基于石墨烯基复合材料的超级电容器研究现状

合集下载

基于石墨烯的复合材料的制备及其在储能器件中的应用研究共3篇

基于石墨烯的复合材料的制备及其在储能器件中的应用研究共3篇

基于石墨烯的复合材料的制备及其在储能器件中的应用研究共3篇基于石墨烯的复合材料的制备及其在储能器件中的应用研究1基于石墨烯的复合材料的制备及其在储能器件中的应用研究随着人们对能源需求的增加和全球环境问题的日益加剧,储能技术逐渐成为了热门的研究领域。

其中,基于石墨烯的复合材料的制备及其在储能器件中的应用受到了广泛关注。

石墨烯是一种薄而坚硬的材料,它由单层碳原子组成。

石墨烯的特殊结构和优异性能使其在材料组合中展现出了无限的应用前景。

最近的研究表明,将石墨烯与其他材料结合起来可以显著提高其储能性能。

因此,制备基于石墨烯的复合材料已成为研究的重点。

基于石墨烯的复合材料的制备通常采用化学氧化法、还原法、溶剂剥离法等方法。

其中,化学氧化法是最常见的制备方法之一。

通过将石墨烯与某些化合物反应来实现对石墨烯的氧化,进而产生氧化石墨烯(GO)。

随后,将氧化石墨烯还原成石墨烯(rGO)并与其他材料组合制备成多层石墨烯复合材料。

在储能器件的应用中,基于石墨烯的复合材料已经被证明是一种具有潜力的电极材料。

石墨烯具有良好的导电性和纳米级的厚度,使得它可以高效的将电子导入储能器件中。

同时,它的高比表面积和良好的可调性也使得基于石墨烯的复合材料在储能器件中具有良好的性能。

例如,将石墨烯与氧化钴结合可以制备出具有良好电容性能的电极材料。

相比于传统的电极材料,基于石墨烯的复合材料能够实现更高的能量密度和更长的使用寿命。

此外,将石墨烯与其他材料复合还可以拓宽其应用范围。

例如,基于石墨烯的锂离子电池和钠离子电池电极材料也正在被研究和开发。

此外,基于石墨烯的复合材料在太阳能电池中也展示了良好的性能。

总之,基于石墨烯的复合材料的制备及其在储能器件中的应用是一个具有前途的研究领域。

未来的研究将致力于进一步优化复合材料的结构和性能,并深入挖掘其应用潜力基于石墨烯的复合材料在储能器件中具有良好的性能,拥有更高的能量密度和更长的使用寿命。

其制备方法多样且成熟,同时,将石墨烯与其他材料复合使其应用范围更加广泛。

基于氧化石墨烯的超级电容器的制备和应用研究

基于氧化石墨烯的超级电容器的制备和应用研究

基于氧化石墨烯的超级电容器的制备和应用研究随着科技的进步,电子产品的需求在不断增长。

为了应对这一需求,电池和超级电容器的研究变得越来越重要。

超级电容器是一种新型的存储能量设备,与传统的电池相比,超级电容器拥有极高的能量密度、长寿命、快速充放电等优势。

因此,其在电子、交通、航空航天等领域有着广泛的应用前景。

而基于氧化石墨烯的超级电容器具有极大的发展潜力,以下将介绍其制备和应用研究的最新进展。

一、氧化石墨烯的制备氧化石墨烯是一种由单层碳原子构成的材料,化学式为C(O)OH。

氧化石墨烯的制备方法有多种,其中常用的方法包括化学氧化法、热氧化法、电化学氧化法等。

化学氧化法是目前较为常用的制备方法。

通常将石墨粉末与混合酸(硝酸和硫酸)混合,经过氧化反应后,用水洗涤和干燥即可。

热氧化法则通过将石墨粉末加热至高温下,通过氧化反应制备氧化石墨烯材料。

这种方法制备出的氧化石墨烯具有较高的热稳定性和晶体品质,但是制备难度较大,成本较高。

电化学氧化法则是通过电化学反应制备氧化石墨烯材料。

这种方法可以使石墨表面的氧化程度更加均匀,制备出的氧化石墨烯具有良好的电化学性能。

二、基于氧化石墨烯的超级电容器的研究进展基于氧化石墨烯的超级电容器研究起步较晚,但是得到了长足的发展。

氧化石墨烯的独特结构和性质使得基于其材料制备的超级电容器具有优异的性能,例如:高能量密度、高功率密度、长寿命等特点。

1. 氧化石墨烯/聚对苯二甲酸丁二醇酯复合材料氧化石墨烯/聚对苯二甲酸丁二醇酯(PVB)复合材料是目前研究较为成熟的氧化石墨烯超级电容器材料。

这种材料的优点在于氧化石墨烯的导电性和PVB的柔软性、韧性结合在了一起,既能够提高超级电容器的能量密度,又能有效延长电容器的使用寿命。

2. 氧化石墨烯/多孔碳材料复合材料氧化石墨烯/多孔碳材料复合材料也是一种目前研究较为活跃的氧化石墨烯超级电容器材料。

通过将氧化石墨烯与多孔碳材料结合,能够有效提高超级电容器的能量密度和功率密度,并且提高超级电容器的使用寿命。

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。

它是现代科学技术的重要内容,也是未来技术的主流。

是基础研究与应用探索紧密联系的新兴高尖端科学技术。

石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。

由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。

综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。

关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。

研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。

石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。

通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。

通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。

采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。

研究表明PS微球通过公家方式连接到石墨烯的表面。

通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。

制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。

本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。

石墨烯在储能领域的应用

石墨烯在储能领域的应用

石墨烯在储能领域的应用石墨烯是一种新型的二维材料,具有非常优异的电学、热学和机械性能,被誉为21世纪的材料之王。

