石墨烯超级电容器项目介绍
基于氧化石墨烯的超级电容器的制备和应用研究
基于氧化石墨烯的超级电容器的制备和应用研究随着科技的进步,电子产品的需求在不断增长。
为了应对这一需求,电池和超级电容器的研究变得越来越重要。
超级电容器是一种新型的存储能量设备,与传统的电池相比,超级电容器拥有极高的能量密度、长寿命、快速充放电等优势。
因此,其在电子、交通、航空航天等领域有着广泛的应用前景。
而基于氧化石墨烯的超级电容器具有极大的发展潜力,以下将介绍其制备和应用研究的最新进展。
一、氧化石墨烯的制备氧化石墨烯是一种由单层碳原子构成的材料,化学式为C(O)OH。
氧化石墨烯的制备方法有多种,其中常用的方法包括化学氧化法、热氧化法、电化学氧化法等。
化学氧化法是目前较为常用的制备方法。
通常将石墨粉末与混合酸(硝酸和硫酸)混合,经过氧化反应后,用水洗涤和干燥即可。
热氧化法则通过将石墨粉末加热至高温下,通过氧化反应制备氧化石墨烯材料。
这种方法制备出的氧化石墨烯具有较高的热稳定性和晶体品质,但是制备难度较大,成本较高。
电化学氧化法则是通过电化学反应制备氧化石墨烯材料。
这种方法可以使石墨表面的氧化程度更加均匀,制备出的氧化石墨烯具有良好的电化学性能。
二、基于氧化石墨烯的超级电容器的研究进展基于氧化石墨烯的超级电容器研究起步较晚,但是得到了长足的发展。
氧化石墨烯的独特结构和性质使得基于其材料制备的超级电容器具有优异的性能,例如:高能量密度、高功率密度、长寿命等特点。
1. 氧化石墨烯/聚对苯二甲酸丁二醇酯复合材料氧化石墨烯/聚对苯二甲酸丁二醇酯(PVB)复合材料是目前研究较为成熟的氧化石墨烯超级电容器材料。
这种材料的优点在于氧化石墨烯的导电性和PVB的柔软性、韧性结合在了一起,既能够提高超级电容器的能量密度,又能有效延长电容器的使用寿命。
2. 氧化石墨烯/多孔碳材料复合材料氧化石墨烯/多孔碳材料复合材料也是一种目前研究较为活跃的氧化石墨烯超级电容器材料。
通过将氧化石墨烯与多孔碳材料结合,能够有效提高超级电容器的能量密度和功率密度,并且提高超级电容器的使用寿命。
石墨烯在储能领域的应用
石墨烯在储能领域的应用石墨烯是一种新型的二维材料,具有非常优异的电学、热学和机械性能,被誉为21世纪的材料之王。
近年来,石墨烯在储能领域的应用也逐渐得到了广泛的关注。
在本篇文章中,我们将探讨石墨烯在储能领域中的应用及其优势。
一、石墨烯储能的研究现状目前,石墨烯在储能领域中主要应用于锂离子电池、超级电容器和金属空气电池等方面。
其中最为引人注目的是石墨烯锂离子电池的应用。
石墨烯作为锂离子电池的电极材料,具有很高的比表面积、高达2700平方米每克,能够大大提高锂离子电池的储能密度和循环寿命。
二、石墨烯在锂离子电池中的应用1. 石墨烯负极材料石墨烯可以作为锂离子电池负极材料,提高电池的储能密度。
石墨烯的导电性和拥有大量的孔隙结构,能够有效地提高电极的比表面积,使得锂离子电池能够获得更多的存储空间。
此外,石墨烯的高载流量特性,也使得锂离子电池的充放电速度有了大幅度的提升,大大提高锂离子电池的使用效率。
2. 石墨烯正极材料石墨烯也可以作为锂离子电池的正极材料。
由于石墨烯具有优异的电导率和化学稳定性,能够保持正常的电压和电池的工作稳定性。
同时,石墨烯还可以有效提高锂离子电池正极的比表面积,从而增加电池的储能密度。
三、石墨烯在超级电容器中的应用超级电容器是指一种能够以毫秒级别完成充放电的储能设备,具有高功率密度和长循环寿命等特点。
石墨烯在超级电容器中的应用也是十分重要的。
1. 石墨烯超级电容器负极材料由于石墨烯具有极高的比表面积和导电性,能够提高超级电容器负极材料的电容量和功率密度。
目前,石墨烯已被成功地应用于超级电容器的负极材料中,使得超级电容器的储能密度和功率密度都得到了大幅度的提升。
2. 石墨烯超级电容器正极材料石墨烯也可以作为超级电容器正极材料,用于提高电容器的储能密度。
石墨烯具有很高的电导率和化学稳定性,能够保持正常的电压和电池的工作稳定性。
同时,其高比表面积和孔隙结构也能有效提高超级电容器正极材料的电容量,提高电容器的储能密度。
石墨烯超级电容
石墨烯超级电容
鉴于石墨烯的特殊物理性质,它被广泛应用于储能技术之中,特别是超级电容器技术,其中有许多受益于该技术的优势,给电子行业带来了诸多发展机遇。
石墨烯超级电容器技术拥有小体积、高电容、高电压、低损耗和低温度运行等优势,可用于替代锂离子电池,具有广阔的应用前景。
石墨烯超级电容器具有抗湿度和振动强度高的优势,而且能够轻松应对高温和低温环境,是一种非常有用的储能技术。
石墨烯的基本原理是通过锂离子分子在电极层之间的穿梭来进
行电容释放,从而实现超高储能效率,从而达到超高的电能存储容量。
石墨烯超级电容器由离子液体、碳极片、离子导体膜和外壳等构成,它们共同参与电极层之间的穿梭物质的电容释放,从而实现同样的储能效率,它的存储容量比锂离子电池高出数倍。
此外,石墨烯超级电容器也具有可持续性和安全性的优势,它不会对环境造成任何污染,而且其电容释放集中在电极层之间,不会发生火灾和爆炸危险。
这些特性使石墨烯超级电容器变得更加安全可靠。
现在,石墨烯超级电容器已经发展到可以在无人机、汽车、手机、电子设备、电子芯片等领域应用,它为这些领域提供了更安全、更可靠的储能技术,大大降低了成本。
石墨烯超级电容器技术日益成熟,将会在电子行业引发一场革命,成为电子行业今后可持续发展的重要技术支撑。
