C语言二叉树
判断一棵树是否为满二叉树的算法c语言
判断一棵树是否为满二叉树的算法c语言判断一棵树是否为满二叉树的算法(C语言)满二叉树是一种特殊的二叉树,每个节点要么没有子节点,要么有两个子节点。
判断一棵树是否为满二叉树的算法可以通过以下步骤实现:1. 定义二叉树的数据结构在C语言中,可以使用结构体定义二叉树的节点。
每个节点包含一个数据域和两个指针域,分别指向左子节点和右子节点。
```cstruct TreeNode {int data;struct TreeNode* left;struct TreeNode* right;};```2. 实现判断函数编写一个递归函数,用于判断给定二叉树是否为满二叉树。
函数的输入参数为根节点指针,返回值为布尔类型。
```cint isFullBinaryTree(struct TreeNode* root) {// 如果根节点为空,则返回真if (root == NULL) {return 1;}// 如果只有一个子节点或没有子节点,则返回假if ((root->left == NULL && root->right != NULL) ||(root->left != NULL && root->right == NULL)) {return 0;}// 递归判断左子树和右子树return isFullBinaryTree(root->left) && isFullBinaryTree(root->right);}```3. 测试样例可以编写一些测试样例来验证判断函数的正确性。
例如,下面是一个满二叉树和一个非满二叉树的示例:```cint main() {// 满二叉树struct TreeNode* root1 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->data = 1;root1->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->data = 2;root1->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->left->data = 4;root1->left->left->left = NULL;root1->left->left->right = NULL;root1->left->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->right->data = 5;root1->left->right->left = NULL;root1->left->right->right = NULL;root1->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->data = 3;root1->right->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->left->data = 6;root1->right->left->left = NULL;root1->right->left->right = NULL;root1->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->right->data = 7;root1->right->right->left = NULL;root1->right->right->right = NULL;// 非满二叉树struct TreeNode* root2 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->data = 1;root2->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->data = 2;root2->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->left->data = 4;root2->left->left->left = NULL;root2->left->left->right = NULL;root2->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->data = 3;root2->right->left = NULL;root2->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->right->data = 7;root2->right->right->left = NULL;root2->right->right->right = NULL;// 判断是否为满二叉树if (isFullBinaryTree(root1)) {printf("root1是满二叉树\n");} else {printf("root1不是满二叉树\n");}if (isFullBinaryTree(root2)) {printf("root2是满二叉树\n");} else {printf("root2不是满二叉树\n");}return 0;}```运行上述代码,输出结果为:```root1是满二叉树root2不是满二叉树```根据以上算法和示例,我们可以判断一棵树是否为满二叉树。
数据结构c语言课设-二叉树排序
题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。
4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。
前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。
要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。
2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。
c语言哈夫曼树的构造及编码
c语言哈夫曼树的构造及编码一、哈夫曼树概述哈夫曼树是一种特殊的二叉树,它的构建基于贪心算法。
它的主要应用是在数据压缩和编码中,可以将频率高的字符用较短的编码表示,从而减小数据存储和传输时所需的空间和时间。
二、哈夫曼树的构造1. 哈夫曼树的定义哈夫曼树是一棵带权路径长度最短的二叉树。
带权路径长度是指所有叶子节点到根节点之间路径长度与其权值乘积之和。
2. 构造步骤(1) 将待编码字符按照出现频率从小到大排序。
(2) 取出两个权值最小的节点作为左右子节点,构建一棵新的二叉树。
(3) 将新构建的二叉树加入到原来排序后队列中。
(4) 重复上述步骤,直到队列只剩下一个节点,该节点即为哈夫曼树的根节点。