近年来,石墨烯在储能领域的应用也逐渐得到了广泛的关注。

在本篇文章中,我们将探讨石墨烯在储能领域中的应用及其优势。

一、石墨烯储能的研究现状目前,石墨烯在储能领域中主要应用于锂离子电池、超级电容器和金属空气电池等方面。

其中最为引人注目的是石墨烯锂离子电池的应用。

石墨烯作为锂离子电池的电极材料,具有很高的比表面积、高达2700平方米每克,能够大大提高锂离子电池的储能密度和循环寿命。

二、石墨烯在锂离子电池中的应用1. 石墨烯负极材料石墨烯可以作为锂离子电池负极材料,提高电池的储能密度。

石墨烯的导电性和拥有大量的孔隙结构,能够有效地提高电极的比表面积,使得锂离子电池能够获得更多的存储空间。

此外,石墨烯的高载流量特性,也使得锂离子电池的充放电速度有了大幅度的提升,大大提高锂离子电池的使用效率。

2. 石墨烯正极材料石墨烯也可以作为锂离子电池的正极材料。

由于石墨烯具有优异的电导率和化学稳定性,能够保持正常的电压和电池的工作稳定性。

同时,石墨烯还可以有效提高锂离子电池正极的比表面积,从而增加电池的储能密度。

三、石墨烯在超级电容器中的应用超级电容器是指一种能够以毫秒级别完成充放电的储能设备,具有高功率密度和长循环寿命等特点。

石墨烯在超级电容器中的应用也是十分重要的。

1. 石墨烯超级电容器负极材料由于石墨烯具有极高的比表面积和导电性,能够提高超级电容器负极材料的电容量和功率密度。

目前,石墨烯已被成功地应用于超级电容器的负极材料中,使得超级电容器的储能密度和功率密度都得到了大幅度的提升。

2. 石墨烯超级电容器正极材料石墨烯也可以作为超级电容器正极材料,用于提高电容器的储能密度。

石墨烯具有很高的电导率和化学稳定性,能够保持正常的电压和电池的工作稳定性。

同时,其高比表面积和孔隙结构也能有效提高超级电容器正极材料的电容量,提高电容器的储能密度。

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。

石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。

本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。

本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。

接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。

本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。

二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。

以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。

首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。

接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。

通过过滤、干燥等步骤得到石墨烯复合材料。

这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。

原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。

例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。

这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。

熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。

国内外石墨烯复合材料研究态势可视化对比分析

国内外石墨烯复合材料研究态势可视化对比分析

结论
本次演示对国内外石墨烯复合材料的研究现状进行了对比分析。从材料选择、 制备方法、表征方法到应用研究,国内外研究者都在进行深入探索。在未来的研 究中,需要进一步以下几个方面:
1、材料选择:进一步发掘新型的石墨烯复合材料基体,以获得更加优异的 综合性能;
2、制备方法:寻找更多高效、环保的制备方法,提高石墨烯复合材料的产 量和纯度;
国内外石墨烯复合材料研究态 势可视化对比分析
01 摘要
03 材料选择
目录
02 引言 04 制备方法
目录
05 表征方法
07 国内研究现状
06 国外研究现状 08 结论
摘要
石墨烯复合材料是一种由石墨烯和其他材料组成的新型材料,具有优异的物 理、化学和机械性能。本次演示旨在对比分析国内外石墨烯复合材料的研究现状, 探讨不同的材料选择和制备方法,以期为未来的研究提供参考。
表征方法
表征石墨烯复合材料的方法主要包括透射电镜、扫描电镜、X射线衍射等。 透射电镜可以观察石墨烯的形貌、层数、晶格结构等信息。扫描电镜则可以观察 石墨烯复合材料的表面形貌和微观结构。X射线衍射则可以用于分析石墨烯的晶 体结构和相组成。
国外研究现状
在国外,许多知名研究机构和高水平大学都在开展石墨烯复合材料的研究。 例如,美国加州大学伯克利分校、麻省理工学院、斯坦福大学等都在该领域进行 了深入研究。这些研究机构和大学不仅拥有先进的实验设备和技术,还汇聚了大 量优秀的科研人员,开展了一系列高质量的研究项目。
3、应用研究:拓展石墨烯复合材料的应用领域,特别是在新能源、环保、 生物医学等领域;
4、理论模拟:加强石墨烯复合材料的理论研究,通过模拟和计算等方法深 入探究其性能和机理;
5、跨学科合作:鼓励不同领域的研究者共同参与石墨烯复合材料的研究, 以推动其快速发展并解决实际问题。

石墨烯聚合物复合材料的研究现状及前景论文1 推荐

石墨烯聚合物复合材料的研究现状及前景论文1 推荐

石墨烯/聚合物复合材料的研究现状及前景皖西学院材料1102班:2011010373张帅2011010355施含、2011010347陆瑞瑞、2011010611蔡虹、2011010364谢偏、2011010336冯帆摘要:石墨烯是2004年问世的一种具有单原子厚度的二维蜂窝状晶体结构的新型纳米材料,其特殊的结构赋予了它许多新奇的物理性质,如优异的力学性能,良好的导电和导热性能,和极佳的复合材料增强性能,石墨烯作为纳米增强组分, 少量添加可以使聚合物的热学、力学、电学等物理性能得到大幅地提高。

