石墨烯基超级电容器
超级电容和石墨烯的关系
![超级电容和石墨烯的关系](https://img.taocdn.com/s3/m/760c3b6ff11dc281e53a580216fc700aba685242.png)
超级电容和石墨烯的关系
超级电容和石墨烯之间有着紧密的关系。
超级电容是一种能够储存大量电能并具备快速充放电特性的电容器。
相比于传统电容器,超级电容的能量密度更高,功率密度更大,同时具有更长的循环寿命和更低的内阻。
这使得超级电容在许多领域具有广泛应用,如电动车辆、可再生能源储存、电子设备等。
石墨烯是由碳原子构成的一种二维晶格结构材料,具有独特的特性。
它是目前已知最强硬的材料之一,同时也具有优异的导电性和导热性,以及超高的比表面积。
由于这些特性,石墨烯已经成为科学研究的热点,并被广泛应用于电子器件、储能材料、传感器等领域。
石墨烯在超级电容中的应用是基于其高导电性和大比表面积的优点。
石墨烯可以作为电极材料,提供更大的表面积来储存电能,并且充放电速度快。
此外,石墨烯还可以用于制备电解质或隔膜材料,改善超级电容的电化学性能和稳定性。
因此,石墨烯作为材料在超级电容器中具有重要的应用潜力,可以提高超级电容的性能和功能。
随着对石墨烯性质和制备技术的深入研究,相信石墨烯在超级电容领域的应用还会进一步扩展。
二氧化钌_石墨烯复合材料超级电容器的性能_邵强
![二氧化钌_石墨烯复合材料超级电容器的性能_邵强](https://img.taocdn.com/s3/m/8e7c98ee910ef12d2bf9e70a.png)
0 引 言
超级电容器作为一种新型的储能装置,具有寿 命长、能量密度高和可逆性强等特点。随着超级电 容器不断在移动通信、信息技术和航天等领域的应 用 , [1-5] 超级电容器越来越受到人们的关注。 超级 电 容 器 的 电 极 材 料 主 要 有 过 渡 金 属 氧 化 物、碳 材 料 以 及 导 电 聚 合 物 3 种。 二 氧 化 钌 (RuO2) 是一种典型的金属氧化物 赝 电 容 器 电 极 材 料,它的比电容很高、充放电特征可逆性强,更重 要的是导电 性 能 卓 越。 但 是 RuO2 在 电 化 学 氧 化/ 还原过程中容易发生团聚,内部的颗粒不能完全参 与反应,延缓了反应进程,导致电化学性能大大降 低 。 [6] 为了制备低成本、高容量的蓄电池,各 种 导 电材料被应用到制备 RuO2 的复合材料中 , [6-10] 但 都未能获得 较 大 的 双 电 层 电 容。 石 墨 烯 (GR) 是 一种具有独特二维结构的新型碳材料,可用于双电 层电容器 。 [11-13] 利用氧化石墨 (GO) 化 学 还 原 法 制取的石墨烯不仅具有单层石墨材料柔软多孔的性 能,而且 表 面 含 有 大 量 的 含 氧 基 团 。 [14-16] 由 于 这 些基团与纳米粒子之间存在较强的化学作用,因此 可以使其 均 匀 地 负 载 在 石 墨 烯 的 表 面 。 [17] 利 用 该 方法 制 备 纳 米 RuO2/GR 复 合 材 料, 不 仅 可 以 使 RuO2 均匀地负载于 石 墨 烯 表 面, 防 止 团 聚 现 象 发 生,充分 显 示 RuO2 的 赝 电 容, 还 可 利 用 间 隔 效 应,减少石墨烯片间的堆积,使复合材料仍具有较 大的表面积,从而获得较高的双电层电容。
石墨烯电池常用型号
![石墨烯电池常用型号](https://img.taocdn.com/s3/m/83ebd0c3951ea76e58fafab069dc5022aaea461c.png)
石墨烯电池常用型号介绍石墨烯电池是一种基于石墨烯材料的新型电池,具有高能量密度、快速充放电、长寿命等优点。
在石墨烯电池中,常用的型号有以下几种。
型号一:石墨烯锂离子电池石墨烯锂离子电池是目前应用最广泛的石墨烯电池型号之一。
它采用石墨烯作为负极材料,锂离子在充放电过程中在石墨烯表面进行嵌入和脱嵌,实现电能的存储和释放。
石墨烯锂离子电池具有高能量密度、快速充放电、长循环寿命等特点,被广泛应用于移动电子设备、电动车等领域。
特点:•高能量密度:石墨烯具有高比表面积和导电性,能够提供更多的嵌入和脱嵌位点,从而实现更高的能量密度。
•快速充放电:石墨烯结构独特,可以提供更快的离子传输速度,使得充放电过程更加高效快速。
•长循环寿命:石墨烯结构稳定,能够有效抑制锂离子的固相扩散,延长电池的循环寿命。
型号二:石墨烯超级电容器石墨烯超级电容器是一种利用石墨烯材料进行电能存储的装置。
它采用石墨烯作为电极材料,通过离子在石墨烯表面的吸附和解吸来实现电能的存储和释放。
石墨烯超级电容器具有高功率密度、长循环寿命、快速充放电等特点,广泛应用于储能系统、电动车辆等领域。
特点:•高功率密度:石墨烯具有高比表面积和导电性,能够提供更多的吸附位点,从而实现更高的功率密度。
•长循环寿命:石墨烯结构稳定,能够有效抑制电极材料的脱落和损耗,延长电容器的循环寿命。
•快速充放电:石墨烯结构独特,可以提供更快的离子传输速度,使得充放电过程更加高效快速。
型号三:石墨烯锂硫电池石墨烯锂硫电池是一种利用石墨烯材料进行能量存储的电池。
它采用石墨烯作为导电剂和硫材料的载体,通过硫在电极中的化学反应来实现电能的存储和释放。
石墨烯锂硫电池具有高能量密度、长循环寿命、低成本等特点,被广泛应用于电动车辆、储能系统等领域。
特点:•高能量密度:石墨烯具有高比表面积和导电性,能够提供更多的反应界面,从而实现更高的能量密度。
•长循环寿命:石墨烯结构稳定,能够有效抑制硫材料的溶解和损耗,延长电池的循环寿命。
石墨烯超级电容
![石墨烯超级电容](https://img.taocdn.com/s3/m/ebc0ca4459fafab069dc5022aaea998fcd224059.png)
石墨烯超级电容
鉴于石墨烯的特殊物理性质,它被广泛应用于储能技术之中,特别是超级电容器技术,其中有许多受益于该技术的优势,给电子行业带来了诸多发展机遇。
石墨烯超级电容器技术拥有小体积、高电容、高电压、低损耗和低温度运行等优势,可用于替代锂离子电池,具有广阔的应用前景。
