存在着阻尼和共振的现象。

阻尼是指振动受到外界阻力的影响而逐渐减小或停止,共振是指在某个特定频率下振幅达到最大值的现象。

振动波知识点总结

振动波知识点总结

振动波知识点总结一、引言振动波是物理学中的一个重要概念,涉及到振动与波动的传播规律及其应用。

振动波的研究在物理学、工程学、地球科学、生物学等领域都具有重要意义。

本文将从振动与波动的基本概念出发,系统总结振动波的相关知识点,以期对读者有所启发与帮助。

二、振动的基本概念振动是物体围绕某一平衡位置做周期性的来回运动。

振动最基本的特征是周期性,即物体在一定时间内重复同样的运动。

振动运动的周期T、频率f、振幅A和角频率ω是描写振动特性的重要量。

每个物体都有自然的振动频率,这种频率有时称为固有频率,它取决于振动系统的质量和劲度等因素。

振动的分类:1. 简谐振动:简谐振动是一种特殊的振动形式,其特点是物体的加速度与位移成正比,且方向相反。

简谐振动通常由弹簧振子、单摆等物理系统所产生。

振动系统的运动方程为x = A*cos(ωt + φ),其中A为振幅,ω为角频率,φ为初相位。

2. 非简谐振动:非简谐振动则是不满足简谐振动条件的振动形式,其运动方程可以是更加复杂的函数形式。

非简谐振动可以通过某些外力的作用或振动系统自身的非线性特性产生。

3. 驻波:驻波是两个同频率、振幅相等但方向相反的波在空间中叠加形成的波动现象。

驻波在弦波振动、声波、电磁波等多种波动中都存在,并且与振动波的共振现象密切相关。

三、波动的基本概念波动是能量以波的形式沿空间传播的物理现象。

波动可以分为机械波和电磁波两大类。

1. 机械波:机械波是由介质的振动引起的波动,其传播需要介质的存在。

机械波的传播方式有纵波和横波两种。

纵波是指波动方向与波的传播方向一致,横波则是指波动方向与波的传播方向垂直。

2. 电磁波:电磁波是自由空间中能量的传播形式,不需要介质存在。

电磁波沿着电磁场的传播方向传播,包括了可见光、微波、射线等各种波段。

波动的分类:1. 表示波动传播方向的分类:根据波动的传播方向,可以将波动分为横波和纵波。

2. 表示波动波面形状的分类:波动的波面可以是平面波、球面波等不同形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


波动过程中能量的传播
x 1)能量密度: w A si n [ ( t ) 0 ] u 1 2 2 w A 2)平均能量密度: 2 1 2 2 3)能流密度(波的强度): I w u A u 2
2 2 2
波在介质中的传播规律
基本原理:传播独立性原理,波的叠加原理。
③频率ν :单位时间内通过介质中某点的完整波的数目。 ④波速u :波在介质中的传播速度为波速。 各物理量间的关系:
u

T
T , 仅由波源决定,与媒质无关。
波速u : 决定于媒质。
机械波的描述
1、几何描述:
波 线 波线 波面 波前 波 前 波 面
2、解析描述:
x y( x , t ) A cos[ ( t ) 0 ] u 2 y( x , t ) A cos (t x 0 )
若10 20
( 2k 1)
3)驻波(干涉特例) 能量不传播 波节:振幅为零的点 波腹:振幅最大的点
多普勒效应: (以媒质为参考系) 1)S 静止,R 运动
u VR R s u
s
R
2)S 运动,R 静止
u R s u Vs
一般运动:
相位、相位差和初相位的求法: 解析法和旋转矢量法。
1、由已知的初条件求初相位: ①已知初位置的大小、正负以及初速度的正负。 A [例1]已知某质点振动的初位置 y0 且v0 0 。 2 y A cos( t ) 3 y A cos( t ) 3