它能够满足行业对可靠性、安全性和可持续性的高要求,为行业的发展提供了有力支持。
总之,石墨烯超级电容器技术可以有效提高电子行业的安全性、可靠性和可持续性,将成为电子行业未来的战略性技术支撑和发展动力。
超级电容器原理介绍及实验分析
五、结果与分析1、实验过程总结与知识点查阅○1超级电容器的结构:[1]超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。
本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。
○2超级电容器的分类及原理分为双电层电容器和赝电容器双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。
在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。
在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。
同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。
整个超级电容器相当于两个电容器串联。
循环性能好,比电容较低。
赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。
在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。
循环性能差,比电容高。
○3超级电容器的电极材料[2]:(1)炭材料:活性炭、碳纳米管、石墨烯等。
主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。
( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。
(3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。
○4循环伏安法测试及其原理循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。
从伏安图的波形、氧化还原电流的数值及其比值、峰电位等可以判断电极反应机理。
而在本实验中运用循环伏安法,在得到CV 曲线后首先可以从曲线的对称性分析得到样品的循环性能,之后可以通过曲线围成的面积计算样品的电容大小。
《2024年石墨烯的制备及在超级电容器中的应用》范文
《石墨烯的制备及在超级电容器中的应用》篇一一、引言随着科技的进步,纳米材料的应用已经引起了科学界的广泛关注。
在众多纳米材料中,石墨烯因其独特的物理、化学性质,特别是其超高的电导率和极大的比表面积,已成为近年来材料科学领域的研究热点。
本篇论文旨在深入探讨石墨烯的制备方法以及其在超级电容器中的应用。
二、石墨烯的制备石墨烯的制备方法多种多样,常见的包括机械剥离法、化学气相沉积法、氧化还原法等。
1. 机械剥离法:此方法主要是通过机械力将石墨薄片剥离成单层或多层石墨烯。
此法虽然可以制备出高质量的石墨烯,但生产效率较低,不适合大规模生产。
2. 化学气相沉积法:此法通过在高温条件下使气体中的碳原子在基底上沉积形成石墨烯。
此法可以制备大面积的石墨烯,但制备过程需要高温和特定的气体环境。
3. 氧化还原法:此法首先通过强酸等化学试剂将天然石墨氧化,形成氧化石墨(GO),然后通过还原GO得到石墨烯。
此法生产效率高,成本低,适合大规模生产。
三、石墨烯在超级电容器中的应用超级电容器是一种具有高能量密度和高功率密度的储能器件,而石墨烯因其独特的物理性质,使其成为超级电容器的理想材料。
1. 石墨烯的电化学性质:石墨烯具有超高的比表面积和良好的导电性,这使其在电化学反应中能够提供更多的活性位点,从而提高电容器的电容量。
2. 石墨烯在超级电容器中的应用:由于石墨烯的优异性能,其被广泛应用于超级电容器的电极材料。
在电极中,石墨烯不仅可以提供大量的电荷传输通道,还可以通过其大比表面积提供更多的电荷存储空间。
此外,石墨烯的优异导电性可以降低电极的内阻,从而提高电容器的充放电速率。
四、结论随着科技的发展,石墨烯的制备技术已经越来越成熟,其在超级电容器中的应用也越来越广泛。
未来,随着对石墨烯性能的深入研究以及制备技术的进一步优化,石墨烯在超级电容器以及其他领域的应用将更加广泛。
同时,我们也需要关注到石墨烯在实际应用中可能面临的问题和挑战,如成本、环境影响等,以期在未来的研究中找到更好的解决方案。
多孔三维寡层类石墨烯:超高功率超级电容器碳材料
属 基 底 上 沉 积 的碳 材 料 的 电 导率 通 常 优 于 氧 化 物 基 底 沉 积 的碳 材 料 这 一现 象 , 他们 将 原 位 氧 化 镁 模 板 法 拓 展 为 原 位 多孔 纳 米 铜 模 板 法 , 以聚 甲 得 到 了一种 新
8 56
Ac t a P h y s . 一 C h i m. S i n . 2 0 1 7
Vo l - 3 3
离子 液 体 中均 有 良好 浸 润性 。这种 3 DG材 料 在水 系和 离 子液 体 电解 液 E D L C中 的功率 密度 分 别高达 1 0 6 6 . 2 和7 4 0 . 8 k W・ k g ~ , 其 能 量 密 度 、循 环 稳 定
彳 . 、
里
堇 蓍
錾
奄
Q-
言
