大学物理2知识点总结.ppt
大学物理2 复习重点

各章重点§8库仑定律F 12=k q 1q 2r 123r 12 k=9.0*109N.m 2/C 2ε0=8.85×10−12C 2/(N ∙m 2)真空中库仑定律F 21=−F 12=14πεq 1q 2r 213r 21电场强度E =Fq 0F =14πεqq 0r 3rE =q4πε0r 3rE = qi4πε0r i3r i n i =1§9静电场中的电介质D =E0ε真空中E rεε0介质中高斯定理⎰∑=∙Si q S d D电容电容器孤立导体uqC=电容器BA u u qC -=电场能量电容器Qu Cu C Q W 2121222===电场⎰=VwdV W 电场能量密度:221E w ε=求C 的方法定义法AB AB U C U E q q =→→→能量法W qC W w E q 22=→→→→§10&11 电流强度、电流密度dt dq I =n dS dI j⊥=l d E l d E kl k⋅=⋅=⎰⎰内ε(E K 为非静电场强)磁通量⎰⋅=Φs m S d B 磁场的计算34r rl Id B d⨯=πμ⎰⨯=34r r l Id Bπμ⎰=B d B∑⎰=⋅il I l d B0μ304rr q B⨯=υπμ磁场方程⎰=⋅S S d B 0 ⎰∑=⋅l i I l d B 0μ 载流线圈的磁矩n NIS P m=电磁相互作用B l Id f d ⨯=⎰⨯=lB l Id f B P M m ⨯=B q F⨯=υ⎰ΦΦΦ=21m m m Id A 霍耳电压b IB R U H H =霍耳系数)1(nqR H =直电流的磁场)cos (cos 4210ααπμ-=a I B 无限长载流直导线aIB πμ20=半无限长载流直导线a I B πμ40=直导线延长线上0=B 2. 圆电流轴线上某点的磁场大小232220)(2x R IR B +=μ右手螺旋法则载流圆环圆心处的B 圆心角R I B 20μ=载流圆弧圆心角R I R I B πθμπθμ42200=∙=长直载流螺线管⎩⎨⎧=外0内0nI B μ无限大载流导体薄板0nI B μ=环形载流螺线管⎪⎩⎪⎨⎧=外内20rNIB πμ2121、R R R R ->>12R Nn π=nI B 0μ≈ §13自感系数IL mψ=自感电动势dt dI Ll -=ε互感系数12121I M ψ=21212I M ψ=M M M ==1221互感电动势dt dI M 121-=εdtdI M 212-=ε动生电动势⎰⋅⨯=l d B v iε电磁感应定律dtd mi Φ-=ε 感生电动势S d tBl d Es l i⋅∂∂-=⋅=⎰⎰涡ε课本例题电流的功率PPT 例题※在截面半径为R 的圆柱形空间充满磁感应强度为B 的均匀磁场, B 的方向沿圆柱形轴线 , B 的大小随时间按dB /dt = k 的规律均匀增加 , 有一长L =2R 的金属棒abc 位于图示位置,求金属棒中的感生电动势.解: 作辅助线oa 、oc 构== 成闭合回路oabco 。
物理必修二知识点梳理ppt课件

24
汽车启动问题
恒定功率
vm a x
P F
P f
(
f为阻力)
v
January 5, 2020
t
25
汽车启动问题
恒定加速度
v
January 5, 2020
t
26
机械能
弹性势能的表达式:
Ep 1 kx2 2
动能定理: Ek F合S
January 5, 2020
27
B. 重难点题目
C.
13
双星模型
R
o
m1
G
m1m2 L2
m1r1ω2
January 5, 2020
r
L
m2
r1
m2 m1 m2
L
14
三星模型
m1
m2
January 5, 2020
o
m3
15
地球模型
赤道
G
Mm R2
N
mR
4π 2 T2
(N mg )
FN
January 5, 2020
16
地球模型
N
F
答案:BCD
January 5, 2020
29
已知地球质量大约是月球质量的81倍,地球半 径大约是月球半径的4倍。不考虑地球、月球 自转的影响,由以上数据可推算出 ( )
A.地球的平均密度与月球的平均密度之比约为81:64 B.地球表面重力加速度与月球表面重力加速度之比约为81:16 C.靠近地球表面沿圆轨道运行的航天器的周期与靠近月球表面 沿圆 轨道运行的航天器的周期之比约为8:9 D.靠近地球表面沿圆轨道运行的航天器线速度与靠近月球表面 沿圆轨道运行的航天器线速度之比约为9:2
大学物理II知识点复习PPT课件