3. C语言代码实现以下代码实现了一个简单版哈夫曼树构造函数:```ctypedef struct TreeNode {int weight; // 权重值struct TreeNode *leftChild; // 左子节点指针struct TreeNode *rightChild; // 右子节点指针} TreeNode;// 构造哈夫曼树函数TreeNode* createHuffmanTree(int* weights, int n) {// 根据权值数组构建节点队列,每个节点都是一棵单独的二叉树TreeNode** nodes = (TreeNode**)malloc(sizeof(TreeNode*) * n);for (int i = 0; i < n; i++) {nodes[i] = (TreeNode*)malloc(sizeof(TreeNode));nodes[i]->weight = weights[i];nodes[i]->leftChild = NULL;nodes[i]->rightChild = NULL;}// 构建哈夫曼树while (n > 1) {int minIndex1 = -1, minIndex2 = -1;for (int i = 0; i < n; i++) {if (nodes[i] != NULL) {if (minIndex1 == -1 || nodes[i]->weight < nodes[minIndex1]->weight) {minIndex2 = minIndex1;minIndex1 = i;} else if (minIndex2 == -1 || nodes[i]->weight < nodes[minIndex2]->weight) {minIndex2 = i;}}}TreeNode* newNode =(TreeNode*)malloc(sizeof(TreeNode));newNode->weight = nodes[minIndex1]->weight + nodes[minIndex2]->weight;newNode->leftChild = nodes[minIndex1];newNode->rightChild = nodes[minIndex2];// 将新构建的二叉树加入到原来排序后队列中nodes[minIndex1] = newNode;nodes[minIndex2] = NULL;n--;}return nodes[minIndex1];}```三、哈夫曼编码1. 哈夫曼编码的定义哈夫曼编码是一种前缀编码方式,它将每个字符的编码表示为二进制串。
二叉排序树c语言代码实现
if ((*n) != NULL) {
free (*n);
*n = NULL;
}
}
/* 查找结点 */
PNODE find_node (PNODE n, int value) {
in_order_traversal ( n->right);
}
}
int main() {
char buf[50],a[1000];
int i,n,option,s[80],p;
PNODE tree = NULL;/*树的第一个结点*/
PNODE node = NULL;
{
r = (PNODE)malloc(sizeof(NODE));
if(!r)
{
printf("内存分配失败!");
exit(0);
zjm3:fgets (buf, sizeof(buf), stdin);
sscanf (buf, "%i", &option);
printf ("\n\n");
if(option<0) {
printf ("输入错误,请重新输入该元素\n",n);
goto zjm3;}
if(find_node (tree, option))
{
(*n)->value = value;
(*n)->left = NULL;
(*n)->right = NULL;
}
}
数据结构-C语言-树和二叉树
练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边
数据结构(C语言版CHAP6(1)
G
说明 1)二叉树中每个结点最多有两颗子树;二叉树每个结点度小于等于2; 2)左、右子树不能颠例——有序树; 3)二叉树是递归结构,在二叉树的定义中又用到了二叉树的概念;
结束
第 16 页
6.2 二 叉 树
A B D G (a) E C F F C
A B D G (b) E
(a)、(b)是不同的二叉树, (a)的左子树有四个结点, (b)的左子树有两个结点,
结束
第 17 页
6.2 二 叉 树
2. 二叉树的基本形态
φ
结束
第 18 页
6.2 二 叉 树
3.应用举例 例1 可以用二叉树表示表达式
+ a * /
e
f
b
c
d
a+b*(c-d)-e/f
结束
ห้องสมุดไป่ตู้
第 19 页
6.2 二 叉 树
例2 双人比赛的所有可能的结局
开始
甲
开局连赢两局 或五局三胜
乙
甲
甲 甲 乙
乙
对于线性结构由于每个结点只有一个直接后继,遍历是很容易的事 二叉树是非线性结构,每个结点可能有两个后继,如 何访问二叉树的每个结点,而且每个结点仅被访问一次?
结束
第 32 页
6.3
一 二叉树的遍历方法
二叉树的遍历
二叉树由根、左子树、右子树三部分组成 二叉树的遍历可以分解为:访问根,遍历左子树和遍历右子树 令:L:遍历左子树 D:访问根结点 R:遍历右子树 有六种遍历方法: DLR,LDR,LRD,
3)树的结点,可以有零个或多个后继; 4)除根外的其他结点,都存在唯一条从根到该结点的路径; 5)树是一种分枝结构
二叉树 c语言
二叉树 c语言在计算机科学领域中,树型数据结构是一种非常重要的数据结构,在实际开发中也得到了广泛的应用。
其中,二叉树又是一种非常常见的树型结构。
二叉树在很多情况下都能够提供更好的算法效率,同时也易于理解和实现,因此我们可以通过通过学习和掌握二叉树的特点以及优点,来更好的应用到实际开发中。
一、二叉树的定义二叉树是一种树型结构,树型结构是由节点构成的。
二叉树与一般的树型结构不同,它的每个节点最多只有两个子节点,分别称为左子树和右子树。
它们可以为空或者不为空,其子节点的数量时不固定且没有任何限制的。
二叉树的定义如下:(1)空树是树的一种特殊的状态。
我们可以把它称为二叉树;(2)若不是空树,那么它就是由一个称为根节点(root)的元素和左右两棵分别称为左子树(left subtree)和右子树(right subtree)的二叉树组成。
二、二叉树的特性(1)每个节点最多只有两个子节点,分别称为左子节点和右子节点;(2)左子树和右子树是二叉树;(3)二叉树没有重复的节点。
三、二叉树的应用二叉树是一种非常实用的数据结构,因为它可以模拟很多实际生活中的情况。
例如,我们可以利用二叉树来对某些数据进行分类和排序。
在二叉树的基础上,我们还可以构造二叉堆、哈夫曼树等更高级的数据结构。
除此之外,二叉树还可以应用到程序设计中。
例如,我们可以构造一个二叉树来表示某个程序的控制流,这个程序在执行时可以沿着二叉树的各个节点进行分支和选择,实现不同的功能。
此外,我们还可以利用二叉树来加快某些算法的执行效率,比如二分查找算法等。