E n e r g y d e n s i t y / ( Wh ‘ k g )
双 电层 超 级 电容 器( E D L C) 通 过 表 面 静 电吸 附 存 储 电 荷 , 具 有 功 率 密 度 高 、循 环 寿 命 长 、 安 全 性 好 等 优 点 ,得 到 科 技 界 的 广 泛 重 视 。理 想 的
性 均处 于 E DL C的先 进 水平 ,展 示 出在超 高 功率 和
Fe r r e i r a , R J . ; Pi r k l e , A. ; Wa l l a c e , R. M. ; Cy c h o s z , K. A ; Th o mm e s , M. ; S u , D. ; S t a c h , E. A. ; Ru o f, i R. S . S c i e n c e 2 01 1 ,
基于石墨烯材料的柔性超级电容器研究_石吉磊
基于石墨烯材料的柔性超级电容器研究石吉磊,杜文城,殷雅侠,郭玉国*,万立骏*中国科学院化学研究所,北京,100190,*Email: ygguo@, wanlijun@随着电子科技的迅速发展,柔性电子器件正逐渐进入人们的生活。
柔性电子器件的实现需要柔性电源的驱动。
因此发展可弯曲,高性能的柔性储能器件变得尤为必要。
超级电容器作为新型的高性能电化学储能器件已经得到广泛研究和应用。
可弯曲甚至可折叠的柔性超级电容器正逐渐成为一个趋势。
石墨烯作为最新形态的碳单质,具有一系列优越的物理化学性能,以及易于制备柔性材料。
因此,石墨烯基材料成为制备柔性储能器件的理想材料。
我们通过简单的水热技术制备了一种3D有序的石墨烯基材料并用于构建柔性超级电容器器件[1]。
所制备的柔性超级电容器器件表现出高的比电容(220F g-1),优良的柔性以及循环稳定性。
弯曲状态下循环10000圈比电容保持率大于80%。
这一优良的电化学性能主要归因于其有序的3D结构有利于离子的快速传输。
此外,该材料的合成过程及柔性电极片的制备均简单、环境友好、具备普适性,不仅可以用于制备超级电容器电极材料也可应用于柔性锂离子电池等领域。
Fig. 1 (a) Nyquist plots of rGO and H-rGO, (b)H-rGO both normal and bending state Cyclic voltammograms at a scan rate of 200 mV s-1 (c), (d) Two H-rGO devices connected in series can power the digital temperature and humidity meter at both normal and bending state. (e) H-rGO 10,000 cycles at a scan rate of 200 mV s-1under bending state.关键词:石墨烯;柔性;超级电容器参考文献[1] Shi J. L.; Du W. C.; Yin Y. X.; Guo Y. G.; Wan L. J., J. Mater. Chem. A, 2014, DOI: 10.1039/C4TA01547A, in press.Graphene-based materials for flexible supercapacitor devices Ji-Lei Shi, Wen-Cheng Du , Ya-Xia Yin, Yu-Guo Guo* and Li-Jun Wan *Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190In our work, a facile hydrothermal reduction of self-assembled 3D graphene oxide (GO) is reported. Binder-free flexible supercapacitor is fabricated using the as-obtained 3D graphene, which exhibits high gravimetric capacitance (up to 220 F g–1) and excellent cycle stability with >80% capacitance retention over 10,000 cycles under bending state.。
什么是超级电容!
超级电容(SuperceII)是一种新型储能装置,是以石墨烯等复合材料为正极材料•、在活性炭材料中包裹碳纳米管或石果烯等导电高分子材料,利用充放电过程中的电荷迁移来储存电能,同时又能像普通电容器一样进行能量存储和充放电。
超级电容可分为电化学超级电容、物理超级电容器。
电化学超级电容器(e1ectriccata1yticpump)是指在充放电过程中的电子与离子的交换与扩散作用下,通过电解质中离子扩散的速度来储存能量(或功率)的装置,其本质是利用了氧化链作为储能材料。
物理超级电容(e1ectriccata1yticpump)是指在充电过程中,活性炭内部的微孔中存储了大量电荷;在放电过程中,活性炭表面形成的电介质极易受到环境影响而发生体积变化,同时会使电容降低。
物理超级电容器一般用于航天、国防军工、车辆、大型港口设备、配电网等各种应用领域。
物理超级电容和电化学超级电容在能量存储方式上都可以采用库伦效率低、能量密度低、循环寿命短、不可逆性等问题。