10
可编辑
2020/1/9
知识点:
库仑定律、电场力叠加原理、电场强度; 高斯定律,高斯定理应用;环路定理,电 势,电势计算,等势面和电势梯度概念。
导体静电平衡;电流密度,电动势和稳恒 电场。
电介质极化,极化强度和极化电荷,电位 移矢量,电介质中高斯定理,电容和电容 器,静电场能量。
11
可编辑
2020/1/9
热学知识点总结
4
Company Logo
2020/1/9
分子动理论重要知识点
1、热力学系统 2、理想气体的微观模型、压强和温度的统计意义 3、能量按自由度均分定理 4、麦克斯韦气体分子速率分布律
5、热学第一定律
5
可编辑
2020/1/9
与外界完全隔绝(即 与外界没有质量和 能量交换)的系统。
孤立 系统
热力学 系统
与外界没有质量交 换和但有能量交换 的系统。
封闭 系统
与外界既有质量交 换又有能量交换的 系统
开放 系统
平衡态 热力学系统的所有可 观察的宏观物理性质 不随时间变化的状态。
6
可编辑
2020/1/9
统计假设
气体分 子假设
理想气体
理想气体 宏观方程
7
可编辑
2020/1/9
统计
压强
点电荷:
均匀带电圆环 轴线上:
V 1 q
4 0 r
1
q
V 40 (R2 x2 ) 12
注意:应 用典型带 电体的电 势公式选 取相同的 零势点。
均匀带电球面: V(rR)
1
4 0
q R
V(r>R)
1
4 0
大学物理第二章讲稿PPT课件

(D) 2 s g
R
R A Rm 2mgs
(本题3分)0054
已知水星的半径是地球半径的0.4倍,质量是地球的 0.04倍,设在地球上的重力加速度为g ,则水星表面上 的重力加速度为:
(A)0.1g
对质量为m物体的万有引力
(B)0.25g (C)4g (D)2.5g
地球 kRM2 m mg地
1. 力的迭加原理:几个力同时作用于一个物体
的效果等于它们的矢量和的那一个力的作用效
果.
F F 1F 2..F .n ...
2.矢量性(分量式):
直角坐标系:
Fx max Fy may3. Fm Nhomakorabea具有瞬时性
自然坐标系:
Ft mat mddvt
v2 Fn man m r
三、牛顿第三定律
内容:对于每一个作用,总有一个相等的反作 用与之相反;或者说,两个物体对各自对方的相 互作用总是相等的,而且指向相反的方向。
v0
vd v g0 lsid n
1 2(v2v0 2)g(lco1 s)
on T
v
vv0 22g(lco 1)s
将上式代入(2)式:
l P
mg
Tmcgos m v 2
r
得 Tm(v0 22g3gco)s
l
(本题3分)0030 P10-1
在升降机天花板上栓有轻绳,其下系一重物,当升降
机以加速度 a1 上升时,绳中的张力正好等于绳子所
g
(A)
R
(B) g
(C) g
R
(D) g
R
Rm2mg
A
g
R
(本题3分)5010
在作匀速转动的水平转台上,与转轴相距R处有一体积
《大学物理第二章-》PPT课件

F
△r
注意:
0 , dA 0
①、功是标量,
2
有正、负。
, dA 0
②、功是过程量,只有物2 体的位置发生变化的过程中才
存在功。
③、功的计算与参考系选择有关:同一个力对同一质点
在同一过程中作的功因参考系的不同而异。
f静
合力的功
br r b r r
rr
Aab
F dr
a
d
r2
结论:
x
成对力的总功与参考系的选择无关,
其大小只取决于力和相对位移的乘积.
f AB B
v0
A
f BA
L v
S
计算摩擦力对A、B系统所作的功
f (L S) f S f L 或 f AB RBA fL
三、势 能
以上讨论了重力、弹力、引力的功
A重 mgh1 mgh2
A弹
1 2
h2 mg(dh) h1
dr
h1
mg
cos dr=-dh
h2
mgh1 mgh2 o
重力作功只跟始末位置有关,跟路径无关, 这种力称保守力。重力是保守力。
2. 弹力的功
在弹性力
F
kx
的作用下,从
x1x2 弹
力所作的功
F
o
x1
x
x2 dx
x
图3-9
dA=Fcos dx = kx (–1) dx
(dx >0)
A12
x2 x1
kxdx
1 2
k x12
1 2
k x22
弹力也是保守力
3. 引力的功
m2在m1 m2引力作用下,从12引力所作的功
大学物理2详解PPT课件