四、二叉树的遍历方式对于二叉树的遍历,有三种基本方式,即前序遍历、中序遍历、后序遍历。
它们的遍历顺序不同,因此也得到了不同的称呼。
下面我们来简要介绍一下这三种遍历方式的特点和应用。
(1)前序遍历前序遍历是指首先访问树的根节点,然后按照从左到右的顺序依次遍历左子树和右子树。
前序遍历的应用非常广泛,可以用于生成表达式树、构造二叉树等等。
数据结构C语言版_线索二叉树
int InOrderTraverse_Thr(BiThrTree T,int(*Visit)(TElemType))
{
BiThrTree p;
p=T->lchild; // p指向根结点
while(p!=T)
{ // 空树或遍历结束时,p==T
// 空格(字符型)表示空结点
int CreateBiThrTree(BiThrTree *T)
{
TElemType h;
scanf("%c",&h);
if(h==Nil)
*T=NULL;
else
{
*T=(BiThrTree)malloc(sizeof(BiThrNode));
if(!p->lchild) // 没有左孩子
{ Biblioteka p->LTag=Thread; // 前驱线索
p->lchild=pre; // 左孩子指针指向前驱
}
if(!pre->rchild) // 前驱没有右孩子
{
pre->RTag=Thread; // 后继线索
"b为左子树的二叉树)\n");
CreateBiThrTree(&T); // 按先序产生二叉树
InOrderThreading(&H,T); // 中序遍历,并中序线索化二叉树
printf("中序遍历(输出)二叉线索树:\n");
InOrderTraverse_Thr(H,vi); // 中序遍历(输出)二叉线索树
数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树
6.2 二叉树 6.2.1 二叉树的定义与基本操作 6.2.2 二叉树的性质 6.2.3 二叉树的存储结构
6.2.1 二叉树的定义与基本操作 定义:我们把满足以下两个条件的树型结构叫做二 叉树(Binary Tree): (1)每个结点的度都不大于2; (2)每个结点的孩子结点次序不能任意颠倒。
有序树:在树T中,如果各子树Ti之间是有先后次序的,则称为有序树。 森林:m(m≥0)棵互不相交的树的集合。将一棵非空树的根结点删去,树就变成一 个森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。
同构:对两棵树,通过对结点适当地重命名,就可以使两棵树完全相等(结点对应相 等,对应结点的相关关系也像等),则称这两棵树同构。
二叉树的基本结构由根结点、左子树和右子树组成
如图示
LChild Data RChild
Data
LChild RChild
用L、D、R分别表示遍历左子树、访问根结点、遍 历右子树,那么对二叉树的遍历顺序就可以有:
(1) 访问根,遍历左子树,遍历右子树(记做DLR)。 (2) 访问根,遍历右子树,遍历左子树(记做DRL)。 (3) 遍历左子树,访问根,遍历右子树(记做LDR)。 (4) 遍历左子树,遍历右子树,访问根 (记做LRD)。 (5) 遍历右子树,访问根,遍历左子树 (记做RDL)。 (6) 遍历右子树,遍历左子树,访问根 (记做RLD)。
(8) NextSibling(Tree,x): 树Tree存在,x是Tree中的某个结点。若x不 是其双亲的最后一个孩子结点,则返回x后面的下一个兄弟结点,否则 返回“空”。
基本操作:
(9) InsertChild(Tree,p,Child): 树Tree存在,p指向Tree 中某个结点,非空树Child与Tree不相交。将Child插入Tree中, 做p所指向结点的子树。
二叉树c语言的程序代码
# include "stdio.h"# include "stdlib.h"# include "malloc.h"typedef struct Node{char data; //定义根结点struct Node *lchild; //定义左子树struct Node *rchild; //定义右子树}Node,*BiTree;int JianShu(BiTree &T) { //构造二叉链表表示的二叉树T,按先序遍历输入二//叉树中结点的值(一个字符),空格字符表示空树.char e;T=(Node *)malloc(sizeof(Node)); //开辟一个以sizeof(Node)为单位的空间if(!T) //开辟失败exit (-2);fflush(stdin); //清空缓存scanf ("%c",&e);if(e==' ')T=NULL;else {T->data=e; // 生成根结点printf ("请输入%c的左孩子:",e);JianShu(T->lchild); // 构造左子树printf ("请输入%c的右孩子:",e);JianShu(T->rchild); // 构造右子树}return 1;}int DLR_P(BiTree &T) { //先序遍历打印二叉树中所有数据if (T!=NULL) { //非空二叉树printf ("%c ",T->data); //访问TDLR_P(T->lchild); //递归遍历左子树DLR_P(T->rchild); //递归遍历右子树}return 1;}int LDR_P(BiTree &T) { //中序遍历打印二叉树中所有数据if (T!=NULL) { //非空二叉树LDR_P(T->lchild); //递归遍历左子树printf ("%c ",T->data); //访问TLDR_P(T->rchild); //递归遍历右子树}return 1;}int LRD_P(BiTree &T) { //后序遍历打印二叉树中所有数据if (T!=NULL) { //非空二叉树LRD_P(T->lchild); //递归遍历左子树LRD_P(T->rchild); //递归遍历右子树printf ("%c ",T->data); //访问T}return 1;}int DLR_0(BiTree &T,int &s_0) { //用先序遍历求二叉树T中所有叶子总数if (T!=NULL) { //非空二叉树if(!T->lchild&&!T->rchild) { //判断该结点是否为叶子s_0++; //是叶子则计数并打印printf ("%c ",T->data);}DLR_0(T->lchild,s_0); //递归遍历左子树,直到叶子处DLR_0(T->rchild,s_0); //递归遍历右子树,直到叶子处}return s_0;}int DLR_1(BiTree &T,int &s_1) { //用先序遍历求二叉树T中所有1度结点总数if (T!