今天小编给大家讲解下超级电容应用领域和优势:一、应用领域1 .新能源汽车:电动汽车、混合动力汽车等;2 .储能电站,3 大型港口设备;4 .医疗卫生行业:mri等高精密医疗器械;5 .航天卫星:星箭分离电源系统;6 .工业电子:应急照明、电梯、电动叉车等;7 .表计:水、燃气表智能表计等:8 .国防军工:坦克、电磁炮、激光武器等大功率能量脉冲武器:9 .风力发电:风力变桨系统太阳能光伏发电;10 .智能电网等:二、特点和优势(1)高功率密度:输出功率密度高达IOKW∕kg,是任何•种化学电源所无法比拟的,是•般蓄电池的数十倍;(2)妥善解决了贮存设备高比能量输出之间的矛盾。
超级电容器可以提佛那个高比功率的同时,其比能量可以达到5-10Wh/kg:(3)充放电循环寿命长,达到IOO次量级;(4)工作温度范围宽∙40°C~+70°C:(5)充电时间短。
高性能石墨烯材料在超级电容器中的应用
高性能石墨烯材料在超级电容器中的应用随着科技的快速发展,人们对储能技术的需求也越来越高。
传统电池的能量密度相对较低,而超级电容器由于具有高能量密度、快速充放电和长寿命等特点,逐渐成为储能技术研究的焦点领域之一。
在超级电容器的研究中,石墨烯材料表现出了令人瞩目的应用潜力,具有了广泛的应用前景。
1. 背景介绍超级电容器是一种以电吸附和电双层电容为储能机制的设备。
它能以高速率吸附和释放电荷,储能效率高,循环寿命长,是现代电子器件和电力系统中理想的储能技术之一。
然而,传统超级电容器的能量密度相对较低,限制了其在实际应用中的推广。
2. 石墨烯材料在超级电容器中的优势石墨烯是一种由碳原子单层构成的二维材料,具有出色的电学、光学、导热和机械性能。
这些特性使得石墨烯成为超级电容器领域的研究热点。
使用石墨烯材料制备的超级电容器相比传统电容器具有以下优势:2.1 高能量密度石墨烯的大表面积和高电导率使得其能够存储更多的电荷。
其高比表面积可以提供更多的吸附位点,从而增加了电荷的储存量。
与此同时,石墨烯的高电导率也能够有效地减少电池内阻,提高能量转化效率。
2.2 快速充放电速度石墨烯的高电导率和低内阻使得超级电容器具有快速充放电的特点。
相比传统超级电容器,石墨烯材料能够更快地吸附和释放电荷,从而实现高速充电和高速放电。
2.3 长循环寿命传统超级电容器的循环寿命较短,会在充放电循环过程中出现性能衰减。
而石墨烯具有出色的力学稳定性和化学稳定性,能够有效地抵抗充放电过程中的机械和化学破坏,从而延长超级电容器的寿命。
3. 石墨烯材料在超级电容器中的应用案例随着对石墨烯材料性能了解的进一步加深,科学家们不断探索石墨烯在超级电容器中的应用。
以下是一些石墨烯材料在超级电容器领域的应用案例:3.1 改进电解液结构石墨烯材料能够通过调控电解液组分和结构,提高电解液的电导率和离子迁移速率。
通过在超级电容器的电解液中添加适量的石墨烯材料,可以有效地提高超级电容器的能量密度和充放电速度。
石墨烯制成的超级电容器将取代电池
俄亥俄州代顿市Nanotek Instruments公司新研制的石墨烯超级电容器,单位质量可储存的能量相当于镍氢电池,打破了世界纪录,而且充电或放电只需要短短几分钟、甚至几秒钟,有望取代电池。
相关研究论文发表在Nano Letter上。
该超级电容器电极的制备采用了石墨烯,混合5%的超级P(一种乙炔黑,作用相当于导电添加剂)和10%的聚四氟乙烯(PTFE)结合剂。
研究人员把产生的悬浮液涂在集电器表面,把硬币大小的电容器安装在隔离箱里。
电解质-电极界面的制备,采用了“Celguard隔膜-3501”,而电解液是一种化学品,叫做EMIMBF4。
该公司对硬币大小超级电容器的测试表明,石墨烯电极的超级电容器的能量密度为85.6 Wh/kg,而镍氢电池和锂离子电池分别为40-100 Wh/kg和120 Wh/kg,这是有史以来基于碳纳米材料的双电层超级电容器所达到的最高值。
研究小组成员还包括来自Angstron材料研究所的科学家,他们正在努力工作以进一步提高超级电容器的能量密度。
电容器电极材料研制方面取得系列进展。
超级电容器是介于传统物理电容器和电池之间的一种新型储能器件,具有绿色环保、充电时间短、使用寿命长和工作温度范围宽等优点,其核心部件是性能优异的电极材料。
石墨烯片(GS),作为一种新型的碳材料,具有良好的导电性和大的比表面积,预计将其作为超级电容器的电极材料具有广阔的应用前景。
但是纯石墨烯表面缺少功能基团导致其很难与其它材料复合或在器件上进行组装,从而限制了其深入应用。
因此,对石墨烯表面进行化学修饰以便于获得各种功能复合材料是当前研究的一个热点。
图1:不同PANi含量的PSS-GS/PANi“纸”电极(左)和PSS-GS与PANi纳米纤维之间的静电吸附示意图(右)图2 :PSS-GS与二氧化锰在基底上的层层自组装示意图固体润滑国家重点实验室研究人员利用化学修饰后的石墨烯(PSS-GS)与聚苯胺(PANi)纳米纤维之间的静电吸附作用,制备了PSS-GS/PANi 复合材料胶体溶液,然后抽虑成膜得到了柔性的PSS-GS/PANi复合“纸”电极材料。
石墨烯基超级电容器研究
[ 3 1 Y .H e ma n d e z ,V .N i c o l o s i ,M.L o t y a ,H i g h - y i e l d p r o d u c t i o n o f g r a p h e n e b y l i q u i d — p h a s e e x f o l i  ̄ i o n o f g r a p h i t e [ J ] .N a t u r e N a n —