石墨烯超级电容器具有抗湿度和振动强度高的优势,而且能够轻松应对高温和低温环境,是一种非常有用的储能技术。
石墨烯的基本原理是通过锂离子分子在电极层之间的穿梭来进
行电容释放,从而实现超高储能效率,从而达到超高的电能存储容量。
石墨烯超级电容器由离子液体、碳极片、离子导体膜和外壳等构成,它们共同参与电极层之间的穿梭物质的电容释放,从而实现同样的储能效率,它的存储容量比锂离子电池高出数倍。
此外,石墨烯超级电容器也具有可持续性和安全性的优势,它不会对环境造成任何污染,而且其电容释放集中在电极层之间,不会发生火灾和爆炸危险。
这些特性使石墨烯超级电容器变得更加安全可靠。
现在,石墨烯超级电容器已经发展到可以在无人机、汽车、手机、电子设备、电子芯片等领域应用,它为这些领域提供了更安全、更可靠的储能技术,大大降低了成本。
石墨烯超级电容器技术日益成熟,将会在电子行业引发一场革命,成为电子行业今后可持续发展的重要技术支撑。
它能够满足行业对可靠性、安全性和可持续性的高要求,为行业的发展提供了有力支持。
总之,石墨烯超级电容器技术可以有效提高电子行业的安全性、可靠性和可持续性,将成为电子行业未来的战略性技术支撑和发展动力。
《2024年石墨烯的制备及在超级电容器中的应用》范文
![《2024年石墨烯的制备及在超级电容器中的应用》范文](https://img.taocdn.com/s3/m/51cbad162f3f5727a5e9856a561252d381eb2009.png)
《石墨烯的制备及在超级电容器中的应用》篇一一、引言随着科技的进步,纳米材料的应用已经引起了科学界的广泛关注。
在众多纳米材料中,石墨烯因其独特的物理、化学性质,特别是其超高的电导率和极大的比表面积,已成为近年来材料科学领域的研究热点。
本篇论文旨在深入探讨石墨烯的制备方法以及其在超级电容器中的应用。
二、石墨烯的制备石墨烯的制备方法多种多样,常见的包括机械剥离法、化学气相沉积法、氧化还原法等。
1. 机械剥离法:此方法主要是通过机械力将石墨薄片剥离成单层或多层石墨烯。
此法虽然可以制备出高质量的石墨烯,但生产效率较低,不适合大规模生产。
2. 化学气相沉积法:此法通过在高温条件下使气体中的碳原子在基底上沉积形成石墨烯。
此法可以制备大面积的石墨烯,但制备过程需要高温和特定的气体环境。
3. 氧化还原法:此法首先通过强酸等化学试剂将天然石墨氧化,形成氧化石墨(GO),然后通过还原GO得到石墨烯。
此法生产效率高,成本低,适合大规模生产。
三、石墨烯在超级电容器中的应用超级电容器是一种具有高能量密度和高功率密度的储能器件,而石墨烯因其独特的物理性质,使其成为超级电容器的理想材料。
1. 石墨烯的电化学性质:石墨烯具有超高的比表面积和良好的导电性,这使其在电化学反应中能够提供更多的活性位点,从而提高电容器的电容量。
2. 石墨烯在超级电容器中的应用:由于石墨烯的优异性能,其被广泛应用于超级电容器的电极材料。
在电极中,石墨烯不仅可以提供大量的电荷传输通道,还可以通过其大比表面积提供更多的电荷存储空间。
此外,石墨烯的优异导电性可以降低电极的内阻,从而提高电容器的充放电速率。
四、结论随着科技的发展,石墨烯的制备技术已经越来越成熟,其在超级电容器中的应用也越来越广泛。
未来,随着对石墨烯性能的深入研究以及制备技术的进一步优化,石墨烯在超级电容器以及其他领域的应用将更加广泛。
同时,我们也需要关注到石墨烯在实际应用中可能面临的问题和挑战,如成本、环境影响等,以期在未来的研究中找到更好的解决方案。
基于石墨烯材料的柔性超级电容器研究_石吉磊
![基于石墨烯材料的柔性超级电容器研究_石吉磊](https://img.taocdn.com/s3/m/d9a3944fbe1e650e52ea99b4.png)
基于石墨烯材料的柔性超级电容器研究石吉磊,杜文城,殷雅侠,郭玉国*,万立骏*中国科学院化学研究所,北京,100190,*Email: ygguo@, wanlijun@随着电子科技的迅速发展,柔性电子器件正逐渐进入人们的生活。
柔性电子器件的实现需要柔性电源的驱动。
因此发展可弯曲,高性能的柔性储能器件变得尤为必要。
超级电容器作为新型的高性能电化学储能器件已经得到广泛研究和应用。
可弯曲甚至可折叠的柔性超级电容器正逐渐成为一个趋势。
石墨烯作为最新形态的碳单质,具有一系列优越的物理化学性能,以及易于制备柔性材料。
因此,石墨烯基材料成为制备柔性储能器件的理想材料。
我们通过简单的水热技术制备了一种3D有序的石墨烯基材料并用于构建柔性超级电容器器件[1]。
所制备的柔性超级电容器器件表现出高的比电容(220F g-1),优良的柔性以及循环稳定性。
弯曲状态下循环10000圈比电容保持率大于80%。
这一优良的电化学性能主要归因于其有序的3D结构有利于离子的快速传输。
此外,该材料的合成过程及柔性电极片的制备均简单、环境友好、具备普适性,不仅可以用于制备超级电容器电极材料也可应用于柔性锂离子电池等领域。
Fig. 1 (a) Nyquist plots of rGO and H-rGO, (b)H-rGO both normal and bending state Cyclic voltammograms at a scan rate of 200 mV s-1 (c), (d) Two H-rGO devices connected in series can power the digital temperature and humidity meter at both normal and bending state. (e) H-rGO 10,000 cycles at a scan rate of 200 mV s-1under bending state.