因此其应用领域广泛,受到广大学者科学家的重视。

本文主要介绍聚合物复合材料的界面结构,石墨烯结构和界面,石墨烯/聚合物复合材料的实现和应用以及对未来发展前景的展望。

(9、12、13、17)关键词:石墨烯、聚合物复合材料、界面相容性、材料改性、力学性能、电学性能、热学性能,应用。

Present situation and prospect in Graphene/polymercomposites.Zhang ShuaiShi Han 、Lu Ruirui、Cai Hong 、Xie Pian Feng Fan Abstract:Graphene discovered in 2004 is a atomic two-dimensional(2D)nanomaterials. Due to its unusual molecular structure ,graphene shows many novels ,unique physical and chemical properties ,such as excellent electric conductivity ,thermalconductivity ,thermal stability.Graphene as nano enhanced components, a small amount of added can make polymer thermal, mechanical, electrical and other physical properties are improved significantly.So its application field widely, have drawn the attention of the many scholars scientists.This paper mainly introduces the interface structure of polymer composite materials, graphene structure and interface, implementation and application of graphene/polymer composites as well as on the outlook for the future development prospect.Key words: Graphene,Polymer composite materials Material modification、Mechanical properties、Electrical performance、Thermal properties、application.一:石墨烯/聚合物的研究现状自年石墨烯发现以来,石墨烯的研究成果层出不穷,其中包括,生活领域,医用领域,电化学领域等。

《2024年石墨烯的制备及在超级电容器中的应用》范文

《2024年石墨烯的制备及在超级电容器中的应用》范文

《石墨烯的制备及在超级电容器中的应用》篇一一、引言随着科技的进步,纳米材料的应用已经引起了科学界的广泛关注。

在众多纳米材料中,石墨烯因其独特的物理、化学性质,特别是其超高的电导率和极大的比表面积,已成为近年来材料科学领域的研究热点。

本篇论文旨在深入探讨石墨烯的制备方法以及其在超级电容器中的应用。

二、石墨烯的制备石墨烯的制备方法多种多样,常见的包括机械剥离法、化学气相沉积法、氧化还原法等。

1. 机械剥离法:此方法主要是通过机械力将石墨薄片剥离成单层或多层石墨烯。

此法虽然可以制备出高质量的石墨烯,但生产效率较低,不适合大规模生产。

2. 化学气相沉积法:此法通过在高温条件下使气体中的碳原子在基底上沉积形成石墨烯。

此法可以制备大面积的石墨烯,但制备过程需要高温和特定的气体环境。

3. 氧化还原法:此法首先通过强酸等化学试剂将天然石墨氧化,形成氧化石墨(GO),然后通过还原GO得到石墨烯。

此法生产效率高,成本低,适合大规模生产。

三、石墨烯在超级电容器中的应用超级电容器是一种具有高能量密度和高功率密度的储能器件,而石墨烯因其独特的物理性质,使其成为超级电容器的理想材料。

1. 石墨烯的电化学性质:石墨烯具有超高的比表面积和良好的导电性,这使其在电化学反应中能够提供更多的活性位点,从而提高电容器的电容量。

2. 石墨烯在超级电容器中的应用:由于石墨烯的优异性能,其被广泛应用于超级电容器的电极材料。

在电极中,石墨烯不仅可以提供大量的电荷传输通道,还可以通过其大比表面积提供更多的电荷存储空间。

此外,石墨烯的优异导电性可以降低电极的内阻,从而提高电容器的充放电速率。

四、结论随着科技的发展,石墨烯的制备技术已经越来越成熟,其在超级电容器中的应用也越来越广泛。

未来,随着对石墨烯性能的深入研究以及制备技术的进一步优化,石墨烯在超级电容器以及其他领域的应用将更加广泛。

同时,我们也需要关注到石墨烯在实际应用中可能面临的问题和挑战,如成本、环境影响等,以期在未来的研究中找到更好的解决方案。

石墨烯的研究与应用综述、产业现状

石墨烯的研究与应用综述、产业现状

石墨烯的研究与应用综述一、石墨烯的结构与特性石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是最薄的二维材料,单层的厚度仅0.335nm。

石墨烯可塑性极大,是构建其他维数碳材料的基本单元,可以包裹成零维的富勒烯结构,卷曲成一维的碳纳米管,以及堆垛成三维的石墨等。

石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨烯晶体,二人因此荣获2010年诺贝尔物理学奖。

石墨烯具有一些奇特的物理特性:导电性极强:石墨烯中的电子没有质量,电子的运动速度能够达到光速的1/300,是世界上电阻率最小的材料。

良好的导热性:石墨烯的导热性能优于碳纳米管和金刚石,单层石墨烯的导热系数可达5300瓦/米水度,远高于金属中导热系数高的银、铜等。

极好的透光性:石墨烯几乎是完全透明的,只吸收2.3%的光,并使所有光谱的光均匀地通过。

超高强度:石墨烯被证明是当代最牢固的材料,硬度比莫氏硬度10级的金刚石还高,却又拥有很好的韧性,可以弯曲。

超大比表面积:石墨烯拥有超大的比表面积(单位质量物料所具有的总面积),这使得石墨烯成为潜力巨大的储能材料。

石墨烯特殊的结构形态,具备目前世界上最硬、最薄的特征,同时具有很强的韧性、导电性和导热性,这些极端特性使其拥有巨大发展空间,应用于电子、航天、光学、储能、生物医药、日常生活等大量领域。

二、石墨烯的制备方法石墨烯的制备方法主要有机械法和化学法2种。

机械法包括微机械分离法、取向附生法和加热碳化硅法;化学法包括外延生长法、化学气相沉积法与氧化石墨还原法。

微机械分离法是直接将石墨烯薄片从较大的晶体上剪裁下来,可获得高品质石墨烯,且成本低,但缺点是石墨烯薄片尺寸不易控制,不适合量产;取向附生法是利用生长基质原子结构“种”出石墨烯,石墨烯性能令人满意,但往往厚度不均匀;加热碳化硅法能可控地制备出单层或多层石墨烯,是一种新颖、对实现石墨烯的实际应用非常重要的制备方法,但制备大面积具有单一厚度的石墨烯比较困难。