第9章 热力学基础
第9章 热力学基础
§9-1 热力学系统 平衡态 准静态过程 §9-2 理想气体的状态方程 §9-3 热力学第一定律 内能 功 热量 §9-4 热力学第一定律的应用 §9-5 理想气体的绝热过程 §9-6 循环过程和卡诺循环 §9-7 热力学第二定律和不可逆过程 卡诺定理
热学系统所包含分子数的数量级为 1023 , 若用 r 、v 去描写就要解 1023 个牛顿方程, 这是不可能的。
热学规律从本质上不同于力学规律。 研究对象数量的增加必然引起物理规律 的变化,这就是哲学上的从量变到质变。
热现象服从统计规律。
§9-1 热力学系统 平衡态 准静态过程 第9章 热力学基础
温标 —— 温度的数值表示法。
摄氏温标: t ℃ 冰点为 0℃ 热力学(开氏)温标: T K 冰点为 273.15K 绝对零度:T = 0 K
水三相点(气态、液态、固态的共存状态)273.16 K
§9-1 热力学系统 平衡态 准静态过程 第9章 热力学基础
4. 热力学第零定律——测温原理 热平衡 (thermal equilibrium):两个物体互相热接触, 经过一段时间后它们的宏观性质不再变化,即达到了热 平衡状态。 热力学第零定律 (Zeroth law of thermodynamics):如 果两个系统分别与处于确定状态下的第三个系统达到热 平衡,则这两个系统彼此也必处于热平衡。
p1V1 p2V2 恒量 (质量不变)
T1
T2
p,V,Tp0,V0,T0(标 准)状 态
T0 273.1K5
p01.013 12055Pa
m V0 M Vmol
Vmol2.4 210 3m 3 pVp0V0 mp0Vmol
2019大学物理ii—电场总结-课堂b.ppt

Ⅲ
2 0
+
2 2 0
3 2 0
6
两个同心均匀带电球面、同轴无限长均匀带电圆柱面
q2
q1
R2 R1
R o 1
R2
0 q1 4 r 2 E 0 q1 q2 2 4 r 0
0 1 R1 r R2 E 20 r 1 2 r R2 20 r
一、基本概念:
1、电场强度
F E q0
(2)均匀带电圆环轴线上的场强
几个常见带电体的场强分布 q (1)点电荷产生的电场强度 E er 2 4 0 r
E qx 4 0 ( R x )
2 2 3 2
x (1 2 ) (3)均匀带电圆面轴线上场强 E 2 2 0 x R
R
13
2、求电势 叠加法
U
i
求两球面的电势差
均匀带电球面的电势
U RA
Q1 Q2 4 0 RA 4 0 RB
q , 4 0 R U q , 4 0 r
dU
rR rR
U RB
Q1 Q2 4 0 RB 4 0 RB
R1 r R2点处的场强和电势 Q1 Q1 E 0 4 0 r 2 4 0 r 2 Q1 Q2 U 4 0 r 4 0 RB
1
(4)无限大均匀带电平面产生的场强
(6)无限长均匀带电圆柱面的场强分布
(5)无限长均匀带电细棒的场强 E 2 0 r
0 rR E rR 2 0 r
E 2 0
方向垂直轴线
(7)均匀带电球面的场强分布
0 q E 2 4 r 0
大学大学物理II2总结.ppt