=NULL) { //非空二叉树if(T->lchild&&!T->rchild) { //判断该结点是否为1度结点s_1++; //是1度结点则计数并打印printf ("%c ",T->data);}if(!T->lchild&&T->rchild) { //判断该结点是否为1度结点s_1++; //是1度结点则计数并打印printf ("%c ",T->data);}DLR_1(T->lchild,s_1); //递归遍历左子树,直到1度结点处DLR_1(T->rchild,s_1); //递归遍历右子树,直到1度结点处}return s_1;}int DLR_2(BiTree &T,int &s_2) { //用先序遍历求二叉树T中所有2度结点总数if (T!=NULL) { //非空二叉树if(T->lchild&&T->rchild) { //判断该结点是否为2度结点s_2++; //是2度结点则计数并打印printf ("%c ",T->data);}DLR_2(T->lchild,s_2); //递归遍历左子树,直到2度结点处DLR_2(T->rchild,s_2); //递归遍历右子树,直到2度结点处}return s_2;}int ShenDu(BiTree &T,int l,int &h) { //用递归求二叉树的深度if (T!=NULL) { //非空二叉树l=l+1;if (l>h) h=l;ShenDu(T->lchild,l,h); //递归遍历左子树ShenDu(T->rchild,l,h); //递归遍历右子树}return 1;}int QingKong(BiTree &T) { //清空二叉树if (T!=NULL) {QingKong(T->lchild); //遍历清空左子树free(T->lchild);QingKong(T->rchild); //遍历清空右子树free(T->rchild);}return 1;}int main () { //主函数int i,a=0;Node *T; //定义一个二叉树Twhile(1) {system("cls");printf("\t|===========================================================|\t\n");printf ("\t| |\t\n");printf ("\t| 二叉树的链式存储|\t\n");printf ("\t| |\t\n");printf("\t|===========================================================|\t\n");printf ("\n\t【1】建立二叉树及先序输入!\t 【2】遍历二叉树打印!\n");printf ("\n\t【3】打印各结点并统计! \t 【4】求二叉树的深度!\n");printf ("\n\t【5】清空二叉树!\t\t 【0】退出程序!\n");system("color F0");printf ("\n\n\t\t\t请输入你的选择:"); //输入选择的功能序号scanf ("%d",&i);switch(i) {case 1: //建立二叉树T并输入数据printf ("请输入二叉树T的根:");JianShu(T);a=1;system("pause");break;case 2: //遍历打印二叉树中所有数据if(a==1) {if(T!=NULL) { //非空二叉树Tprintf ("先序遍历打印结果:"); //执行先序遍历并打印DLR_P(T);printf ("\n\n中序遍历打印结果:"); //执行中序遍历并打印LDR_P(T);printf ("\n\n后序遍历打印结果:"); //执行后序遍历并打印LRD_P(T);printf ("\n");}elseprintf ("二叉树T为空树!\n");}else //未建立二叉树printf ("未建立二叉树!\n");system("pause");break;case 3: //先序遍历打印二叉树中0度1度2度结点if(a==1) {if(T!=NULL) { //非空二叉树Tint s_0=0,s_1=0,s_2=0;printf ("二叉树中叶子:");DLR_0(T,s_0); //执行先序遍历打印叶子并统计printf ("共有%d个叶子!\n",s_0);printf ("\n二叉树中1度结点:");DLR_1(T,s_1); //执行先序遍历打印1度结点并统计printf ("共有%d个1度结点!\n",s_1);printf ("\n二叉树中2度结点:");DLR_2(T,s_2); //执行先序遍历打印2度结点并统计printf ("共有%d个2度结点!\n",s_2);}elseprintf ("二叉树T为空树!\n");}else //未建立二叉树printf ("未建立二叉树!\n");system("pause");break;case 4: //用递归求二叉树的深度if(a==1) {if(T!=NULL) { //非空二叉树Tint l=0,h=0;ShenDu(T,l,h);printf ("二叉树的深度为%d.\n",h);}elseprintf ("二叉树T为空树!\n");}else //未建立二叉树printf ("未建立二叉树!\n");system("pause");break;case 5: //清空二叉树if(a==1) {if(T!=NULL) { //非空二叉树QingKong(T); //清空二叉树T=NULL;printf ("二叉树已清空!\n");}elseprintf ("二叉树T为空树,既不用清空!\n");}else //未建立二叉树printf ("未建立二叉树,既不用清空!\n");system("pause");break;case 0: //退出程序printf ("退出程序!\n");return 1;default: //重新输入选择的功能序号printf ("输入有误,请重新输入!\n");system("pause");break;}}}。
数据结构C语言版_二叉排序树
// 访问的最后一个结点并返回0,指针f指向T的双亲,其初始调用值为NULL
void SearchBST1(BiTree *T,KeyType key,BiTree f,BiTree *p,int *flag)
{
// 否则返回0。
int InsertBST(BiTree *T, ElemType e)
{
BiTree p,s;
int flag;
SearchBST1(T,e.key,NULL,&p,&flag);
if(!flag) // 查找不成功
{
s=(BiTree)malloc(sizeof(BiTNode));
free(s);
}
}
// 算法9.7 P230
// 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点,
// 并返回1;否则返回0。
int DeleteBST(BiTree *T,KeyType key)
{
if(!*T) // 不存在关键字等于key的数据元素
DestroyDSTable(&(*DT)->rchild); // 销毁右孩子子树