一Байду номын сангаас
,
料具 有 更 高 的 电容量 , 其 中碳 纳米 管 与 石 墨烯 的复 合材 料 电容 量 高 达7 3 0 m A h / g , C 与石 墨烯的复合材料 的电容量 高达 7 8 4 m A h / g , 并 且研究发现石 墨烯层数越少 , 层 间距越大 , 越容易掺杂提高 电池性 能 。因此 , 石 墨烯 材 料 在 电池 电极 材 料 应 用 方面 显 示 出 了诱 人 的前 景, 但 目前 的石墨烯层数不 可控 , 制备出尺寸可控 的石墨烯材料并 对其有效掺杂 , 有望开发出性能优异的超级 电容器 。 3结束语 在超 级 电容 器研 究 中 , 过 渡 金属 氧 化 物 电极 的 比容 量 可达 到 碳 电极材料 的 1 0 — 1 0 0倍 , 金属氧化物 电极材料在制备上采取掺杂 、 纳 米化等特殊处理 , 可 以有 比碳电极 电容器更好的性 能 , 有 良好 的发 展 前 景 。采 用石 墨 烯 大 的 比表 面积 和 高 的 电导 率 , 经 金 属 氧化 物 掺 杂处理有望得到高能量密度 、 高效率 、 使 用寿命长和低成本 的石墨 烯 基 超级 电容 器 , 为微 纳 电子 工 业 发展 及 汽 车 等机 动 设 备 和 器件 的 发展提供重要的能源动力基础 。
上海绿态电子科技有限公司石墨烯超级电容器产品手册-GTCAP
上海绿态电子科技有限公司品质管理系统:工业标准ISO9001-20152020产品手册地址:上海市浦东新区张江高科碧波路5号,邮编201203电话:400-061-5118************手机:+86-158********Skype:greentech58QQ:361796650邮箱:*********************网址:Https://GT CAP®高端电容器供应商石墨烯超级电容器GTCAP设计和生产的石墨烯超级电容器和储能模组,具有能量密度大、功率大、寿命长、温度范围宽、自放电小等特点。
石墨烯超级电容器GTCAP®GTCAP 石墨烯超级电容器和其他储能产品对比:项目GTCAP 石墨烯超级电容器铅酸蓄电池锂电池工作温度范围-40℃~+70℃0℃~+45℃-25℃~+60℃循环寿命>50,000次300~500次1000~2000次能量密度75Wh/kg 40Wh/kg 150Wh/kg 功率密度500W/kg 150~400W/kg 315W/kg 维护免维护通常费用高通常费用高充电时长≤10分钟8~12小时6~8小时爆炸风险无无有燃烧风险无无有电极材料活性炭铅酸锂氧化物与碳材料电解液材料有机溶剂硫酸溶液有机溶剂蛛网图优势单体石墨烯超级电容器GT CAP®石墨烯超级电容器单体单体产品型号GTEG-2R7-153UN3566GTEG-2R7-903UT60138GTEG-2R7-104UT66161GTEG-2R7-154UT66161GTEG-2R7-164UT66161容量15000F/4.5Ah90000F/25Ah100000F/30Ah150000F/40Ah160000F/45Ah 最佳工作电压 2.7V~1.5V 2.7V~1.5V 2.7V~1.5V 2.7V~1.5V 2.7V~1.5V 储能10Wh58Wh69Wh92Wh103Wh 工作温度-40℃~+65℃-40℃~+65℃-40℃~+65℃-40℃~+65℃-40℃~+65℃最大充电电流10A150A180A240A270A循环寿命(100%DOD)30000次50000次50000次50000次50000次尺寸35*66mm60*138mm66*161mm66*161mm66*161mm净重120g800g1200g1250g1255gGT CAP®提供瞬时能量在-20℃放电能量≥70%x初始能量在-40℃放电能量≥53%x初始能量在-20℃充电能量≥92%x初始能量在-40℃充电能量≥68%x初始能量50000次循环寿命或>30年低ESR增强太阳能效率高免维护高可靠性50000次循环寿命或>30年性能良好免维护温度范围宽高可靠性安全GTCAP石墨烯超级电容器广泛应用于UPS、引擎冷启动、太阳能路灯、太阳能系统、电信基站、军用设备、汽车、AGV和叉车等。
石墨烯在能源领域中的应用及发展趋势
石墨烯在能源领域中的应用及发展趋势石墨烯是一种新型的材料,它是由碳原子形成的二维点阵结构,具有非常优异的物理、化学和机械性质。
作为一种极薄的膜材料,石墨烯在过去几年中引起了科学界和工业界的广泛关注。
石墨烯的应用领域非常广泛,其中能源领域是石墨烯应用的主要方向之一。
一、石墨烯在能源领域中的应用1. 太阳能电池石墨烯作为导电性能极强的材料,可以作为太阳能电池的电极材料。
石墨烯的导电性能比传统的电极材料如二氧化钛和铂更好,这意味着太阳能电池可以更高效地转换太阳能。
2. 锂离子电池石墨烯具有非常高的比表面积和导电性能,这使它成为锂离子电池的理想电极材料。
石墨烯作为锂离子电池的电极材料,可以大大提高电池的能量密度和充电速度。
3. 超级电容器石墨烯可以制成超级电容器的电极材料,它具有非常高的电容量和循环稳定性。
这使得超级电容器可以具有更高的能量密度和更长的使用寿命。