基于石墨烯材料的柔性超级电容器研究_石吉磊

基于石墨烯材料的柔性超级电容器研究_石吉磊

基于石墨烯材料的柔性超级电容器研究石吉磊,杜文城,殷雅侠,郭玉国*,万立骏*中国科学院化学研究所,北京,100190,*Email: ygguo@, wanlijun@随着电子科技的迅速发展,柔性电子器件正逐渐进入人们的生活。

柔性电子器件的实现需要柔性电源的驱动。

因此发展可弯曲,高性能的柔性储能器件变得尤为必要。

超级电容器作为新型的高性能电化学储能器件已经得到广泛研究和应用。

可弯曲甚至可折叠的柔性超级电容器正逐渐成为一个趋势。

石墨烯作为最新形态的碳单质,具有一系列优越的物理化学性能,以及易于制备柔性材料。

因此,石墨烯基材料成为制备柔性储能器件的理想材料。

我们通过简单的水热技术制备了一种3D有序的石墨烯基材料并用于构建柔性超级电容器器件[1]。

所制备的柔性超级电容器器件表现出高的比电容(220F g-1),优良的柔性以及循环稳定性。

弯曲状态下循环10000圈比电容保持率大于80%。

这一优良的电化学性能主要归因于其有序的3D结构有利于离子的快速传输。

此外,该材料的合成过程及柔性电极片的制备均简单、环境友好、具备普适性,不仅可以用于制备超级电容器电极材料也可应用于柔性锂离子电池等领域。

Fig. 1 (a) Nyquist plots of rGO and H-rGO, (b)H-rGO both normal and bending state Cyclic voltammograms at a scan rate of 200 mV s-1 (c), (d) Two H-rGO devices connected in series can power the digital temperature and humidity meter at both normal and bending state. (e) H-rGO 10,000 cycles at a scan rate of 200 mV s-1under bending state.关键词:石墨烯;柔性;超级电容器参考文献[1] Shi J. L.; Du W. C.; Yin Y. X.; Guo Y. G.; Wan L. J., J. Mater. Chem. A, 2014, DOI: 10.1039/C4TA01547A, in press.Graphene-based materials for flexible supercapacitor devices Ji-Lei Shi, Wen-Cheng Du , Ya-Xia Yin, Yu-Guo Guo* and Li-Jun Wan *Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190In our work, a facile hydrothermal reduction of self-assembled 3D graphene oxide (GO) is reported. Binder-free flexible supercapacitor is fabricated using the as-obtained 3D graphene, which exhibits high gravimetric capacitance (up to 220 F g–1) and excellent cycle stability with >80% capacitance retention over 10,000 cycles under bending state.。

石墨烯基复合材料在新能源转换与存储领域的应用现状,关键问题及展望

石墨烯基复合材料在新能源转换与存储领域的应用现状,关键问题及展望

石墨烯基复合材料在新能源转换与存储领域的应用现状,关键问题及展望应用一《石墨烯基复合材料在锂离子电池中的“神奇表现”》咱就说这锂离子电池啊,现在那可是到处都在用,从手机到电动汽车,简直就是能量小能手。

而石墨烯基复合材料在这当中啊,就像是给锂离子电池加了个超级助力包。

我以前有个老款手机,那电池用不了多久就撑不住了,玩会儿游戏、拍几张照片,电量就刷刷往下掉。

后来啊,听说一些新手机电池用了什么石墨烯基复合材料,耐造得很。

我就好奇啊,专门去打听打听。

原来啊,这石墨烯基复合材料加入到锂离子电池里,那作用可不小。

石墨烯本身导电性就超强,就好比给电池里的电流修了条宽敞的高速公路,让锂离子在里面跑得那叫一个畅快。

这样一来,电池充放电的速度就明显变快了。

想象一下,以前给手机充电得等老半天,现在啊,没一会儿就充满了,这多爽啊!而且啊,这复合材料还能提高电池的循环稳定性。

就好比给电池穿上了一层坚固的防护衣,让它就算反复使用,也不容易“受伤”。

不像我那老手机电池,用了一段时间后,容量就越来越小了。

不过呢,这石墨烯基复合材料在锂离子电池里也不是一帆风顺的。

比如说,制备工艺还得再优化优化,成本也有点小贵,要是能把成本降下来,那不是能让更多的老百姓受益嘛。

应用二《石墨烯基复合材料在超级电容器里的“奇妙旅程”》超级电容器这玩意儿,可能很多人不太熟悉,但它可是新能源领域的一颗新星。

而石墨烯基复合材料在超级电容器里的故事啊,也是相当精彩。

我有次去参观一个新能源实验室,就看到他们在研究超级电容器。

那里面啊,各种仪器设备摆得满满的。

负责的科研人员给我们介绍说,石墨烯基复合材料在超级电容器里可是大显身手。

这复合材料呢,具有超大的比表面积,就像是给超级电容器打造了一个超级大的“仓库”,能够储存更多的电荷。

而且啊,它的充放电速度那更是没得说,简直就是闪电般的存在。

比如说,在一些电动汽车的启动瞬间,需要快速释放大量的能量,这时候超级电容器里的石墨烯基复合材料就能立刻响应,让车一下子就启动起来,那反应速度,就跟打了鸡血似的。

石墨烯在能源存储中的应用

石墨烯在能源存储中的应用

石墨烯在能源存储中的应用石墨烯作为一种新型的碳材料,具有独特的结构和优异的性能,在能源存储领域展现出巨大的应用潜力。

随着能源需求的不断增长和可再生能源的发展,石墨烯在电池、超级电容器和储氢等领域的应用备受关注。

本文将重点探讨石墨烯在能源存储中的应用现状和未来发展趋势。

一、石墨烯在锂离子电池中的应用锂离子电池作为目前最为成熟和广泛应用的电池技术之一,已经成为移动电子设备、电动汽车等领域的主要能源来源。

石墨烯作为锂离子电池的优秀电极材料,具有高导电性、高比表面积和优异的化学稳定性,能够显著提高电池的性能。

石墨烯可以作为锂离子电池的导电剂或包覆材料,有效提高电极的导电性和稳定性,延长电池的循环寿命和充放电性能。

此外,石墨烯基复合材料还可以增加电极材料的储锂容量,提高电池的能量密度和功率密度,从而推动电池技术的进一步发展。

二、石墨烯在超级电容器中的应用超级电容器作为一种高功率、高能量密度的储能装置,具有快速充放电速度、长循环寿命和良好的安全性能,被广泛应用于电力系统、电动汽车和可穿戴设备等领域。