关键词:石墨烯;柔性;超级电容器参考文献[1] Shi J. L.; Du W. C.; Yin Y. X.; Guo Y. G.; Wan L. J., J. Mater. Chem. A, 2014, DOI: 10.1039/C4TA01547A, in press.Graphene-based materials for flexible supercapacitor devices Ji-Lei Shi, Wen-Cheng Du , Ya-Xia Yin, Yu-Guo Guo* and Li-Jun Wan *Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190In our work, a facile hydrothermal reduction of self-assembled 3D graphene oxide (GO) is reported. Binder-free flexible supercapacitor is fabricated using the as-obtained 3D graphene, which exhibits high gravimetric capacitance (up to 220 F g–1) and excellent cycle stability with >80% capacitance retention over 10,000 cycles under bending state.。
高性能石墨烯材料在超级电容器中的应用
![高性能石墨烯材料在超级电容器中的应用](https://img.taocdn.com/s3/m/55a4e46aabea998fcc22bcd126fff705cc175c91.png)
高性能石墨烯材料在超级电容器中的应用随着科技的快速发展,人们对储能技术的需求也越来越高。
传统电池的能量密度相对较低,而超级电容器由于具有高能量密度、快速充放电和长寿命等特点,逐渐成为储能技术研究的焦点领域之一。
在超级电容器的研究中,石墨烯材料表现出了令人瞩目的应用潜力,具有了广泛的应用前景。
1. 背景介绍超级电容器是一种以电吸附和电双层电容为储能机制的设备。
它能以高速率吸附和释放电荷,储能效率高,循环寿命长,是现代电子器件和电力系统中理想的储能技术之一。
然而,传统超级电容器的能量密度相对较低,限制了其在实际应用中的推广。
2. 石墨烯材料在超级电容器中的优势石墨烯是一种由碳原子单层构成的二维材料,具有出色的电学、光学、导热和机械性能。
这些特性使得石墨烯成为超级电容器领域的研究热点。
使用石墨烯材料制备的超级电容器相比传统电容器具有以下优势:2.1 高能量密度石墨烯的大表面积和高电导率使得其能够存储更多的电荷。
其高比表面积可以提供更多的吸附位点,从而增加了电荷的储存量。
与此同时,石墨烯的高电导率也能够有效地减少电池内阻,提高能量转化效率。
2.2 快速充放电速度石墨烯的高电导率和低内阻使得超级电容器具有快速充放电的特点。
相比传统超级电容器,石墨烯材料能够更快地吸附和释放电荷,从而实现高速充电和高速放电。
2.3 长循环寿命传统超级电容器的循环寿命较短,会在充放电循环过程中出现性能衰减。
而石墨烯具有出色的力学稳定性和化学稳定性,能够有效地抵抗充放电过程中的机械和化学破坏,从而延长超级电容器的寿命。
3. 石墨烯材料在超级电容器中的应用案例随着对石墨烯材料性能了解的进一步加深,科学家们不断探索石墨烯在超级电容器中的应用。
以下是一些石墨烯材料在超级电容器领域的应用案例:3.1 改进电解液结构石墨烯材料能够通过调控电解液组分和结构,提高电解液的电导率和离子迁移速率。
通过在超级电容器的电解液中添加适量的石墨烯材料,可以有效地提高超级电容器的能量密度和充放电速度。
石墨烯制成的超级电容器将取代电池
![石墨烯制成的超级电容器将取代电池](https://img.taocdn.com/s3/m/7d7094e54afe04a1b071de43.png)
俄亥俄州代顿市Nanotek Instruments公司新研制的石墨烯超级电容器,单位质量可储存的能量相当于镍氢电池,打破了世界纪录,而且充电或放电只需要短短几分钟、甚至几秒钟,有望取代电池。
相关研究论文发表在Nano Letter上。
该超级电容器电极的制备采用了石墨烯,混合5%的超级P(一种乙炔黑,作用相当于导电添加剂)和10%的聚四氟乙烯(PTFE)结合剂。
研究人员把产生的悬浮液涂在集电器表面,把硬币大小的电容器安装在隔离箱里。
电解质-电极界面的制备,采用了“Celguard隔膜-3501”,而电解液是一种化学品,叫做EMIMBF4。
该公司对硬币大小超级电容器的测试表明,石墨烯电极的超级电容器的能量密度为85.6 Wh/kg,而镍氢电池和锂离子电池分别为40-100 Wh/kg和120 Wh/kg,这是有史以来基于碳纳米材料的双电层超级电容器所达到的最高值。
研究小组成员还包括来自Angstron材料研究所的科学家,他们正在努力工作以进一步提高超级电容器的能量密度。
电容器电极材料研制方面取得系列进展。
超级电容器是介于传统物理电容器和电池之间的一种新型储能器件,具有绿色环保、充电时间短、使用寿命长和工作温度范围宽等优点,其核心部件是性能优异的电极材料。
石墨烯片(GS),作为一种新型的碳材料,具有良好的导电性和大的比表面积,预计将其作为超级电容器的电极材料具有广阔的应用前景。
但是纯石墨烯表面缺少功能基团导致其很难与其它材料复合或在器件上进行组装,从而限制了其深入应用。
因此,对石墨烯表面进行化学修饰以便于获得各种功能复合材料是当前研究的一个热点。
图1:不同PANi含量的PSS-GS/PANi“纸”电极(左)和PSS-GS与PANi纳米纤维之间的静电吸附示意图(右)图2 :PSS-GS与二氧化锰在基底上的层层自组装示意图固体润滑国家重点实验室研究人员利用化学修饰后的石墨烯(PSS-GS)与聚苯胺(PANi)纳米纤维之间的静电吸附作用,制备了PSS-GS/PANi 复合材料胶体溶液,然后抽虑成膜得到了柔性的PSS-GS/PANi复合“纸”电极材料。
基于石墨烯基复合材料的超级电容器研究现状
![基于石墨烯基复合材料的超级电容器研究现状](https://img.taocdn.com/s3/m/06450decfab069dc50220144.png)