free(*DT); // 释放根结点
*DT=NULL; // 空指针赋0
}
}
// 算法9.5(a) P228
// 在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素,
}
// 销毁动态查找表DT
void DestroyDSTable(BiTree *DT)
c语言实现构造哈夫曼树代码
c语言实现构造哈夫曼树代码一、哈夫曼树简介哈夫曼树是一种特殊的二叉树,其每个叶子节点都对应一个权值,而非叶子节点则没有权值。
哈夫曼树的构造过程中,将权值较小的节点放在左子树,权值较大的节点放在右子树,这使得哈夫曼树的带权路径最短。
哈夫曼编码就是利用这种特性实现对数据进行压缩。
二、C语言实现构造哈夫曼树1. 定义结构体首先需要定义一个结构体来表示哈夫曼树中的节点。
结构体中包含了该节点的权值以及指向左右子节点的指针。
```typedef struct TreeNode {int weight;struct TreeNode *left;struct TreeNode *right;} TreeNode;2. 构造哈夫曼树接下来需要实现构造哈夫曼树的函数。
该函数接收一个数组作为输入,数组中存储了每个叶子节点的权值。
首先需要将数组中所有元素转化为TreeNode类型,并将它们存储在一个链表中。
```TreeNode *createTreeNodes(int weights[], int size) {TreeNode *nodes[size];for (int i = 0; i < size; i++) {nodes[i] = (TreeNode *)malloc(sizeof(TreeNode));nodes[i]->weight = weights[i];nodes[i]->left = NULL;nodes[i]->right = NULL;}return nodes;}```接下来,需要实现一个函数来找到权值最小的两个节点。
该函数接收一个链表作为输入,并返回该链表中权值最小的两个节点。
```void findMinNodes(TreeNode **nodes, int size, TreeNode**minNode1, TreeNode **minNode2) {*minNode1 = *minNode2 = NULL;for (int i = 0; i < size; i++) {if (*minNode1 == NULL || (*nodes)[i].weight <(*minNode1)->weight) {*minNode2 = *minNode1;*minNode1 = &(*nodes)[i];} else if (*minNode2 == NULL || (*nodes)[i].weight < (*minNode2)->weight) {*minNode2 = &(*nodes)[i];}}}```接下来,需要实现一个函数来构造哈夫曼树。
浅析一种二叉树非递归遍历算法的C语言实现论文.doc
浅析一种二叉树非递归遍历算法的C语言实现论文一种二叉树非递归遍历算法的C语言实现论文导读:本论文是一篇关于一种二叉树非递归遍历算法的C语言实现的优秀论文范文,对正在写有关于递归论文的写有一定的参考和指导作用,摘要:针对二叉树的链式存储结构,分析了二叉树的各种遍历算法,探讨了递归算法的递推消除理由,提出了一种改善的非递归遍历算法并用C语言予以实现。
关键词:二叉树;遍历算法;非递归;C语言实现1009-3044(2014)01-0223-031 概述树形结构是一种非常常见的数据结构,而二叉树又是其中最重要的一种树形结构。
二叉树的遍历是指按照一定的规则和次序将二叉树中的每一个结点都访问一次,既不能重复,也不能漏掉。
一般而言,对二叉树的遍历有前序遍历、中序遍历、后序遍历和按层遍历等几种方式。
在具体的算法设计上,以上遍历方式一般采取递归算法来实现,该文将探讨采用非递归算法来实现二叉树的遍历。
2 二叉树的数据结构描述二叉树作为一种非线性结构,每个结点最多有一个双亲结点和两个子结点。
二叉树可以采用顺序存储结构和链式存储结构。
对于完全二叉树而言,采用顺序存储是非常方便并且节省空间的,但是对于大部分的非完全二叉树而言,采用顺序存储将导致空间浪费严重且结构混乱、效率低下。
因此,更多的时候,大家都更愿意用链式存储结构来表示二叉树,这样结构更加清晰,尤其是对于一种二叉树非递归遍历算法的C语言实现由写论文的好帮手.zbjy.提供,.左右子树的描述和双亲节点的描述更加方便。
该文中拟采用链式结构来表示二叉树。
用链式存储结构来表示二叉树,一个结点至少由3个域组成,即数据域、左子结点域和右子结点域(如图1所示)。
3 二叉树的遍历及递归算法实现3.1 二叉树的遍历二叉树的遍历就是一个不漏的访问树中的每个结点,同时也不能重复。
所谓“访问”,就是指对结点的数据域进行某种操作,比如说读取、删除、更新、求该节点深度等等。
对于二叉树中的任意一个部分,都可以把它看作三部分,根节点、左子树、右子树,我们用D表示访问跟结点,用L表示遍历左子树,用R表示遍历右子树,则共有以下6种遍历方式[1]。
数据结构C语言版第二版第5章树和二叉树答案
第5章 树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是( )。
A .唯一的 B.有多种C .有多种,但根结点都没有左孩子 D.有多种,但根结点都没有右孩子 答案:A解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。
(2)由3个结点可以构造出多少种不同的二叉树?( ) A .2 B .3 C .4 D .5 答案:D解释:五种情况如下:A CBACBA CBACBACB(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是( )。
A .250 B . 500 C .254 D .501 答案:D解释:设度为0结点(叶子结点)个数为A ,度为1的结点个数为B ,度为2的结点个数为C ,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C 为整数,所以B=0,C=500,A=501,即有501个叶子结点。
(4)一个具有1025个结点的二叉树的高h 为( )。
A .11B .10C .11至1025之间D .10至1024之间 答案:C解释:若每层仅有一个结点,则树高h 为1025;且其最小树高为 log 21025 + 1=11,即h 在11至1025之间。
(5)深度为h 的满m 叉树的第k 层有( )个结点。
(1=<k=<h) A .mk-1B .m k -1C .m h-1D .m h-1答案:A解释:深度为h 的满m 叉树共有m h-1个结点,第k 层有m k-1个结点。
(6)利用二叉链表存储树,则根结点的右指针是( )。