石墨烯作为超级电容器的电极材料,具有优异的电导率、高比表面积和良好的化学稳定性,能够显著提高超级电容器的性能。

石墨烯基复合材料可以用于制备电极材料,提高电容器的电极表面积和电荷传输速率,从而增加电容器的储能密度和功率密度。

此外,石墨烯还可以用于制备导电添加剂,改善电解质的导电性能,提高超级电容器的整体性能表现。

三、石墨烯在储氢材料中的应用储氢技术作为一种清洁、高效的能源转换和储存技术,受到广泛关注。

石墨烯作为一种理想的储氢材料,具有高比表面积、优异的化学稳定性和可调控的孔隙结构,能够有效提高氢气的吸附和解吸性能。

石墨烯基复合材料可以与金属或金属化合物复合,形成高效的储氢材料,提高氢气的吸附容量和释放速率。

此外,石墨烯还可以用于制备催化剂,促进氢气的吸附和解吸反应,提高储氢材料的储氢性能。

石墨烯在储氢领域的应用有望推动氢能技术的发展,实现清洁能源的可持续利用。

石墨烯制成的超级电容器将取代电池

石墨烯制成的超级电容器将取代电池

俄亥俄州代顿市Nanotek Instruments公司新研制的石墨烯超级电容器,单位质量可储存的能量相当于镍氢电池,打破了世界纪录,而且充电或放电只需要短短几分钟、甚至几秒钟,有望取代电池。

相关研究论文发表在Nano Letter上。

该超级电容器电极的制备采用了石墨烯,混合5%的超级P(一种乙炔黑,作用相当于导电添加剂)和10%的聚四氟乙烯(PTFE)结合剂。

研究人员把产生的悬浮液涂在集电器表面,把硬币大小的电容器安装在隔离箱里。

电解质-电极界面的制备,采用了“Celguard隔膜-3501”,而电解液是一种化学品,叫做EMIMBF4。

该公司对硬币大小超级电容器的测试表明,石墨烯电极的超级电容器的能量密度为85.6 Wh/kg,而镍氢电池和锂离子电池分别为40-100 Wh/kg和120 Wh/kg,这是有史以来基于碳纳米材料的双电层超级电容器所达到的最高值。

研究小组成员还包括来自Angstron材料研究所的科学家,他们正在努力工作以进一步提高超级电容器的能量密度。

电容器电极材料研制方面取得系列进展。

超级电容器是介于传统物理电容器和电池之间的一种新型储能器件,具有绿色环保、充电时间短、使用寿命长和工作温度范围宽等优点,其核心部件是性能优异的电极材料。

石墨烯片(GS),作为一种新型的碳材料,具有良好的导电性和大的比表面积,预计将其作为超级电容器的电极材料具有广阔的应用前景。

但是纯石墨烯表面缺少功能基团导致其很难与其它材料复合或在器件上进行组装,从而限制了其深入应用。

因此,对石墨烯表面进行化学修饰以便于获得各种功能复合材料是当前研究的一个热点。

图1:不同PANi含量的PSS-GS/PANi“纸”电极(左)和PSS-GS与PANi纳米纤维之间的静电吸附示意图(右)图2 :PSS-GS与二氧化锰在基底上的层层自组装示意图固体润滑国家重点实验室研究人员利用化学修饰后的石墨烯(PSS-GS)与聚苯胺(PANi)纳米纤维之间的静电吸附作用,制备了PSS-GS/PANi 复合材料胶体溶液,然后抽虑成膜得到了柔性的PSS-GS/PANi复合“纸”电极材料。

石墨烯基超级电容器研究

石墨烯基超级电容器研究
I n t e f r e r e n c e i n E p i t a x i a l G r a p h e n e l J ] .S c i e n c e 2 0 0 7 ,2 1 9 — 2 2 2 .
[ 3 1 Y .H e ma n d e z ,V .N i c o l o s i ,M.L o t y a ,H i g h - y i e l d p r o d u c t i o n o f g r a p h e n e b y l i q u i d — p h a s e e x f o l i  ̄ i o n o f g r a p h i t e [ J ] .N a t u r e N a n —
一Байду номын сангаас

料具 有 更 高 的 电容量 , 其 中碳 纳米 管 与 石 墨烯 的复 合材 料 电容 量 高 达7 3 0 m A h / g , C 与石 墨烯的复合材料 的电容量 高达 7 8 4 m A h / g , 并 且研究发现石 墨烯层数越少 , 层 间距越大 , 越容易掺杂提高 电池性 能 。因此 , 石 墨烯 材 料 在 电池 电极 材 料 应 用 方面 显 示 出 了诱 人 的前 景, 但 目前 的石墨烯层数不 可控 , 制备出尺寸可控 的石墨烯材料并 对其有效掺杂 , 有望开发出性能优异的超级 电容器 。 3结束语 在超 级 电容 器研 究 中 , 过 渡 金属 氧 化 物 电极 的 比容 量 可达 到 碳 电极材料 的 1 0 — 1 0 0倍 , 金属氧化物 电极材料在制备上采取掺杂 、 纳 米化等特殊处理 , 可 以有 比碳电极 电容器更好的性 能 , 有 良好 的发 展 前 景 。采 用石 墨 烯 大 的 比表 面积 和 高 的 电导 率 , 经 金 属 氧化 物 掺 杂处理有望得到高能量密度 、 高效率 、 使 用寿命长和低成本 的石墨 烯 基 超级 电容 器 , 为微 纳 电子 工 业 发展 及 汽 车 等机 动 设 备 和 器件 的 发展提供重要的能源动力基础 。