4. 储氢材料石墨烯可以制成储氢材料,它具有很强的吸氢性能。
石墨烯作为储氢材料可以在氢燃料电池、储氢罐等领域中发挥重要作用。
二、石墨烯在能源领域中的发展趋势石墨烯在能源领域中的应用正在不断拓展和深入。
未来几年里,石墨烯在以下几个方面会得到进一步发展:1. 石墨烯太阳能电池的商业化应用目前,石墨烯太阳能电池还未广泛商业化应用。
但是,石墨烯太阳能电池具有明显的优势:高效转换率、良好的耐候性及长寿命等,这使得它具有广泛的市场前景。
未来几年里,石墨烯太阳能电池的商业化应用将会逐步扩展。
2. 石墨烯锂离子电池的进一步提升现有的锂离子电池存在能量密度低、寿命短等缺陷,这限制了锂离子电池在电动汽车、便携式电子产品等领域的应用。
石墨烯作为锂离子电池的电极材料,可以解决这些问题。
未来几年,石墨烯锂离子电池的能量密度和循环寿命会继续提高,使得锂离子电池具有更广泛的应用前景。
3. 石墨烯超级电容器的应用扩展超级电容器作为一种高性能储能设备,具有很强的市场需求。
石墨烯作为超级电容器的电极材料,可以大大提高电容量和充电速度。
基于石墨烯负极赝电容正极的超级电容器电极材料制备及性能研究
基于石墨烯负极赝电容正极的超级电容器电极材料制备及性能研究超级电容器的能量密度E与其比电容Cm成正比,而与其工作电压U的二次方成正比(E=1/2CmU2)。
因此,提高工作电压是提高超级电容器能量密度的有效途径。
利用储能电位范围不同的正、负极材料组装非对称型超级电容器,可有效提高工作电压,进而提高能量密度。
本文研究了氧化石墨烯(Graphene Oxide, GO)的水热还原,构建了三维分布还原氧化石墨烯(reduced Graphene Oxide, rGO),研究了Ni(OH)2纳米片阵列和NiO多孔纳米片阵列的制备。
利用X-射线光电子能谱(XPS)和拉曼光谱(Raman)研究了GO的还原,利用扫描电镜(SEM)和透射电镜(TEM)研究了产物形貌,利用X-射线衍射(XRD)研究了产物晶体结构。
利用循环伏安(CV)扫描、恒电流充放电、电化学交流阻抗(EIS)等技术研究了产物的超电容性能。
以rGO为负极、分别以Ni(OH)2纳米片阵列和NiO多孔纳米片阵列为正极,组装了非对称模拟超级电容器,并研究其性能。
首先将GO分散于具有三维结构的泡沫镍(NF)基底上,然后对其进行水热还原,制备分布于三维NF基底上的还原氧化石墨烯(NF/rGO)。
XPS和Raman光谱研究结果表明,水热还原可有效去除GO上的含氧官能团,并对其结构缺陷有一定的修复作用。
TEM和SEM观测结果表明,rGO形成很薄的片层,呈现出透明褶皱结构,NF/rGO上的rGO紧密附着于基底上形成三维分布,这有利于rGO与电解液充分接触而发挥储能性能。
NF/rGO的CV曲线具有双电层电极材料典型的矩形,其恒电流充电与放电曲线基本成线性、且相互对称。
在NF/rGO的交流阻抗波特图上,低频区的相位角接近-90°,表明其具有良好的超电容性能。
研究了水热反应温度、水热体系中GO浓度、水热反应次数及水热反应时间对产物性能的影响,发现在2 mg/ml的GO分散体系中,150℃下保温1h,水热还原1次制备的NF/rGO-2-150-1h-1超电容性能优异,其波特图上低频区相位角为-86.5°,充放电电流密度为0.5 A/g时的比电容为184.5 F/g。
石墨烯在能源领域的应用
石墨烯在能源领域的应用石墨烯作为一种新型的碳材料,具有独特的结构和优异的性能,在能源领域具有广泛的应用前景。
石墨烯具有高导电性、高热导性、高强度、高柔韧性等特点,使其成为研究热点之一。
本文将从石墨烯在太阳能、储能、传感器等方面的应用进行探讨。
一、石墨烯在太阳能领域的应用1.1 石墨烯作为光伏材料石墨烯具有优异的光电特性,可以作为光伏材料应用于太阳能电池中。
石墨烯的高导电性和光吸收性能使其能够有效转换光能为电能,提高光伏电池的转换效率。
石墨烯的柔韧性和轻薄性也使其可以制备成柔性太阳能电池,适用于各种曲面和移动设备。
1.2 石墨烯增强的太阳能光热材料石墨烯与其他材料复合可以制备出具有优异光热性能的材料,用于太阳能集热器等领域。
石墨烯的高热导性和稳定性使其能够提高光热材料的传热效率和耐高温性能,有望推动太阳能热利用技术的发展。
二、石墨烯在储能领域的应用2.1 石墨烯超级电容器石墨烯作为电容器电极材料,具有高比表面积和优异的导电性能,可以制备出高性能的超级电容器。
石墨烯超级电容器具有高能量密度、高功率密度、长循环寿命等优点,可用于储能系统、电动汽车等领域,为能源存储提供可靠解决方案。
2.2 石墨烯锂离子电池石墨烯作为锂离子电池的电极材料,具有高电导率和优异的化学稳定性,可以提高电池的充放电速率和循环寿命。
石墨烯锂离子电池具有高能量密度和安全性,是下一代高性能电池的重要发展方向。
三、石墨烯在传感器领域的应用3.1 石墨烯气体传感器石墨烯具有高灵敏度和快速响应特性,可以用于制备气体传感器,检测环境中的有害气体。
石墨烯气体传感器具有高灵敏度、高选择性和快速响应的优点,可以应用于环境监测、工业安全等领域。
3.2 石墨烯生物传感器石墨烯具有大量的官能团结合位点,可以用于制备生物传感器,检测生物分子的存在和浓度。
石墨烯生物传感器具有高灵敏度、高特异性和快速响应的特点,可以应用于生物医学诊断、食品安全检测等领域。
综上所述,石墨烯在能源领域的应用具有广阔的前景和重要意义。
电化学储能中石墨烯材料的应用研究