A .指向最左孩子B .指向最右孩子C .空D .非空 答案:C解释:利用二叉链表存储树时,右指针指向兄弟结点,因为根节点没有兄弟结点,故根节点的右指针指向空。
(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用( )遍历实现编号。
用C语言编写二叉树的建立与遍历
用C语言编写二叉树的建立与遍历1.对题目要有需求分析在需求分析中,将题目中要求的功能进行叙述分析,并且设计解决此问题的数据存储结构,设计或叙述解决此问题的算法。
给出实现功能的一组或多组测试数据,程序调试后,将按照此测试数据进行测试的结果列出来。
如果程序不能正常运行,写出实现此算法中遇到的问题和改进方法;2.对题目要有相应的源程序源程序要按照写程序的规则来编写。
要结构清晰,重点函数的重点变量,重点功能部分要加上清晰的程序注释。
(注释量占总代码的四分之一)程序能够运行,要有基本的容错功能。
尽量避免出现操作错误时出现死循环;3.最后提供的主程序可以象一个应用系统一样有主窗口,通过主菜单和分级菜单调用课程设计中要求完成的各个功能模块,调用后可以返回到主菜单,继续选择其他功能进行其他功能的选择。
二叉树的建立与遍历[问题描述]建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。
[基本要求]从键盘接受输入,以二叉链表作为存储结构,建立二叉树,并对其进行遍历(先序、中序、后序),将遍历结果打印输出。
以下是我的数据结构实验的作业:肯定好用,里面还包括了统计树的深度和叶子数!记住每次做完一个遍历还要重新输入你的树哦!#include "stdio.h"#include "string.h"#define NULL 0typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;BiTree Create(BiTree T){char ch;ch=getchar();if(ch=='#')T=NULL;else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))printf("Error!");T->data=ch;T->lchild=Create(T->lchild);T->rchild=Create(T->rchild); }return T;}void Preorder(BiTree T){if(T){printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild);}}int Sumleaf(BiTree T){int sum=0,m,n;if(T){if((!T->lchild)&&(!T->rchild)) sum++;m=Sumleaf(T->lchild);sum+=m;n=Sumleaf(T->rchild);sum+=n;}return sum;}void zhongxu(BiTree T){if(T){zhongxu(T->lchild);printf("%c",T->data); zhongxu(T->rchild);}}void houxu(BiTree T){if(T){houxu(T->lchild);houxu(T->rchild);printf("%c",T->data);}}int Depth(BiTree T){int dep=0,depl,depr;if(!T) dep=0;else{depl=Depth(T->lchild);depr=Depth(T->rchild);dep=1+(depl>depr?depl:depr);}return dep;}main(){BiTree T;int sum,dep;T=Create(T);Preorder(T);printf("\n");zhongxu(T);printf("\n");houxu(T);printf("\n");sum=Sumleaf(T);printf("%d",sum);dep=Depth(T);printf("\n%d",dep);}在Turbo C的环境下,先按Ctrl+F9运行程序,此时就是建立二叉树的过程,例如输入序列ABC##DE#G##F###(其中的“#”表示空,并且输入过程中不要加回车,因为回车也有对应的ASCII码,是要算字符的,但是输入完之后可以按回车退出),然后再按ALT+F5显示用户界面,这时候就能够看到结果了。
c语言实现二叉树各种基本运算的算法
c语言实现二叉树各种基本运算的算法二叉树是一种常见的数据结构,可以应用于许多算法和问题中。
在C语言中,我们可以使用指针和结构体来实现二叉树的各种基本运算。
本文将详细介绍二叉树的创建、插入、删除、查找以及遍历等基本操作的算法。
1.创建二叉树创建二叉树可以通过递归的方式来实现。
首先定义一个表示二叉树节点的结构体,包含一个值和左右子节点指针。
然后,通过递归地创建左右子树来构建整个二叉树。
```ctypedef struct TreeNode {int data;struct TreeNode* left;struct TreeNode* right;} TreeNode;//创建二叉树TreeNode* createBinaryTree() {int data;scanf("%d", &data);if (data == -1) { // -1表示空节点return NULL;}TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode)); node->data = data;node->left = createBinaryTree();node->right = createBinaryTree();return node;}```2.插入节点在二叉树中插入节点可以按照二叉搜索树的性质进行。
如果要插入的值小于当前节点的值,则将其插入到左子树中,否则插入到右子树中。
如果子树为空,则直接创建一个新节点作为子树。
```c//插入节点TreeNode* insertNode(TreeNode* root, int data) {if (root == NULL) {TreeNode* newNode = (TreeNode*)malloc(sizeof(TreeNode));newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;}if (data < root->data) {root->left = insertNode(root->left, data);} else {root->right = insertNode(root->right, data);}return root;}```3.删除节点删除二叉树中的节点可以分为三种情况:删除叶子节点、删除只有一个子节点的节点、删除有两个子节点的节点。
C语言递归生成二叉树探讨
@
~
,
saf” ” ) cr(%c, ; &c
c=tr n t rtm U L = e ae eu N L mi )
es le
t 、
‘
.