超级电容器的研究现状与应用拓展

超级电容器的研究现状与应用拓展

超级电容器的研究现状与应用拓展超级电容器是一种新型的储能设备,它和传统的电池储能不同,可以实现快速的充放电并且寿命长,具有广泛的应用前景。

本文将介绍超级电容器的研究现状以及未来可能的应用拓展。

一、超级电容器的研究现状超级电容器的研究始于20世纪80年代,当时主要是用于汽车启动和制动系统。

随着技术的不断进步和研究的深入,超级电容器的性能稳步提升,并开始进入其他领域。

目前,超级电容器的性能已经大大提升,主要表现在以下几个方面:1.高功率密度:超级电容器的最大功率密度已经超过100kW/kg,可以在短时间内完成大功率的充放电。

2.高能量密度:虽然超级电容器的能量密度仍然相对较低,但是随着纳米材料的应用,其能量密度已经有了明显提高,已经可以达到5Wh/kg以上。

3.长寿命:超级电容器的寿命通常在100,000次以上,远高于传统的电池。

4.高温稳定性:超级电容器通常可以在高温环境下工作。

二、超级电容器的应用拓展随着超级电容器的研究不断深入,其应用也在不断扩展。

目前,超级电容器已经在以下领域得到了应用:1.交通领域:超级电容器可以用于汽车启动和制动系统、轨道交通的制动系统等。

2.储能领域:超级电容器可以用于储存可再生能源、缓冲电力波动等。

3.电子产品:超级电容器可以用于电子产品的快速充电、节约电池等。

4.医疗领域:超级电容器可以用于医疗设备的备用电源。

未来,超级电容器的应用还有很大的拓展空间。

以下是一些可能的应用领域:1.电动汽车:超级电容器可以用于电动汽车的储能,提高汽车的续航能力。

2.太阳能储能:超级电容器可以用于储存太阳能,提高太阳能发电的效率。

3.航空航天领域:超级电容器可以应用于飞机、卫星等领域,提高储能效率。

4.无线电力传输:超级电容器可以用于无线电力传输,提高能量利用率。

结论超级电容器是一种重要的储能设备,具有广泛的应用前景。

随着技术的不断进步,超级电容器的性能将不断提高,应用也将不断扩展。

我们期待着未来超级电容器的更广泛的应用。

石墨烯复合材料在超级电容器中的进展

石墨烯复合材料在超级电容器中的进展

Value Engineering碳元素广泛存在于自然界,除了最为人们所熟知的石墨和金刚石外,1985年发现的富勒烯和1991年发现的碳纳米管扩大了碳材料的家族。

也使人们对碳元素的多样性有了更深刻的认识。

同时,富勒烯和碳纳米管所引发的纳米科技对人类社的发展在未来有着极其重大的意义。

作为碳材料中最新的一员—石墨烯是拥有sp2杂化轨道的二维碳原子晶体,由英国曼彻斯特大学的Geim等[1]于2004年发现,并能稳定存在,这是目前世界上最薄的材料—单原子厚度的材料。

石墨烯不仅有优异的电学性能(室温下电子迁移率可达200000cm2V-1s-1)[2],质量轻,导热性好(5000Wm-1K-1)[3],比表面积大(2630m2g-1)[4],它的杨氏模量(1100GPa)和断裂强度(125GPa)[5]也可与碳纳米管相媲美,而且还具有一些独特的性能,如量子霍尔效应、量子隧穿效应[6]等。

由于以上独特的纳米结构和优异的性能,石墨烯可应用于许多的先进材料与器件中,如薄膜材料[7]、储能材料[4]、液晶材料[8]、机械谐振器[9]等。

石墨烯是单层石墨,原料易得,所以价格便宜,不像碳纳米管那样价格昂贵,因此石墨烯有望代替碳纳米管成为聚合物基碳纳米复合材料的优质填料。

在石墨烯诸多性质中,其中比表面积高和导电性好,最重要的是石墨烯本身的电容为21μF/cm2,达到了所有碳基双电层电容器的上限,这比其他碳材料都要高,是制造超级电容器的理想材料。

超级电容器(Supercapacitors),也叫电化学电容器(Electrochemical capacitors)是一种能量密度和功率密度介于传统电容器和电池之间的新型储能器件,超级电容器兼具蓄电池和传统电容器的优点,如能量密度高、功率密度高、可快速充放电、循环寿命长、具有瞬时大电流放电及对环境无污染等特性,是近十年来发展起来的新型储能、节能设备。

由于石墨烯是理想的超级电容器填充材料,所以将其与其他材料复合来制备超级电容器材料备受大家关注。

电化学储能中石墨烯材料的应用研究

电化学储能中石墨烯材料的应用研究

电化学储能中石墨烯材料的应用研究随着全球对节能减排和可再生能源的追求,储能技术得到了广泛的关注和研究。

电化学储能技术是其中一种重要的储能方式。

石墨烯作为一种新型的纳米材料,因其独特的结构和性质,成为电化学储能领域中备受关注的材料。

一、石墨烯材料的特性及其在电化学储能中的应用石墨烯是由碳原子构成的超薄二维材料,具有高比表面积、高电导率、高物理化学稳定性和优异的电化学性能,因此成为电化学储能中的重要材料。