基于石墨烯基复合材料的超级电容器研究现状超级电容器是一种发展成本低、环境友好、能量密度高的新型绿色能源装置,具有充电时间短、放电速度快、使用寿命长、节约能源和绿色环保等优点,得到了科学界的一致追捧,而影响超级电容器最关键的因素就是电极材料的性能。
过渡金属氧化物如Mn02,ZnO,C0304和NiO等虽是较好的电极材料,但导电性能较差,会产生较大的内阻,使得在充放电过程中,容易导致电极材料结构的破坏而影响其充放电容量和循环性能。
将过渡金属负载到碳材料例如石墨烯上可以较好的解决这一难题,这方面研究国内外已有很多相关报道。
作为碳材料中重要的一员,石墨烯由于导电性能强、导热性好、质量轻、比表面积大而备受关注,在储能装置、电化学器件、功能性复合材料等方面都具有重要的应用。
将石墨烯应用到超级电容器上,改善了超级电容器的电容量和循环稳定性。
但石墨烯层与层之间的分子问作用力导致石墨烯容易团聚,从而降低了石墨烯的比表面积和比容量。
将过渡金属氧化物和石墨烯组装成复合材料,既能提高电极材料的导电性和充放电容量,又能增强其循环稳定性。
1过渡金属氧化物与石墨烯复合材料在超级电容器中的应用1.1二氧化锰/石墨烯在超级电容器的研究中,锰作为过渡元素较先受到关注。
虽然它资源比较丰富,且易获取,但电化学性能较弱,尤其是导电性能差阻碍了人们进一步研究的步伐。
通过与石墨烯的复合,能在一定程度上改善二氧化锰存在的问题,大幅度提高其比电容和循环性能。
Li等制备的石墨烯/Mn02复合纸电极具有无黏结剂、柔韧性好的特性,并发现其具有良好的循环稳定性,且在浓度为0.1 mol/L 的Na2SO4水溶液中,当电极的Mn02含量为24%,电流密度为O.5 A /g时,该复合纸电极的比容量为256 F/g。
Wei等通过高锰酸钾还原成二氧化锰沉积在石墨烯表面制备出了二氧化锰/石墨烯复合材料,该复合材料在超级电容器性能测试中显示了较好的循环寿命,其电容为114 F/g。
石墨烯基超级电容器研究
![石墨烯基超级电容器研究](https://img.taocdn.com/s3/m/86bc2ad47f1922791688e8b0.png)
[ 3 1 Y .H e ma n d e z ,V .N i c o l o s i ,M.L o t y a ,H i g h - y i e l d p r o d u c t i o n o f g r a p h e n e b y l i q u i d — p h a s e e x f o l i  ̄ i o n o f g r a p h i t e [ J ] .N a t u r e N a n —
一Байду номын сангаас
,
料具 有 更 高 的 电容量 , 其 中碳 纳米 管 与 石 墨烯 的复 合材 料 电容 量 高 达7 3 0 m A h / g , C 与石 墨烯的复合材料 的电容量 高达 7 8 4 m A h / g , 并 且研究发现石 墨烯层数越少 , 层 间距越大 , 越容易掺杂提高 电池性 能 。因此 , 石 墨烯 材 料 在 电池 电极 材 料 应 用 方面 显 示 出 了诱 人 的前 景, 但 目前 的石墨烯层数不 可控 , 制备出尺寸可控 的石墨烯材料并 对其有效掺杂 , 有望开发出性能优异的超级 电容器 。 3结束语 在超 级 电容 器研 究 中 , 过 渡 金属 氧 化 物 电极 的 比容 量 可达 到 碳 电极材料 的 1 0 — 1 0 0倍 , 金属氧化物 电极材料在制备上采取掺杂 、 纳 米化等特殊处理 , 可 以有 比碳电极 电容器更好的性 能 , 有 良好 的发 展 前 景 。采 用石 墨 烯 大 的 比表 面积 和 高 的 电导 率 , 经 金 属 氧化 物 掺 杂处理有望得到高能量密度 、 高效率 、 使 用寿命长和低成本 的石墨 烯 基 超级 电容 器 , 为微 纳 电子 工 业 发展 及 汽 车 等机 动 设 备 和 器件 的 发展提供重要的能源动力基础 。
上海绿态电子科技有限公司石墨烯超级电容器产品手册-GTCAP
![上海绿态电子科技有限公司石墨烯超级电容器产品手册-GTCAP](https://img.taocdn.com/s3/m/066b1a860d22590102020740be1e650e52eacfe0.png)
上海绿态电子科技有限公司品质管理系统:工业标准ISO9001-20152020产品手册地址:上海市浦东新区张江高科碧波路5号,邮编201203电话:400-061-5118************手机:+86-158********Skype:greentech58QQ:361796650邮箱:*********************网址:Https://GT CAP®高端电容器供应商石墨烯超级电容器GTCAP设计和生产的石墨烯超级电容器和储能模组,具有能量密度大、功率大、寿命长、温度范围宽、自放电小等特点。
石墨烯超级电容器GTCAP®GTCAP 石墨烯超级电容器和其他储能产品对比:项目GTCAP 石墨烯超级电容器铅酸蓄电池锂电池工作温度范围-40℃~+70℃0℃~+45℃-25℃~+60℃循环寿命>50,000次300~500次1000~2000次能量密度75Wh/kg 40Wh/kg 150Wh/kg 功率密度500W/kg 150~400W/kg 315W/kg 维护免维护通常费用高通常费用高充电时长≤10分钟8~12小时6~8小时爆炸风险无无有燃烧风险无无有电极材料活性炭铅酸锂氧化物与碳材料电解液材料有机溶剂硫酸溶液有机溶剂蛛网图优势单体石墨烯超级电容器GT CAP®石墨烯超级电容器单体单体产品型号GTEG-2R7-153UN3566GTEG-2R7-903UT60138GTEG-2R7-104UT66161GTEG-2R7-154UT66161GTEG-2R7-164UT66161容量15000F/4.5Ah90000F/25Ah100000F/30Ah150000F/40Ah160000F/45Ah 最佳工作电压 2.7V~1.5V 