电化学储能中石墨烯材料的应用研究随着全球对节能减排和可再生能源的追求,储能技术得到了广泛的关注和研究。
电化学储能技术是其中一种重要的储能方式。
石墨烯作为一种新型的纳米材料,因其独特的结构和性质,成为电化学储能领域中备受关注的材料。
一、石墨烯材料的特性及其在电化学储能中的应用石墨烯是由碳原子构成的超薄二维材料,具有高比表面积、高电导率、高物理化学稳定性和优异的电化学性能,因此成为电化学储能中的重要材料。
1.1高比表面积石墨烯单层结构的比表面积极高,达到了2630平方米/克,是传统电极材料如金属和碳的几倍,这使得石墨烯能够提高电极表面的反应活性,增强储能效果。
1.2高电导率石墨烯的导电性能极强,理论上可以达到电阻率为0的状态。
这种导电性能可以使石墨烯作为电极材料,存在低内阻的相对优势,从而提高电化学储能的效率。
1.3电化学稳定性在电化学反应中,材料容易受到化学反应的影响并且遭受损坏,从而影响储能性能。
然而,石墨烯的结构十分稳定,在多数实验条件下不容易受到化学反应的影响,保持良好的电化学性能稳定性。
1.4优异电化学性能石墨烯材料在电化学储能中也表现出了优异的性能,如高效的离子传输和储存,较长的循环寿命等。
这些性能可以使石墨烯在不同类型的电化学储能设备中有广泛的应用。
二、石墨烯材料在锂离子电池中的应用锂离子电池是一种广泛使用的电化学储能设备,其电极材料对储能性能起着决定性作用。
目前,石墨烯被广泛研究用作锂离子电池的电极材料,以期提高储能效率。
2.1 石墨烯作为负极材料目前,商用锂离子电池的负极材料多采用石墨材料。
石墨烯有着比石墨更高的比表面积和导电性能,可以提高电池储能密度,减少电极材料的体积和重量。
同时,石墨烯作为电化学储能材料具有高的可逆容量,循环寿命长,这些优点使得石墨烯在实际应用中有广泛的应用前景。
2.2 石墨烯作为正极材料锂离子电池的正极材料主要是金属氧化物类材料,如钴酸锂、锰酸锂、三元材料等。
超级电容器电极材料
超级电容器电极材料超级电容器是一种储能装置,它具有高能量密度、高功率密度、长循环寿命和快速充放电等优点,因此在电子产品、新能源汽车、医疗设备等领域具有广泛的应用前景。
而超级电容器的性能很大程度上取决于电极材料的选择和设计。
本文将重点介绍超级电容器电极材料的研究进展和应用前景。
目前,超级电容器的电极材料主要包括活性碳、金属氧化物和导电聚合物等。
活性碳是一种常用的电极材料,具有较高的比表面积和良好的孔隙结构,能够提供丰富的储能空间。
金属氧化物电极材料具有较高的比电容和良好的电化学稳定性,如氧化铁、氧化钼等。
而导电聚合物电极材料具有良好的导电性和柔韧性,如聚咔唑、聚吡咯等。
这些电极材料各具特点,可以根据超级电容器的具体应用需求进行选择和设计。
近年来,石墨烯作为一种新型碳基材料,受到了广泛关注。
石墨烯具有高导电性、高比表面积和优良的机械性能,被认为是一种理想的超级电容器电极材料。
研究表明,采用石墨烯作为超级电容器电极材料,可以显著提高电容器的能量密度和功率密度,同时具有良好的循环寿命和快速充放电特性。
因此,石墨烯在超级电容器领域具有巨大的应用潜力。
除了石墨烯,碳纳米管也是一种备受关注的电极材料。
碳纳米管具有优异的导电性和机械性能,能够有效提高超级电容器的电化学性能。
研究表明,将碳纳米管与其他电极材料复合使用,可以显著提高超级电容器的性能,如提高比电容、降低内阻等。
因此,碳纳米管在超级电容器电极材料中也具有重要的应用前景。
此外,金属有机骨架材料(MOFs)和碳化硅等新型材料也被广泛研究用于超级电容器电极材料。
MOFs具有高孔隙度和可调控的结构,能够提供丰富的储能空间和优异的电化学性能。
碳化硅具有优异的导电性和化学稳定性,能够有效提高超级电容器的性能。
因此,这些新型材料在超级电容器领域也具有广阔的应用前景。
总的来说,超级电容器的性能取决于电极材料的选择和设计。
目前,石墨烯、碳纳米管、MOFs和碳化硅等新型材料被广泛研究用于超级电容器电极材料,能够显著提高超级电容器的能量密度、功率密度和循环寿命,具有广阔的应用前景。
石墨烯 超级电容
石墨烯超级电容
石墨烯超级电容是一种利用石墨烯材料制造的超级电容器。
石墨烯是由碳原子形成的二维晶体结构,具有高度的导电性、导热性和机械强度,是一种非常理想的电子材料。
相对于传统电容器,石墨烯超级电容具有以下几个显著优势:
1. 高能量密度:石墨烯超级电容器具有较高的能量存储密度,可以存储更多的电能。
2. 高功率密度:石墨烯超级电容器具有快速充放电速度,可以在短时间内释放大量的电能。
3. 长寿命:石墨烯超级电容器具有良好的循环稳定性和长寿命,可以进行数万次的充放电循环。
4. 安全性:相对于传统锂离子电池,石墨烯超级电容器不会因为电池燃烧等问题造成爆炸,具有更高的安全性。
由于石墨烯超级电容器具有以上优势,因此被广泛应用于电动车、储能系统、智能手机和电子设备等领域,为电子产品的使用提供了更长久的电力支持。
此外,还有一些研究在探索如何将石墨烯材料与其他材料相结合,以进一步提高石墨烯超级电容器的性能。
石墨烯储能材料项目分析
1.项目概况
拟建地点:长沙国家级高新技术开发区隆平高科技园
建设性质:新建
建设总用地:200.00亩(133333.33m2)
建设周期:24个月(2014年6月至2016年6月)
生产规模
项目一期建设完成后,达产年将年产石墨烯超级电容0.8万套,销售收入40000.00万元;锂离子动力储能电池40万KVAH,销售收入32000.00万元,本项目达产年销售总收入72000.00万元。