1.1高比表面积石墨烯单层结构的比表面积极高,达到了2630平方米/克,是传统电极材料如金属和碳的几倍,这使得石墨烯能够提高电极表面的反应活性,增强储能效果。

1.2高电导率石墨烯的导电性能极强,理论上可以达到电阻率为0的状态。

这种导电性能可以使石墨烯作为电极材料,存在低内阻的相对优势,从而提高电化学储能的效率。

1.3电化学稳定性在电化学反应中,材料容易受到化学反应的影响并且遭受损坏,从而影响储能性能。

然而,石墨烯的结构十分稳定,在多数实验条件下不容易受到化学反应的影响,保持良好的电化学性能稳定性。

1.4优异电化学性能石墨烯材料在电化学储能中也表现出了优异的性能,如高效的离子传输和储存,较长的循环寿命等。

这些性能可以使石墨烯在不同类型的电化学储能设备中有广泛的应用。

二、石墨烯材料在锂离子电池中的应用锂离子电池是一种广泛使用的电化学储能设备,其电极材料对储能性能起着决定性作用。

目前,石墨烯被广泛研究用作锂离子电池的电极材料,以期提高储能效率。

2.1 石墨烯作为负极材料目前,商用锂离子电池的负极材料多采用石墨材料。

石墨烯有着比石墨更高的比表面积和导电性能,可以提高电池储能密度,减少电极材料的体积和重量。

同时,石墨烯作为电化学储能材料具有高的可逆容量,循环寿命长,这些优点使得石墨烯在实际应用中有广泛的应用前景。

2.2 石墨烯作为正极材料锂离子电池的正极材料主要是金属氧化物类材料,如钴酸锂、锰酸锂、三元材料等。

石墨烯 超级电容

石墨烯 超级电容

石墨烯超级电容
石墨烯超级电容是一种利用石墨烯材料制造的超级电容器。

石墨烯是由碳原子形成的二维晶体结构,具有高度的导电性、导热性和机械强度,是一种非常理想的电子材料。

相对于传统电容器,石墨烯超级电容具有以下几个显著优势:
1. 高能量密度:石墨烯超级电容器具有较高的能量存储密度,可以存储更多的电能。

2. 高功率密度:石墨烯超级电容器具有快速充放电速度,可以在短时间内释放大量的电能。

3. 长寿命:石墨烯超级电容器具有良好的循环稳定性和长寿命,可以进行数万次的充放电循环。

4. 安全性:相对于传统锂离子电池,石墨烯超级电容器不会因为电池燃烧等问题造成爆炸,具有更高的安全性。

由于石墨烯超级电容器具有以上优势,因此被广泛应用于电动车、储能系统、智能手机和电子设备等领域,为电子产品的使用提供了更长久的电力支持。

此外,还有一些研究在探索如何将石墨烯材料与其他材料相结合,以进一步提高石墨烯超级电容器的性能。

石墨烯研究现状及应用前景-范本模板

石墨烯研究现状及应用前景-范本模板

石墨烯材料研究现状及应用前景崔志强(重庆文理学院材料与化工学院,重庆永川402160)摘要:近几年来,石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。

本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点.论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。

关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景中图分类号:TQ323 文献标识码:A 文章编号:Research status and application prospect of graphene materialsCui Zhiqiang(Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences,Yongchuan,Chongqing 402160) Abstract: In recent years,graphene has caused a sensation in chemical,physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references,expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method,heating SiC method,explosion,graphite intercalation expansion stripping method,electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method,and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于石墨烯基复合材料的超级电容器研究现状
超级电容器是一种发展成本低、环境友好、能量密度高的新型绿色能源装置,具有充电时间短、放电速度快、使用寿命长、节约能源和绿色环保等优点,得到了科学界的一致追捧,而影响超级电容器最关键的因素就是电极材料的性能。

过渡金属氧化物如Mn02,ZnO,C0304和NiO等虽是较好的电极材料,但导电性能较差,会产生较大的内阻,使得在充放电过程中,容易导致电极材料结构的破坏而影响其充放电容量和循环性能。

将过渡金属负载到碳材料例如石墨烯上可以较好的解决这一难题,这方面研究国内外已有很多相关报道。

作为碳材料中重要的一员,石墨烯由于导电性能强、导热性好、质量轻、比表面积大而备受关注,在储能装置、电化学器件、功能性复合材料等方面都具有重要的应用。

将石墨烯应用到超级电容器上,改善了超级电容器的电容量和循环稳定性。

但石墨烯层与层之间的分子问作用力导致石墨烯容易团聚,从而降低了石墨烯的比表面积和比容量。

将过渡金属氧化物和石墨烯组装成复合材料,既能提高电极材料的导电性和充放电容量,又能增强其循环稳定性。

1过渡金属氧化物与石墨烯复合材料在超级电容器中的应用1.1二氧化锰/石墨烯
在超级电容器的研究中,锰作为过渡元素较先受到关注。

虽然它资源比较丰富,且易获取,但电化学性能较弱,尤其是导电性能差阻碍了人们进一步研究的步伐。

通过与石墨烯的复合,能在一定程度上
改善二氧化锰存在的问题,大幅度提高其比电容和循环性能。

Li等制备的石墨烯/Mn02复合纸电极具有无黏结剂、柔韧性好的特性,并发现其具有良好的循环稳定性,且在浓度为0.1 mol/L 的Na2SO4水溶液中,当电极的Mn02含量为24%,电流密度为O.5 A /g时,该复合纸电极的比容量为256 F/g。

Wei等通过高锰酸钾还原成二氧化锰沉积在石墨烯表面制备出了二氧化锰/石墨烯复合材料,该复合材料在超级电容器性能测试中显示了较好的循环寿命,其电容为114 F/g。