2.7V~1.5V 2.7V~1.5V 2.7V~1.5V 2.7V~1.5V 储能10Wh58Wh69Wh92Wh103Wh 工作温度-40℃~+65℃-40℃~+65℃-40℃~+65℃-40℃~+65℃-40℃~+65℃最大充电电流10A150A180A240A270A循环寿命(100%DOD)30000次50000次50000次50000次50000次尺寸35*66mm60*138mm66*161mm66*161mm66*161mm净重120g800g1200g1250g1255gGT CAP®提供瞬时能量在-20℃放电能量≥70%x初始能量在-40℃放电能量≥53%x初始能量在-20℃充电能量≥92%x初始能量在-40℃充电能量≥68%x初始能量50000次循环寿命或>30年低ESR增强太阳能效率高免维护高可靠性50000次循环寿命或>30年性能良好免维护温度范围宽高可靠性安全GTCAP石墨烯超级电容器广泛应用于UPS、引擎冷启动、太阳能路灯、太阳能系统、电信基站、军用设备、汽车、AGV和叉车等。
基于石墨烯负极赝电容正极的超级电容器电极材料制备及性能研究
![基于石墨烯负极赝电容正极的超级电容器电极材料制备及性能研究](https://img.taocdn.com/s3/m/0f8f877bc850ad02de80415a.png)
基于石墨烯负极赝电容正极的超级电容器电极材料制备及性能研究超级电容器的能量密度E与其比电容Cm成正比,而与其工作电压U的二次方成正比(E=1/2CmU2)。
因此,提高工作电压是提高超级电容器能量密度的有效途径。
利用储能电位范围不同的正、负极材料组装非对称型超级电容器,可有效提高工作电压,进而提高能量密度。
本文研究了氧化石墨烯(Graphene Oxide, GO)的水热还原,构建了三维分布还原氧化石墨烯(reduced Graphene Oxide, rGO),研究了Ni(OH)2纳米片阵列和NiO多孔纳米片阵列的制备。
利用X-射线光电子能谱(XPS)和拉曼光谱(Raman)研究了GO的还原,利用扫描电镜(SEM)和透射电镜(TEM)研究了产物形貌,利用X-射线衍射(XRD)研究了产物晶体结构。
利用循环伏安(CV)扫描、恒电流充放电、电化学交流阻抗(EIS)等技术研究了产物的超电容性能。
以rGO为负极、分别以Ni(OH)2纳米片阵列和NiO多孔纳米片阵列为正极,组装了非对称模拟超级电容器,并研究其性能。
首先将GO分散于具有三维结构的泡沫镍(NF)基底上,然后对其进行水热还原,制备分布于三维NF基底上的还原氧化石墨烯(NF/rGO)。
XPS和Raman光谱研究结果表明,水热还原可有效去除GO上的含氧官能团,并对其结构缺陷有一定的修复作用。
TEM和SEM观测结果表明,rGO形成很薄的片层,呈现出透明褶皱结构,NF/rGO上的rGO紧密附着于基底上形成三维分布,这有利于rGO与电解液充分接触而发挥储能性能。
NF/rGO的CV曲线具有双电层电极材料典型的矩形,其恒电流充电与放电曲线基本成线性、且相互对称。
在NF/rGO的交流阻抗波特图上,低频区的相位角接近-90°,表明其具有良好的超电容性能。
研究了水热反应温度、水热体系中GO浓度、水热反应次数及水热反应时间对产物性能的影响,发现在2 mg/ml的GO分散体系中,150℃下保温1h,水热还原1次制备的NF/rGO-2-150-1h-1超电容性能优异,其波特图上低频区相位角为-86.5°,充放电电流密度为0.5 A/g时的比电容为184.5 F/g。
石墨烯复合材料在超级电容器中的进展
![石墨烯复合材料在超级电容器中的进展](https://img.taocdn.com/s3/m/89282d3831126edb6f1a102f.png)
Value Engineering碳元素广泛存在于自然界,除了最为人们所熟知的石墨和金刚石外,1985年发现的富勒烯和1991年发现的碳纳米管扩大了碳材料的家族。
也使人们对碳元素的多样性有了更深刻的认识。
同时,富勒烯和碳纳米管所引发的纳米科技对人类社的发展在未来有着极其重大的意义。
作为碳材料中最新的一员—石墨烯是拥有sp2杂化轨道的二维碳原子晶体,由英国曼彻斯特大学的Geim等[1]于2004年发现,并能稳定存在,这是目前世界上最薄的材料—单原子厚度的材料。
石墨烯不仅有优异的电学性能(室温下电子迁移率可达200000cm2V-1s-1)[2],质量轻,导热性好(5000Wm-1K-1)[3],比表面积大(2630m2g-1)[4],它的杨氏模量(1100GPa)和断裂强度(125GPa)[5]也可与碳纳米管相媲美,而且还具有一些独特的性能,如量子霍尔效应、量子隧穿效应[6]等。
由于以上独特的纳米结构和优异的性能,石墨烯可应用于许多的先进材料与器件中,如薄膜材料[7]、储能材料[4]、液晶材料[8]、机械谐振器[9]等。
石墨烯是单层石墨,原料易得,所以价格便宜,不像碳纳米管那样价格昂贵,因此石墨烯有望代替碳纳米管成为聚合物基碳纳米复合材料的优质填料。
在石墨烯诸多性质中,其中比表面积高和导电性好,最重要的是石墨烯本身的电容为21μF/cm2,达到了所有碳基双电层电容器的上限,这比其他碳材料都要高,是制造超级电容器的理想材料。
超级电容器(Supercapacitors),也叫电化学电容器(Electrochemical capacitors)是一种能量密度和功率密度介于传统电容器和电池之间的新型储能器件,超级电容器兼具蓄电池和传统电容器的优点,如能量密度高、功率密度高、可快速充放电、循环寿命长、具有瞬时大电流放电及对环境无污染等特性,是近十年来发展起来的新型储能、节能设备。
由于石墨烯是理想的超级电容器填充材料,所以将其与其他材料复合来制备超级电容器材料备受大家关注。
超级电容器用石墨烯极片的制备和性能
![超级电容器用石墨烯极片的制备和性能](https://img.taocdn.com/s3/m/15357d52312b3169a451a4f4.png)
极进 行物相 和 形 貌 分析 。采 用恒 电流 充放 电、 循 环 伏