u
y(x,t) Acos[(t x) ]
u
O
y(x,t) Acos(t 2 x )
x
x
波沿x轴负向传播的波动方程:y( x, t )
A cos[t
2
x
]
波的能量
Wk
Wp
1 2
VA2 2
sin2 (t
x) u
结论:质元在参与波动的过程中,内部的动能和
22
多普勒效应
观察者运动
接收到的波的范围变化
波源运动
波长变化
R
u vR u vs
s
两者相向运动: vR > 0, vS 0 两者背离运动: vR < 0, vS 0
第十六章 电磁振荡和电磁波
电磁波
1、电磁波的特点: •速度: u 1
真空中:c 1
2.998108 m / s
u
·····················u·T···x
u
T
平面简谐波的波动方程
平面简谐波的特点:介质中各质点振动频率、振 幅相同。只有相位在波的传播方向上依次落后。
设已知O(x=0)处质点的振动方程为:
y0 (t) Acos(t )
沿x正方向传播的波动方程
y
4( /d ) 8( /d )sin
当
d a
k k
时, 会出现缺级现象。
光栅衍射的特点:
(1)衍射角较大,光栅衍射条纹间距大,易于实现 精密测量。衍射的级次有限。
由于:
sink
k
ab
1
光栅衍射主极大的最高级次:k a b
《大学物理2》课件-第二章

第二讲 光的粒子性_20140220 XCH
量子物理基础 - 大学物理
一个静止的电子和一能量为h0的光子碰撞后 它获得的最大能量是多少?
电子获得的能量 E mc2 m0c2 h 0 h
波长位移
0
2h m0c
sin2
2
c c 2h sin2 0 m0c 2
第二讲 光的粒子性_20140220 XCH
量子物理基础 - 大学物理
例1、在康普顿散射中,入射光的波长为0.030Å,反冲电子速 度为c×60%.求:散射光子的波长及散射角。
解:由已知,入射光的能量 的能量
,散射光子
因光子与电子碰撞时能量守恒,所以电子获得的动能 为
而由相对论:
0
hc (
0
hc)
量子物理基础 - 大学物理
1) 电子先整体吸收光子 —— 尔后放出散射光子
—— 每一步光子和电子遵循动量守恒__能量不守恒 如果在第一步过程体系都满足动量和能量守恒
Uc
h e
(
A) h
0
A h
K
h e
对比实验结果
Uc K ( 0 )Fra bibliotekA h
h 0
Ke
— 普朗克常数
逸出功 A h0 —— 电子脱离金属表面所需最小能量
第二讲 光的粒子性_20140220 XCH
10 / 51
A h0 不同的金属逸出功不同
1916年密立根实验 得出不同金属的K是相同的
h Ke h 6.56 1034 J s
量子物理基础 - 大学物理
K Uc
( 0 )
金属
钨
锌
钙
钠
大学物理2总结

旋转振幅矢量 —要能正确确定 φ 要能正确确定
2.简谐振动的能量
1 1 2 2 2 动能: 动能: Ek = m υ = kA sin (ω t +ϕ) 2 2 1 2 = 1 kA2cos2 (ω t +ϕ) 势能: 势能: Ep = k x 2 2
1 2 机械能: 机械能: E = kA 2
简谐振动的总机械能守恒! 简谐振动的总机械能守恒! 的总机械能守恒
ε动 = ∫ dε动 = ∫v× B⋅ d l
L L
产生动生电动势的非静电力是洛仑兹力 任意小段的导线: 任意小段的导线: d ε 动 = v × B ⋅ d l 感生电动势
ε感
∂B = E 涡 ⋅ dl = −∫∫ ⋅ dS ∂t L S
∫
产生感生电动势的非静电力是涡旋电场力
2. 自感 互感
ψ =LI
λ
2. 平面简谐波的波函数(表达式,波动方程) 平面简谐波的波函数(表达式,波动方程) x y( x, t ) = Acos[ω(t ± ) +ϕo ] u 或
t x y( x, t ) = Acos[2π( ± ) +ϕo ] T λ
x0 点的简谐振动方程 t0 时刻的波形表达式
(1) 当 x= x0 (2) 当 t = t0
1 ms = ± 2
Lz = ml ℏ
Sz = msℏ
不同的量子态的数目: 不同的量子态的数目 一定时, 当 n、l、ml 一定时,为 2 ; 一定时, 当 n、l 一定时,为 2 (2l+1) ; 一定时, 当 n一定时,为 2n2 。 一定时
1 Ek = E p = E 2
3. 简谐振动的合成 同方向、同频率 同方向、同频率: 合振动 : x = A cos(ω t + φ )
大学物理学(第二版)全套PPT课件