2.土地基地
首期建设在长沙隆平高科技园豪丹科技园。
首期租用厂房及办公场所,位于豪丹科技园三栋1,2,3楼近5000平方米。
二期公司自己购买土地并建设厂房、办公等场所。
土地以150万Ah/天生产能力进行规划,约需厂房10万平方米,拟购土地200亩。
3.工程建设
首期工程(2014年5月完成)以5万Ah/天的生产能力建设,启动按日产2万Ah/天计算。
二期工程(2015年5月完成)以30万Ah/天的生产能力建设。
三期工程(2016年5月完成)以50万Ah/天的生产能力建设。
根据市场增长的情况调整,争取达到100万Ah/天以上。
4.产能规模
首期(2014年05月-2015年5月) 产能规模为5万Ah/天;
二期(2015年6月-2016年5月)产能规模为30万Ah/天;
三期(2016年6月-)产能规模为50万Ah/天。
其中2016年的产能规模根据市场增长的情况,争取100万Ah/天以上。
5.项目总投资
项目一期总投资72883.82万元,其中固定资产投资66031.06万元,流动资金6852.77万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红桥新区石墨烯超级电容器项目介绍
一、概况
石墨烯超级电容器项目,是由贵州新碳高科有限责任公司在六盘水投资1.6亿元新建设的石墨烯应用技术,项目占地30亩,建设3万平方米多层标准化厂房,主要生产石墨烯超级电容器,目前该项目已基本完成场平、近期将开展主体厂房建设,计划2 014年10月底达到试生产条件。
贵州新碳高科有限责任公司成立于2011年,公司总部在贵阳高新区,主要生产石墨烯,该项目是由位于美国硅谷的海外贵州促进会应贵州省有关领导要求,向贵州省推荐全球领先的高新技术项目。
石墨烯超级电容器项目,主要采用石墨烯为主要原材料,利用石墨烯的高传导性、高石墨烯超级电容器比表面积,生产石墨烯超级电容器。
石墨烯超级电容器是近年来出现的一种介于传统电容器和二次电池之间的新型储能器件,属于新材料高科技无污染的产品。
它在保留传统电容器功率密度大的特点的同时,具有可达法拉级甚至数千法拉的静电容量,因此其具有能量密度较高的特点,同时还具有充放电速度快、充放电效率高、寿命长、安全性好、环境好等特点。
高性能的石墨烯电容器产品具有广泛的市场应用前景,针对高性能、超薄以及大功耗电子产品如智能手机、平板手持电脑、大功率节能LED照明、超薄LCD电视、电动
车电池等产业上,具有极高的应用价值,超级电容器在很多领域都有广阔的应用前景。
三、超级电容器应用
超级电容器自面市以来,在电动汽车、混合燃料汽车、特殊载重汽车、电力、通信国防、消费电子产品等众多领域有着巨大的应用价值和市场潜力,全球需求量快速扩大,已成为电源电池领域内新的产业亮点而被世界各国广泛关注。
当前,国内相关企业也都在扩大生产规模,增加产品的多样性。
1、市场前景非常广阔。
超级电容器市场需求量非常大,并且以很高的速度增长,而超级电容器市场规模也在高速扩展。
2、超级电容器有着巨大的市场潜力。
超级电容器相对于其它储能电源优势很明显,但它占整个能量储存装置的市场份额其实还很小。
3、通过供需情况的比较发现,国内能规模生产的厂家较少,生产规模还远远无法满足国内市场的需求,所以国内大多数用户还是通过进口来满足需要。
在市场需求迅速增长的强力推动下,国内现有的超级电容器生产企业会积极融资扩产,国际从事超级电容器生产的大型企业也会把战略投资的目光锁定中国,另外很多相关生产企业(如铝电解电容器生产企业)也有进军超级电容器领域的意向,准备介
入这一新兴行业。
其实目前超级电容器在市面上远没有其它电池那么常见,超级电容器更多的是被用于成品的配件使用,所以其购买方式主要还是批量定制为主。
这也就从一定程度上限制了其推广。
正因如此真正用于稳定储能的超级电容器电池的开发才显得尤为重要。
在市场需求的刺激和愈发激烈的竞争下,几年以后超级电容器的产品会更加丰富,产品性能会更加完善,价格也会更加低廉,销售方式也会更加多样化。
石墨烯超级电容器属于标准的全系列低碳经济核心产品。
它的功率密度远高于锂电池,充放电循环次数可达50万次以上,寿命达10年以上,充电时间短,可大电流充放电,最大优点是短时间高功率输出。
鉴于其特点,它能够广泛应用于消费类电子产品领域,还能用于新能源发电系统、分布式储能系统、智能分布式电网系统领域,新能源汽车等交通领域,电磁炸弹等军用设备领域和运动控制领域等,涉及新能源发电、智能电网、新能源汽车、节能建筑、工业节能减排等各个行业,属于标准的全系列低碳经济核心产品。
四、项目建设方案、建设地点、建设工期和进度安排。
项目建设地点,位于钟山经济开发区红桥新区装备制造园,
项目占地30亩,目前该项目已完成了征地拆迁、场地平整、地质堪探和设计,现已开展基础施。
本项目团队计划设计核心生产技术路线,以研发成套技术产品与技术服务,其中最重要的是掌握特殊关键核心工艺:将规模化生产的高质量石墨烯应用于电容器研究,形成具有高容量、低电阻、性能稳定的超级电容器产品。
公司拟在产品生产计划2015年达到年产20万个60型、3000F石墨烯超级电容器个60型、3000F石墨烯超级电容器,产值达1.2亿元;2016年生产达到30万个,60型、3000F石墨烯超级电容器,产值1.8亿元;2017年达到60万个产值3.6亿元。