安 和 交 流 阻抗 对 所 制 备 超 级 电容 器 的 电 容 性 能进 行 了
( 1 . 深圳 清华 大学研 究 院 新 材料与 生物 医药研 究所先 进储 能材料 及器件 实验 室 , 广东 深圳 5 1 8 0 5 7 ;
2 . 清华大 学 化学 系 , 北京 1 0 0 0 8 4 ) 摘 要 : 以石 墨粉 为原料 , 通过 简便 的氧 化还 原 法制 备 了石墨 烯 。将 石墨 烯极 片在有机 电解液体 系 中组 装
能
文章 编 号 : 1 0 0 1 — 9 7 3 1 ( 2 0 1 3 ) 1 9 — 2 8 1 0 — 0 4
材
料
2 0 1 3 年 第1 9 期( 4 4 ) 卷
超 级 电容器 用 石 墨 烯 极 片 的制 备和 性 能
袁 美 蓉 , 赵 方辉 , 刘伟 强 , 朱 永 法 , 王 臣
2 实 验
2 . 1 石 墨烯 的制备
采 用改 良的 Hu mme r s 法制 备氧 化石 墨 。取 天然
石墨 5 0 g置 于 5 0 0 mI 的9 8 浓硫 酸 中 , 同 时加 入 2 5 g
目前超 级 电容 器 的电极 材料 主要 有炭 基材 料 ] 、 金属
循 环 伏 安 法 中图分 类号 : T M5 3
DOI : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1 — 9 7 3 1 . 2 0 1 3 . 1 9 . 0 1 5
超级电容器电极材料
![超级电容器电极材料](https://img.taocdn.com/s3/m/90f237c8a1116c175f0e7cd184254b35eefd1a3c.png)
超级电容器电极材料超级电容器是一种储能装置,它具有高能量密度、高功率密度、长循环寿命和快速充放电等优点,因此在电子产品、新能源汽车、医疗设备等领域具有广泛的应用前景。
而超级电容器的性能很大程度上取决于电极材料的选择和设计。
本文将重点介绍超级电容器电极材料的研究进展和应用前景。
目前,超级电容器的电极材料主要包括活性碳、金属氧化物和导电聚合物等。
活性碳是一种常用的电极材料,具有较高的比表面积和良好的孔隙结构,能够提供丰富的储能空间。
金属氧化物电极材料具有较高的比电容和良好的电化学稳定性,如氧化铁、氧化钼等。
而导电聚合物电极材料具有良好的导电性和柔韧性,如聚咔唑、聚吡咯等。
这些电极材料各具特点,可以根据超级电容器的具体应用需求进行选择和设计。
近年来,石墨烯作为一种新型碳基材料,受到了广泛关注。
石墨烯具有高导电性、高比表面积和优良的机械性能,被认为是一种理想的超级电容器电极材料。
研究表明,采用石墨烯作为超级电容器电极材料,可以显著提高电容器的能量密度和功率密度,同时具有良好的循环寿命和快速充放电特性。
因此,石墨烯在超级电容器领域具有巨大的应用潜力。
除了石墨烯,碳纳米管也是一种备受关注的电极材料。
碳纳米管具有优异的导电性和机械性能,能够有效提高超级电容器的电化学性能。
研究表明,将碳纳米管与其他电极材料复合使用,可以显著提高超级电容器的性能,如提高比电容、降低内阻等。
因此,碳纳米管在超级电容器电极材料中也具有重要的应用前景。
此外,金属有机骨架材料(MOFs)和碳化硅等新型材料也被广泛研究用于超级电容器电极材料。
MOFs具有高孔隙度和可调控的结构,能够提供丰富的储能空间和优异的电化学性能。
碳化硅具有优异的导电性和化学稳定性,能够有效提高超级电容器的性能。
因此,这些新型材料在超级电容器领域也具有广阔的应用前景。
总的来说,超级电容器的性能取决于电极材料的选择和设计。
目前,石墨烯、碳纳米管、MOFs和碳化硅等新型材料被广泛研究用于超级电容器电极材料,能够显著提高超级电容器的能量密度、功率密度和循环寿命,具有广阔的应用前景。
石墨烯 超级电容
![石墨烯 超级电容](https://img.taocdn.com/s3/m/7dd2bd74ef06eff9aef8941ea76e58fafab04506.png)
石墨烯超级电容
石墨烯超级电容是一种利用石墨烯材料制造的超级电容器。
石墨烯是由碳原子形成的二维晶体结构,具有高度的导电性、导热性和机械强度,是一种非常理想的电子材料。
相对于传统电容器,石墨烯超级电容具有以下几个显著优势:
1. 高能量密度:石墨烯超级电容器具有较高的能量存储密度,可以存储更多的电能。
2. 高功率密度:石墨烯超级电容器具有快速充放电速度,可以在短时间内释放大量的电能。
3. 长寿命:石墨烯超级电容器具有良好的循环稳定性和长寿命,可以进行数万次的充放电循环。
4. 安全性:相对于传统锂离子电池,石墨烯超级电容器不会因为电池燃烧等问题造成爆炸,具有更高的安全性。
由于石墨烯超级电容器具有以上优势,因此被广泛应用于电动车、储能系统、智能手机和电子设备等领域,为电子产品的使用提供了更长久的电力支持。
此外,还有一些研究在探索如何将石墨烯材料与其他材料相结合,以进一步提高石墨烯超级电容器的性能。
用于超级电容器的高性能石墨烯CoMoO_(4)复合电极
![用于超级电容器的高性能石墨烯CoMoO_(4)复合电极](https://img.taocdn.com/s3/m/addc9ca585868762caaedd3383c4bb4cf7ecb782.png)
05025樊泽文等:用于超级电容器的高性能石墨烯/CoMo()复合电极文章编号:1001-9731(2021)05-05025-08用于超级电容器的高性能石墨烯/C0M0O4复合电极*樊泽文,任晶,任瑞鹏,吕永康(太原理工大学煤科学与技术教育部和山西省重点实验室,太原030024)摘要:高性能超级电容器电极材料的开发对于缓解当前的能源危机势在必行,设计和优化混合过渡金属氧化物并研究电化学性能和循环寿命对于超级电容器的实际应用至关重要。
在已开发的混合过渡金属氧化物中,由于电活性材料的导电率差并且与电解质的接触受限制,大大限制了所制备电极的电化学性能。
我们在本文中提出了一种合成石墨烯/CoMoO,纳米片的有利设计,使活性材料均匀生长在三维石墨烯泡沫的网状骨架上,充分提高了活性材料的利用率,其独特的结构也增加了电活性材料与电解质界面之间的接触,使赝电容反应充分发生。