万有引力定律
任意两个质点通过连心线方向上的力相互吸引。 该引力大小与它们质量的乘积成正比与它们距离 的平方成反比。
机械能守恒定律
在只有重力或弹力做功的物体系统内(或者不受 其他外力的作用下),物体系统的动能和势能( 包括重力势能和弹性势能)发生相互转化,但机 械能的总能量保持不变。
04
动量守恒与能量守恒
热力学第二定律
热力学第二定律的表述
不可能从单一热源取热,使之完全转换为有用的功而不产生其他影响。
热力学第二定律的数学表达式
对于可逆过程,有dS=(dQ)/T;对于不可逆过程,有dS>(dQ)/T,其中S表示熵,T表 示热力学温度。
热力学第二定律的应用
热力学第二定律揭示了自然界中宏观过程的方向性,指出了与热现象有关的实际宏观过 程都是不可逆的。同时,它也提供了判断这些过程进行方向的原则。
刚体的定轴转动中的功与能
转动功
力矩在转动过程中所做的功叫做“转动功”,它等于力矩与角位 移的乘积。
转动动能
刚体定轴转动的动能叫做“转动动能”,它等于刚体的转动惯量与 角速度平方的一半的乘积。
机械能守恒
在只有重力或弹力做功的情况下,刚体的机械能守恒,即动能和势 能之和保持不变。
06
热学基础
温度与热量
磁场的基本概念
01
磁场的定义
磁场是一种物理场,由运动电荷或电流产生,对放入其中的磁体或电流
有力的作用。
02
磁感线
用来形象地表示磁场方向和强弱的曲线,磁感线上某点的切线方向表示
该点的磁场方向。
03
磁场的性质
磁场具有方向性、强弱性和空间分布性。
安培环路定理与毕奥-萨伐尔定律
01
大学物理第2章牛顿运动定律解读ppt课件

m a
G
a d mg B K
dt
m
设 t 0 时,小球初速度为零,此时加速度
有最大值
g
B m
当小球速度 逐渐增加时,加速度逐渐减小,当 增加
到足够大时a, 趋近于零此时 近于一个极限速度, 称为收尾速度,T用 表示,令
a d 0
R
dt
第一定律引进了二个重要概念
• 惯性 —— 质点不受力时保持静止或匀速直线运动状
态的的性质,其大小用质量量度。
• 力 —— 使质点改变运动状态的原因
质点处于静止或匀速直线运动状态时:
Fi 0 ( 静力学基本方程 )
二. 牛顿第二定律
某时刻质点动量对时间的变化率正比与该时刻作用在质点上
所有力的合力。
静摩擦力为 fmax=µ0 N( µ0 为最大静摩擦系数,N 为正压力)
2. 滑动摩擦力 两物体相互接触,并有相对滑动时,在两物体接触处出现 的相互作用的摩擦力,称为滑动摩擦力。
f μ N ( µ 为滑动摩擦系数)
*3. 物体运动时的流体阻力 当物体穿过液体或气体运动时,会受到流体阻力,该阻力 与运动物体速度方向相反,大小随速度变化。
例: 已知小球质量为 m ,水对小球的浮力为B,水对小球
运动的粘滞阻力为 R K ,式中的K 是与水的粘滞性、小 球的半径有关的常数,计算小球在水中由静止开始的竖直
沉降的速度。 解:对小球进行受力分析
取向下为正方向,由牛顿第二定律:
R
B
G B R ma
mg B K ma
第2章 牛顿运动定律
上图为安装在纽约联合国总部的傅科摆
质点动力学
《大学物理II》知识点