3
A1 sin1 A2 sin 2 arctg A1 cos1 A2 cos 2
阻尼振动
运动形式
受迫振动
阻尼振动 受迫振动
简谐振动
受 力
频 振 率 幅
f kx
f kx v
f kx v F0 cos t
0
A x
2 0
k 2 0 2 m
f kx
运动学方程:
x A cos ( t )
能量:
E Ek E p
Ek Ep
1 kA2 动能势能相互转化 2
1 E 2
简谐振动的描述 一、描述简谐振动的物理量 ① 振幅A:
A x
2 0
2

2 T
2 v0
② 角频率 :
k m
v0 tg ③ 相位( t + ) 和 初相 : x 0
大学物理
知识点总结
(机械振动与机械波)
第九章
机械振动与机械波
机械振动
简谐振动 简谐振动 的特征 简谐振动 的描述 简谐振动 的合成 机械波
阻尼振动 受迫振动
机械波的 产生
机械波的 描述
波动过程中 能量的传播
波在介质中 的传播规律
简谐振动的特征
回复力: 动力学方程:
d2 x 2 x 0 2 dt
由y0的正负确定 的值.
注意!由已知的初条件确定初相位时,不能仅由一个初始 条件确定初相位。 2、已知某质点的振动曲线求初相位: 若已知某质点的振动曲线,则由曲线可看出,t = 0 时刻质点振动的初位置的大小和正负及初速度的正负。 关键:确定振动初速度的正负。 考虑斜率。
y
o
1
2
t
[例4] 一列平面简谐波中某质元的振动曲线如图。 求: 1)该质元的振动初相。 2)该质元在态A、B 时的振动相位分别是多少? 解:1)由图知初始条件为:
现象:波的反射(波疏媒质
波的干涉
波密媒质 界面处存在半波损失)
1)相干条件:频率相同、振动方向相同、相位差恒定
2)加强与减弱的条件: 干涉加强:
2k
(k 0,1,2,...)
若10 20
干涉减弱:
r2 r1 k
(k 0,1,2,...)
2
(2k 1)
的确定!!
④t 1 )
1 T
⑤周期 T 和频率 ν : T 2
二、简谐振动的研究方法
1、解析法
x A cos( t )
v A si n( t )
2.振动曲线法
A
y
2
-A 3、旋转矢量法:
②已知初速度的大小、正负以及初位置的正负。 1 [例2]已知某质点初速度 v 0 A且y0 0 。 2 v A sin( t ) v0 A si n 1 A 2 5 5 or y0 0 6 6 6
③已知初位置的大小、正负以及初速度的大小。 [例3]已知某质点振动的初位置 y0 0.3 A且 v0 0.95A 。 v0 由tg 的可能值. y0
2 A v0 0 2 由旋转矢量法知: t 0时,y0
4
M
t ( s)
A
t

t
o
t0 A p x
简谐振动的合成 1.同方向、同频率的简谐振动的合成:
x(t ) x1 (t ) x2 (t )
A cos( t )
A2
1
A
2
A1
x1
o
A
x2
x
x
2 A12 A2 2 A1 A2 cos( 2 1 )
R
u VR s u Vs
习题类别: 振动:1、简谐振动的判定。(动力学) (质点:牛顿运动定律。刚体:转动定律。) 2、振动方程的求法。 ①由已知条件求方程②由振动曲线求方程。 3、简谐振动的合成。 波动:1、求波函数(波动方程)。 ①由已知条件求方程②由振动曲线求方程。 ③由波动曲线求方程。 2、波的干涉(含驻波)。 3、波的能量的求法。 4、多普勒效应。

2 v0 2

先变化后稳定。
x
逐渐减小
x
x
振动曲线
t
o
t
o
t
速度共振 位移共振


守恒
逐渐耗尽
驱动力作正功 = 阻尼力 作负功
机械波的产生 1、产生的条件:波源及弹性媒质。 2、分类:横波、纵波。
3、描述波动的物理量: ①波长 λ :在同一波线上两个相邻的相位差为2 的质元 之间的距离。 ②周期T :波前进一个波长的距离所需的时间。
相关文档
最新文档