由于石墨烯的高电子传输速率和CoMoO,纳米片的高活性,三维复合电极具有出色的电化学性能,具有相对较高的面积比电容(在1mA cm2下为2737mF cm2)和出色的循环稳定性(在10mA cm2下进行4000次循环后,保留原始比电容的81.76%)这些出色的结果表明,石墨烯/CoMo(O纳米片复合材料具有巨大的潜力,可作为高性能超级电容器的电极材料。
关键词:石墨烯;C o M o()4;纳米片;超级电容器中图分类号:TB332文献标识码:A0引言全球不可再生能源正在迅速消耗,并带来了各种例如极端气候变化等不利情况。
地球上现有的可再生资源,例如太阳能和风能,在使用中存在一个关键缺陷:不能连续使用。
可持续可再生能源的研究和开发已经迫在眉睫,电池和电化学电容器作为现当今的两大能量存储系统已被广泛研究[3]。
与电化学电池和燃料电池相比,基于电化学电容器的储能设备具有更高的功率密度,更快的充放电能力,更长的循环寿命,以及更高的使用寿命[47]。
其中,基于碳基活性材料的双电层电容器的能量密度非常低,因此当前大多数研究集中在贋电容器上。
石墨烯电池常用型号
![石墨烯电池常用型号](https://img.taocdn.com/s3/m/ed666abd760bf78a6529647d27284b73f24236d9.png)
石墨烯电池常用型号
摘要:
1.石墨烯电池简介
2.石墨烯电池的常用型号
3.各种型号石墨烯电池的特点及应用领域
4.石墨烯电池的发展趋势和前景
正文:
石墨烯电池是一种使用石墨烯材料作为电极的电池。
石墨烯是一种二维碳材料,具有良好的导电性和高比表面积,使得石墨烯电池具有很高的能量密度和较快的充放电速率。
石墨烯电池已经广泛应用于消费电子、电动汽车、能源存储等领域。
目前市场上常见的石墨烯电池型号主要有以下几种:
1.石墨烯超级电容器:石墨烯超级电容器具有极高的能量密度和功率密度,适用于需要快速充放电的应用场景,如电动汽车、混合动力汽车等。
2.石墨烯锂离子电池:石墨烯锂离子电池采用石墨烯作为负极材料,具有更高的能量密度和更快的充放电速率。
这种电池适用于智能手机、笔记本电脑等消费电子产品。
3.石墨烯钠离子电池:石墨烯钠离子电池是一种新型的石墨烯电池,负极采用石墨烯,正极采用钠离子材料。
这种电池具有较高的能量密度、较快的充放电速率和较低的成本,有望应用于大规模能源存储和电动汽车等领域。
4.石墨烯钾离子电池:石墨烯钾离子电池与石墨烯钠离子电池类似,只是
正极材料采用钾离子。
这种电池具有较高的能量密度和较快的充放电速率,适用于需要长时间运行的设备,如太阳能路灯、无人机等。
随着石墨烯材料的研发和应用技术的不断进步,石墨烯电池在性能和成本方面有望得到进一步优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化石墨还原法
工艺简单 产量较高 成本低廉
8
石墨烯在双电层电容器中的应用
双电层电容器充放电示意图
多孔碳电极结构示意图
A C=ε d
电极材料有效表面积 双电层厚度 介质介电常数
增加电极材料比表面积是提高电容的有效途径
石墨烯在双电层电容器中的应用
KOH活化法制备高比表面石墨烯
BET:3100 m2 g-1
锚定式 包裹式 胶囊式
金属氧化物电极材料 √ 能量密度高 × 功率密度低 •导电性差 × 循环稳定性差 •氧化还原过程 中结构变化
Z. Wu et al. Nano Energy, 2012, 1, 107
三明治式
层状式
混合式
金属氧化物/石墨烯复合材料结构模型
石墨烯在法拉第赝电容器中的应用
单晶Ni(OH)2/石墨烯纳米片
108 m2 g-1
-1-1 281 m2F gg 570 (1mV s-1)
97.9%
20 Wh kg-1
石墨烯与RuO2之间的协同效应
Ru: 38.3 wt%
Z. S. Wu et al. Adv. Funct. Mater. 2010, 20, 3595
石墨烯表面含氧官能团对RuO2起锚定作 用,抑制RuO2颗粒团聚 锚定于石墨烯表面的RuO2可避免石墨烯 片层堆叠
石墨烯在法拉第赝电容器中的应用
原位聚合法制备石墨烯-聚吡咯复合电极材料
S Bose et al. Nanotechnology, 22 (2011) , 295202
石墨烯在法拉第赝电容器中的应用
原位聚合法制备石墨烯-聚吡咯复合电极材料
PPGNS20 267 F g-1
PPy
137 F g-1
石墨烯可以加速PPy环中α-C或者β-C原子的氧化和去氧化 PPy在石墨烯表面的附着缩短了电解液中离子的扩散迁移路径 石墨烯承担部分PPy氧化还原时的机械变形
主要内容
2007. 01
超级电容器简介
石墨烯在超级电容器中的应用
总结与展望 参考文献
总结与展望
开发单 层石墨烯
√石墨烯理论比
表面积大、电导率 高、机械强度高和 化学稳定性好,是 一种非常有潜力的 超级电容器电极材 料
增强石 墨烯与其 他活性材 料间的协 同作用 制备批 量化和低 成本化
×石墨烯片层易
石墨烯在超级电容器中的应用
总结与展望 参考文献
石墨烯在超级电容器中的应用
康斯坦丁·诺沃肖洛夫
被引用次数:11864 (Nov 2013)
安德烈·海姆
理论比 表面积 大
电导率 高
机械强 度高
化学稳 定性好
石墨烯 很有潜力的超级电容器电极材料
石墨烯在超级电容器中的应用
机械剥离法 外延生长法 化学气相沉积法
6KOH + 2C ↔ 2K + 3H2 + 2K2CO3
包含大量单层石墨烯 形成三维多孔网络
166 F g-1
2400 m2 g-1
Y. Zhu et al. Science 2011, 332, 1537
石墨烯在双电层电容器中的应用
激光划片法制备微型超级电容器
简易 易放大
EI-Kady, MF et al. Nat. Commun. 2013, 4, 1475
13. K.S. Novoselov et al. Science, 2004, 306, 666
谢谢大家!