《大学物理II 》知识点1.热学(1)统计物理初步【掌握】热力学系统:热学研究的由大量微观粒子组成的宏观物体。
平衡态:系统的宏观性质不随时间发生变化,且系统的内部也不存在能量或质量的任何宏观流动。
一个系统在不受外界影响的条件下,如果它的宏观性质不再随时间变化,我们就说这个系统处于热力学平衡态。
状态参量:平衡态的宏观性质的量称为状态参量(几何、力学、化学、电磁) 理想气体状态方程:PV=νRT (普适气体恒量R=8.31 [ J.mol -1.K -1])理想气体的压强和温度及其统计意义:221v m w = w n p 32= kT w 23= R=8.31[J·mol -1·K -1] k=1.38×10-23[J·K -1] N A = 6.02×1023[mol] R=k ·N A 能量均分定理:分子的每一个可能的自由度都有相同的平均动能kT 21 分子的平均平动能kT 23 分子的平均总动能kT i 2i 自由度(刚性:单原子3、双原子5、多原子6)特殊CO 2理想气体的内能:N kT i 2 (1mol RT i 2) 麦克斯韦速率分布律:公式,图像,物理意义 ()2223224v e kT m v f kT mv −⎟⎠⎞⎜⎝⎛=ππ 0d ()d N N f N ∞==∫∫v v v v v220()d f ∞=∫v v v v 三种常见的气体分子速率是:最概然速率 p ≈v平均速率 ≈v==[9章]气体分子的平均碰撞次数Z 和平均自由程λ:2Z d n =vZ λ===v [了解]玻耳兹曼分布律。
(2)热力学【掌握】准静态过程:一个过程,如果任意时刻的中间态都无限接近于一个平衡态,则此过程为准静态过程。
功:dA=p ·dV热量:热力学第一定律:Q=(E 2-E 1)+A用于三个过程:等体,吸热全部用于增加内能 C V ,m =R i 2 等温,吸热全部用于对外做功等压,吸热一部分用于增加内能,一部分用于对外做功C P,m =R+R i 2热容量:理想气体的绝热过程:PV γ=consTV γ-1=consp γ-1T -γ=cons绝热线与等温线的区别(p285)循环过程:经历一系列变化又回到初始状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回旋周期
螺距
R ? mv ?
2? R
T?
h ? v // T
qB
v?
7、Hall效应:
对Hall效应来说,负电荷的运动与等 量正电荷的反向运动并不等效!
磁场概要
1、求磁场:
(1)利用B-S定律或运动电荷磁场公式
?
? dB ?
?0
Id l ? r?
? B?
?0
? qv ? r?
4? r 2
4? r 2
? m ? NIS n?
(3)磁力矩:M?
?
? m?
? B
?
NIS
( n? ?
? B)
6、v?0带电粒均子匀在E?电场或磁场中的均运匀动B?:F?
?
? qE
?
? qv ?
? B
∥ 匀变直运动
匀直运动
⊥
类平抛运动
匀速圆周 运动
R
?
mv 0 qB
2? m
T? qB
?
等螺距螺旋运动
v0
θ
类斜抛运动 螺旋半径
(2)利用典型场的叠加
(3)利用安培环路定理(要求电流有特殊对称性)
??
? ? B ?d l ? ? o I i L i
适用条件:
符号规定:
叠加原理贯穿于以上三种方法。
2、Maxwell位移电流假说:
?
实质:变化电场→ 磁场
?
?D
Jd ?
?t
3、平板电容器中总位移电流:
dU
dE
Id ? C
? ?0S板
? E?
? F / q0
点电荷q在外电场中受力: F ? q E
(2) Gauss定理:
??
电通量: Φ e ? ?d? e ? ? E ?d S
S
? ? ?
qi
?E ?d S ?
S
?0
高斯面内所有 电荷的代数和
3、求场强
(1)利用场强叠加原理
点电荷 E ? 1 q r?
4?? 0 r 2
n
点电荷系 E ? ? E i
3、洛仑兹力与安培力:
?
??
F m ? qv ? B
?
??
dF ? Id l ? B
I ? nS q v
4、均匀磁场中一段载流导线:
(1)直导线:
? F
?
? Il ?
? B
(2)曲导线:与起、止点一样的直导线受力相同
5、均匀磁场中载流线圈(所受合力为0):
(1)试验线圈:线度小、电流小
(2)磁矩:
i?1
连续带电体:E ? (2)利用Gauss定理
?d E
1
? ? 4 ?? q
0
dq r?
r2