(
霞
。
蹶 。
≮ 。
■‘ 、
ro=B o e) l cs ef N d) ot(N d ma o(zo( o e ; l i B )
2二 叉 树 递 归 生 成 .
可 以利 用二 叉树 基本 性 质 . 即从 根 结点 开始 。 断 不 给 当前 叶子结点 添加左 、 右新 的子 结 点 , 成整 棵完 整 生 的二叉树 。这里 , 以前序 递归 方法 为例来 介绍 。需要 注 意 的是输 入时按先 序遍 历次 序输入 二 叉树 中结 点 的字 符值 . 同时要 把左 右子树 为空 的结 点也 要表 示 出来 , 该 文用 、 表 示空树 。 下面 给 出几 种 C语 言实 现方案 : 使用 的宏 定 义 :
# e n t r n t d f e e mi a e i
# e n OK df e i 1
# e i e ERROR d fn 0
方法 1 :
B re c t( Te  ̄ac )(
BT e o t NUL rero= L:
c a ; h c r源自④ : 法。 【 关键词 】 二 叉树 ; : C语 言 ; 归 递
1 引言 .
二 叉树 是一 种基 本 的非 线性 数据 结构 .二叉 链 表 是 其常用 的存储形 式 。用 二 叉链 表实 现生 成二 叉树 的 算 法 比较多 .其 中递归 生成 及递 归遍 历二叉 树 属 于二 叉 树的基本 操作 。 目前无 论在 教学或 实用 使用 中 , 大都 采 用 C、 + 或 C C+ #编 程实 现 ,其 中用 面 向过程 基 本 C 语 言编程属 于重要 的基本 实现 方法 。该 文在 基 于基本 C语 言 环 境 下 对 实现 生 成 二 叉 树 及 遍 历 进 行 一 些 探
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构总结
32
• 基本形态
Φ
A
A
A
A
B 空二叉树 只有根结点 的二叉树 右子树为空
B
B
C 左、右子树 均非空
左子树为空
二叉树性质
• 性质1: 在二叉树的第i层上至多有2 i −1 个结点(i ≥ 1)
证明:用归纳法证明之 2i−1 = 20 = 1 i=1时,只有一个根结点, 是对的 j −1 假设对所有j(1≤j<i)命题成立,即第j层上至多有 2 j(1≤j<i) j 个结点 i−2 那么,第i-1层至多有2 个结点 又二叉树每个结点的度至多为2 ∴ 第i层上最大结点数是第i-1层的2倍,即 2 ⋅ 2i −2 = 2i −1 故命题得证
树的存储结构
a data b d e c f 0 1 2 g h i 3 4 5 6 如何找孩子结点 7 8 9 0 a b c d e f g h i 0号单元不用或 存结点个数 parent 9 0 1 1 2 2 3 5 5 5
树的存储结构
• 孩子表示法
– 多重链表:每个结点有多个指针域,分别指向其子树的根 » 结点同构:结点的指针个数相等,为树的度D » 结点不同构:结点指针个数不等,为该结点的度d
A A B D L R D D C L R D B L R D L R D
C
后序遍历序列: D B C A
二叉树的遍历
+ a b c 先序遍历: 中序遍历: 后序遍历: 层次遍历: * d / e f
- + a* b - c d / ef a+ b * c - d - e/ f ab c d - * + ef / - + / a* ef b- cd
树的存储结构
• 双亲表示法
– 实现:定义结构数组存放树的结点,每个结点含两个域: » 数据域:存放结点本身信息 » 双亲域:指示本结点的双亲结点在数组中位置 – 特点:找双亲容易,找孩子难
typedef struct node { datatype data; int parent; }JD; JD t[M];
data data child1 child2 ………. childD degree child1 child2 ………. childd
孩子链表:每个结点的孩子结点用单链表存储,再用含n个元素的 结构数组指向每个孩子链表 孩子结点:typedef struct node { int child; //该结点在表头数组中下标 struct node *next; //指向下一孩子结点 }JD; 表头结点:typedef struct tnode { datatype data; //数据域 struct node *fc; //指向第一个孩子结点 }TD; TD t[M]; //t[0]不用
树的遍历
A B C D
E
F
G J K
H L M
I
N 先序遍历:
O
A B E F I GC D H J K L N OM F G B C JK N O L M H D A
后序遍历: E I 层次遍历:
A B C D E F G H I J K L MN O
二叉树的遍历
• 方法
– 先序遍历:先访问根结点,然后分别先序遍历左子树、右子树 – 中序遍历:先中序遍历左子树,然后访问根结点,最后中序 遍历右子树 – 后序遍历:先后序遍历左、右子树,然后访问根结点 – 按层次遍历:从上到下、从左到右访问各结点
证明:n1为二叉树T中度为1的结点数 因为:二叉树中所有结点的度均小于或等于2 所以:其结点总数n=n0+n1+n2 又二叉树中,除根结点外,其余结点都只有一个 分支进入 设B为分支总数,则n=B+1 又:分支由度为1和度为2的结点射出,∴B=n1+2n2 于是,n=B+1=n1+2n2+1=n0+n1+n2 ∴n0=n2+1
总结