附录
石墨烯在双电层电容器中的应用
自组装法制备平面超级电容器
堆叠式
平面式
平面结构更加有利于电解质 向电极内部的迁移扩散,有 效提高石墨烯片层的利用率
J. J. Yoo et al. Nano Lett., 2011, 11 , 1423–1427
石墨烯在双电层电容器中的应用
自组装法制备平面超级电容器
石墨烯在双电层电容器中的应用
激光划片法制备微型超级电容器
182 F g-1 (1 A g-1) 96%
高电导率(2.35×103 S m-1) 大比表面积(1500 m2 g-1)和相互交叉的电极结构有助于缩短电解 液中离子的扩散迁移路径
EI-Kady, MF et al. Nat. Commun. 2013, 4, 1475
石墨烯基超级电容器
主要内容
2007.ቤተ መጻሕፍቲ ባይዱ01
超级电容器简介
石墨烯在超级电容器中的应用
总结与展望 参考文献
超级电容器简介
传统电容器
功率密度高
超级电容器
充放电速度快 循环寿命长 工作温度范围宽 环境友好
二次电池
能量密度高
超级电容器简介
双电层 电容器 法拉第 赝电容器 不对称 电容器
PANI在GO表面 异相成核 PANI在体相内 均相成核
石墨烯在法拉第赝电容器中的应用
氧化石墨烯-聚苯胺纳米线阵列
PANI-GO 555 F g-1 92% PANI
石墨烯表面的有序且较小直径的PANI纳米线可改善离子传 输,提高PANI的利用率 石墨烯承担部分PANI氧化还原时的机械变形 竖直的PANI纳米线阵列可以灵活的应对应力变化
1.
3. Y. Huang, J. Liang, Y. Chen. Small, 2012, 8, 1805
4. Z. Wu, G. Zhou, Li. Yin, et al. Nano Energy, 2012, 1, 107 5. 6. 7. 8. EI-Kady, MF et al. Science, 2012, 335, 1326 Y. Zhu et al. Science, 2011, 332, 1537 S. Bose et al. Nanotechnology, 22 (2011) , 295202 Q. Cheng et al. Carbon, 2011, 49, 2917
比电容高达1335 F g-1(放电电流:2.8 A g-1) Ni(OH)2纳米片直接生长并锚定于石墨烯表面,二者间的 化学键和范德华力可以加速电子的传递
H. Wang et al. J. Am. Chem. Soc., 2010, 132, 7472
石墨烯在法拉第赝电容器中的应用
石墨烯锚定RuO2•H2O
利用高比表面积 电极和电解质间 形成的界面双电 层电容储存能量
利用快速、高 度可逆的化学吸 附/脱附和氧化 /还原反应储存 能量
将双电层电容电 极和法拉第赝电 容电极相结合的 新一代超级电容 器
超级电容器简介
能量密度较低
开发高比表面积的电极材料是提高性能的重要途径之一
主要内容
2007. 01
超级电容器简介
发生堆叠,导致其 比表面积下降
主要内容
2007. 01
超级电容器简介
石墨烯在超级电容器中的应用
总结与展望 参考文献
参考文献
EI-Kady, MF et al. Nat. Commun. 2013, 4, 1475 2. Q. Cheng et al. J. Power Sources, 2013, 241, 423
S Bose et al. Nanotechnology, 22 (2011) , 295202
石墨烯在法拉第赝电容器中的应用
氧化石墨烯聚苯胺纳米线阵列
0.05M
0.06M
采用不同浓度的苯胺制备的 PANI-GO的SEM图
J. Xu et al. ACS Nano, 2010, 4, 5019
苯胺浓度与制得PANI-GO 比电容的关系图
J. Xu et al. ACS Nano, 2010, 4, 5019
石墨烯在不对称电容器中的应用
石墨烯在不对称超级电容器中的应用
Graphene/CNT/PANI
正极 • 石墨烯-金属 氧化物 • 石墨烯-导电 聚合物 • ……
• • • •
负极 石墨烯 石墨烯-CNT 石墨烯-AC ……
Q. Cheng et al. Carbon, 2011, 49, 2917; Q. Cheng et al. J. Power Sources, 2013, 241, 423
247 F g-1 (394 μF cm-2)
平 面 式
堆 叠 式
J. J. Yoo et al. Nano Lett., 2011, 11 , 1423–1427
形状
RMGO
堆叠式
(μF cm-2) 140
平面式
(μF cm-2) 394
石墨烯在法拉第赝电容器中的应用
石墨烯与金属氧化物间的协同效应
9. J. J. Yoo et al. Nano Lett., 2011, 11 , 1423–1427
10. H. Wang et al. J. Am. Chem. Soc., 2010, 132, 7472
11. Z. S. Wu et al. Adv. Funct. Mater. 2010, 20, 3595 12. J. Xu et al. ACS Nano, 2010, 4, 5019