(3)利用场强与电势梯度的关系
?
E ? ?? ?
??
??
??
Ex ? ?
?x
,Ey ? ?
?y
,Ez ? ?
. ?z
4、典型场:
典型场 无限长均匀 带电直线 无限大均匀 带电平面 无限大均匀带等量 异号电荷平行板
2、求电势
L
(1)利用电势的定义
电势能:
Wa
?
c? ?
q0 ? E ?dl
(W c ? 0 )
电势:
a
c? ?
? a ? ? E ?dl
(? c ? 0 )
a
电势差:
?
a
?
?
b
?
?
ab
?
b?
?E
? ?dl
(与参考点的 选择无关)
a
电场力的功: Aab ? q 0? ab ? ? ( W b ? W a )
2
2
2?
? ? 电场能量 W ? dW ? wdV ? ? V
磁学复习
磁力概要
?
1、磁感应强度 B : (1)定义: 利用洛仑兹力或磁力矩(或安培力)
?
(2)B 线特点:闭合,与I套连,符合右螺关系。
2、磁通量及磁场的Gauss定理:
??
? ? ? m ? d ? m ? B ?d S
S
S
??
?B ?dS ? 0 S
对有限大小的带电体的场,通常选φ∞ =0.
(2)利用电势叠加原理
点电荷场: ? ? q
4?? 0 r
(? ? ? 0 )
n
点电荷系场: ? ? ? ? i
i? 1
连续带电体场:
dq
? ? ?qd? ? ?q 4?? 0 r
(? ? ? 0 )
3、典型场: 均匀带电球面: ? ?
q
(r ? R)
4?? 0 R
q
(φ∞ =0)
(r ? R)
4?? 0 r
导体与介质概要 ? ?
1、静电平衡导体的特点: (1)场强与电势分布:
(2)电荷分布:
E表
?
? ?
0
n?
E内 ? 0
等势体
等 势 面
净电荷只能分布在表面。
实心导体:
导体空腔(内无电荷) :
导体空腔(内有电荷):
孤立导体静电平衡时,表面曲率大处电荷 面密度也大。
均匀带电球面
均匀带电球体
无限长均匀 带电圆柱面
场强分布
?
E?
2 ?? 0 a
?
E?
2? 0?ຫໍສະໝຸດ E内 ??0?
q
E外
?
r? ,
4? ? 0 r 2
?
q
E外
?
r? ,
4? ? 0 r 2
?
?
E外 ?
r? ,
2? ? 0r
? E内 ? 0
?
?
?r
E内 ?
3? 0
? E内 ? 0
电势概要
??
1、静电场的环路定理: ? E ?dl ? 0
导线所在直线上 圆 轴线上 电 流 圆心处
弧电流 圆心处 长直载流密绕螺线管 载流密绕细螺绕环
无限大平面电流
磁场分布
B?
? 0 I (cos 4? a
? 1 ? cos ? 2 )
B ? μ0I
2πa
B?0
B?
? 0 IR 2
2( R 2 ? x 2 )3 / 2
BO ? ? 0I
2R BO ? ? 0 I ? ?
dt
dt
? 4、全电流定律:
?? B ?d l ?
? 0 ( Ic ?
Id )
L
全电流总连续。
I d ? d? D
dt
? ?D ?t
? B (2)
Id 与Ic的区别:
5、 长直平行电流间单位长度上的相互作用力:
dF ? ? 0 I 1 I 2
dl
2? d
同向相吸反向相斥
电流分布 直 一段导线 电 无限长 流
静电学复习
注意叠加原理 场强与电势——重点 注意典型场 导体与介质——非重点 电流——不单独考
真空中的静电场概要
1、物理模型: (1)点电荷 (2)试验电荷
(3)电偶极子: p ? q l
M ? p? E
2、定律、定理、概念:
(1)库仑定律:F ? 1 q1 q 2 r?
4 ?? 0 r 2
场强:
处理导体静电平衡问题时常用到电荷守恒定律。
2、介质极化的微观机制 (1)有极分子电介质:
每个分子可等效为电偶极子 取向极化
(2)无极分子电介质: 位移极化
3、D? 的高斯定理
电位移矢量:D?
?
?
?E
??
E ? E0 / ?r
? ? ? 0 ? r — 介质的介电常量
电位移通量:?
D
?
?
?D
? ?dS
S
??
? ? D ?d S ?
q0
S
高斯面内自由 电荷的代数和
4、电容器及其电容
(1)定义: C = Q/U
(2)平板电容器:
?S
C?
d
(3)电容器的串、并联:
n
1
1
串联: ?
? C
i? 1 C i
n
并联:C ? ? C i
i? 1
(4)电容器的能量 :W
?
1 Q2
?
1 CU
2?
1 UQ
2C
2
2
5、电场能量密度: w ? 1 ?E 2 ? 1 ED ? 1 D 2