树的定义以及基本术语 二叉树的定义及相关的5个特性 树4种存储结构与二叉树的3种存储结 构 树与二叉树的前序,中序,后序,层次遍 历
作业
已知一棵二叉树的先根序遍历序列 为ABDGCEHF,中根序遍历序列为 BGDAEH CF,试画出该二叉树。 已知一棵二叉树的后根序遍历序列 为GDEBHFCA,中根序遍历序列为 DGBEAF HC,试画出该二叉树 。
a b d f e g c 1 2 3 a b c 4 d 5 e 6 0 7 0 8 0 9 10 11 0 f g
二叉树的存储结构
• 链式存储结构
– 二叉链表
typedef struct node { datatype data; struct node *lchild, *rchild; }JD; A B C E G D F ^ G ^ ^ C ^ E D lchild data rchild A B ^
树的遍历
– 树的遍历
• 遍历——按一定规律走遍树的各个顶点,且使每一顶点 仅被访问一次,即找一个完整而有规律的走法,以得到 树中所有结点的一个线性排列 • 常用方法
– 先根(序)遍历:先访问树的根结点,然后依次先根遍历根的 每棵子树 – 后根(序)遍历:先依次后根遍历每棵子树,然后访问根结点 – 按层次遍历:先访问第一层上的结点,然后依次遍历第二 层,……第n层的结点
A
B E K 子树 L F
C G H M
D I J
树的相关术语
– 基本术语
• 结点(node)——表示树中的元素,包括数据项及若干 指向其子树的分支 • 结点的度(degree)——结点拥有的子树数 • 叶子(leaf)——度为0的结点 • 孩子(child)——结点子树的根称为该结点的孩子 • 双亲(parents)——孩子结点的上层结点叫该结点的~ • 兄弟(sibling)——同一双亲的孩子 • 树的度——一棵树中最大的结点度数 • 结点的层次(level)——从根结点算起,根为第一层, 它的孩子为第二层…… • 深度(depth)——树中结点的最大层次数 • 森林(forest)——m(m≥0)棵互不相交的树的集合
二叉树性质
• 满二叉树 一棵深度为 k且有2 k − 1个结点的二叉树称为
– 定义:
特点:每一层上的结点数都是最大结点数
完全二叉树
定义:深度为k,有n个结点的二叉树当且仅当其每一个结点都与深 度为k的满二叉树中编号从1至n的结点一一对应时,称为~ 特点 叶子结点只可能在层次最大的两层上出现 对任一结点,若其右分支下子孙的最大层次为l,则其左分支下 子孙的最大层次必为l 或l+1 性质 性质4: 具有 个结点的完全二叉树的 n 深度为 n +1 log
D I
树的深度:4
结点F,G为堂兄弟 结点A是结点F,G的祖先
二叉树
– 定义
• 定义:二叉树是n(n≥0)个结点的有限集,它或为空树 (n=0),或由一个根结点和两棵分别称为左子树和右子 树的互不相交的二叉树构成 • 特点
– 每个结点至多有二棵子树(即不存在度大于2的结点) – 二叉树的子树有左、右之分,且其次序不能任意颠倒
性质2:深度为k的二叉树至多有2 k − 1 个结点(k≥1)
证明:由性质1,可得深度为k 的二叉树最大结点数是
(第i层的最大结点数 ) = ∑ 2 i −1 = 2 k − 1 ∑
i =1 i =1
k
k
二叉树性质
性质3:对任何一棵二叉树T,如果其终端结点数为n0, 度为2的结点数为n2,则n0=n2+1
– 有且仅有一个特定的结点,称为树的根(root) – 当n>1时,其余结点可分为m(m>0)个互不相交的有限集 T1,T2,……Tm,其中每一个集合本身又是一棵树,称为根的 子树(subtree)
• 特点:
– 树中至少有一个结点——根 – 树中各子树是互不相交的集合
树的定义
只有根结点的树
A 根
有子树的树
树的存储结构
• 孩子兄弟表示法(二叉树表示法)
– 实现:用二叉链表作树的存储结构,链表中每个结点的两个 指针域分别指向其第一个孩子结点和下一个兄弟结点 – 特点 typedef struct node » 操作容易 { datatype data; struct node *fch, *nsib; » 破坏了树的层次
二叉树
回顾
1.理解队列原理
2.掌握队列的基本操作
2
本次课程内容
树的定义及术语 二叉树的定义及基本概念 (重点) 树与二叉树的存储结构 树与二叉树的遍历 (重点)
树的定义
树是一类重要的非线性数据结构,是以分支关 系定义的层次结构 – 定义
• 定义:树(tree)是n(n>0)个结点的有限集T,其中:
}JD; a b ^ c d d ^ e f ^ ^ g g ^ h ^ i ^ h ^ i ^ b ^ e a c f
二叉树的存储结构
• 顺序存储结构
– 实现:按满二叉树的结点层次编号,依次存放二叉树中的数 据元素 – 特点: » 结点间关系蕴含在其存储位置中 » 浪费空间,适于存满二叉树和完全二叉树
2
二Leabharlann 树性质1 2 4 8 9 10 5 11 1 1 2 4 8 9 10 5 11 12 6 3 7 2 4 5 3 6 12 6 13 14 3 7 15 4 6 2 5 7 1 3
二叉树性质
» 性质5:如果对一棵有n个结点的完全二叉树的结点按层序编号, 则对任一结点i(1≤i≤n),有: (1) 如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其 双亲是i/2 (2) 如果2i>n,则结点i无左孩子;如果2i≤n,则其左孩子是2i (3) 如果2i+1>n,则结点i无右孩子;如果2i+1≤n,则其右孩子 是2i+1