Yan和Fan等通过微波辅助法制备出了石墨烯/MnO复合材料,研究发现该复合材料的电容性能是纯石墨烯和纯Mn02的三倍,在2 mV/s扫描下,比电容为310 F/g。

并且其循环寿命良好,在1000次循环后比电容仍可为97%。

He等将Mn02覆盖在石墨烯表面制备出了一种三维导电网络复合材料,发现其柔韧性好、质量轻、导电性强、比表面积大。

该复合电极比电容可达130F/g,而且由该复合材料制作出的超级电容器具有卓越的电化学性能和优异的机械性能。

1.2氧化镍/石墨烯
氧化镍是一种理想的超级电容材料,但是由于比容量较低而无法得到普遍运用。

针对比容量低和导电性的问题,构筑石墨烯与氧化镍的复合材料是很好的解决方法。

此外,形貌结构的差异对氧化镍材料性能也有很大影响,通过不同的制备方法,如化学沉淀法、热分解法、模板法、水热法等可以获得不同形貌的复合材料。

Yan等由化学沉淀方法将分层多孔的β-Ni(OH)2纳米片负载在石墨烯片层上制备出了
氢氧化镍/石墨烯复合材料。

在扫描速率为2 mV/s下复合物的比容量可达219.4 F/g。

在此基础上,他们还研究了由该材料制备出的超级电容器,经过2000次循环扫描后,比容量仍可达95.7%,表明其具有良好的电容特性和循环寿命。

Fan等161以氢氧化镍/石墨烯复合材料作为正极,多孔石墨烯作为负极组成了循环寿命良好的混合型超级电容器,其比容量可达218.4 F/g。

Ji等¨惆水热法将多孔的Ni(OH)2薄膜沉积在超薄石墨烯泡沫上制备出了氢氧化镍/石墨烯复合材料。

超薄石墨烯泡沫的三维导电网络提供高的导电性而多孔结构的氢氧化镍薄膜提供了短的离子扩散路径,使得其复合材料在电流密度为0.5 A/g和10A/g时分别有166F/g和11l F/g的比电容。

1.3氧化锌/石墨烯
Chen等利用共沉淀法制备出了纳米氧化锌/石墨烯复合材料,应用在超级电容器中,性能优良,且比容量可达308 F/g。

虽然该方法简单易行且成本低、产率高,但与贵金属氧化物和碱金属氧化物与石墨烯的复合材料性能相比还有待提高。

Lu等利用丝网印刷的方法制备出石墨烯膜,用超声喷雾热分解的方法将Zn0沉积在石墨烯膜层上制备出了ZnO/石墨烯复合材料,并检测出ZnO/石墨烯复合材料具有比石墨烯更大的能量密度(为4.8 kWh/kg)、更高的电容性能和很好的循环性能。

1.4其他金属氧化物与石墨烯复合
由于超级电容器的应用越来越普遍,因此其材料的研发也成为了
科研者追逐的焦点。

除了对以上金属氧化物研究较多以外,其他科研工作者也对具有超级电容器性能的其他金属氧化物与石墨烯复合材料进行了研究。

Xiang等制备了不同用量比的石墨烯(RGO)/TiO2纳米带和RGO/Ti02纳米粒子复合材料,并将其进行性能测试对比发现当RGO与Ti02纳米带的用量比为7:3时,具有非常高的比容量,可达225 F/g。

Yu等通过在3D石墨烯上负载蜂窝式的CoMoO。

制备复合材料,这个方法简单易行且能进行大批量生产。

新型的CoMoO4-3D 石墨烯混合物比容量能达到1101 F/g,循环寿命较高,显示了良好的电容性能。

Li等经过对超级电容器材料的长期研究,制备了石墨烯/Sn02复合材料。

由于Sn02对总的电容能提供额外的赝电容而使得这种复合材料的电化学性能十分优越。

该复合材料不仅能用于传感器上,而且在电池等领域也能发挥其优势。

2总结
虽然目前金属氧化物与石墨烯的复合材料在超级电容器方面研究较为广泛,电化学性能也有所改进,但电极材料的稳定性、电容器容量以及快速充放电性能还有很大的提升空间,如何解决这些难题将决定着石墨烯复合材料与超级电容器的发展前景。

这些难题有待于科研工作者们进一步深入研究。

参考文献
[1]NiO/还原氧化石墨烯的溶剂热合成以及作为高循环稳定性超级电容器电极材料的性能表征,徐欢等,2014.3
[2]掺氮石墨烯研究,陈旭等,2013.8
[3]聚苯胺纳米纤维/石墨烯复合物的制备及其电化学性能,魏从杰
[4]石墨烯/二氧化锰复合材料的电化学性能,徐晓,2013.1
[5]石墨烯/聚苯胺复合材料的制备及其电化学性能,王宏智
[6]水热法合成再生纳米级MnO2超级电容器性能的研究,江忠远
[7]氧化石墨烯的制备及在复合材料中的应用研究进展,杨云裳等
[8]用于超级电容器电极材料的石墨烯基纳米复合物的种类和研究现状,辛德琼等,2012.5
[9]谢小英, 张辰, 杨全红,超级电容器电极材料研究进展,化学工业与工程,2014年1月,第31卷第1期
[10]Conway,B.E.Electrochemical Supercapacitor:Scientific Fundamentals and Technological Applications,Kluwer Academic/Plenum:New York, 1999.
[11]周帅,Mn/C基复合物的制备及电化学性能的研究,天津大学2012.6
[12]李金龙,徐建华等,石墨烯/二氧化锰/聚3,4-乙烯二氧噻吩三相复合电极的制备及电化学性能,功能材料,2014年第7期第45卷[13]Ranjusha R., A. Sreekumaran Nair,Ultra fine MnO2 nanowire based high performance thin film rechargeable electrodes: Effect of surface morphology, electrolytes and concentrations,J. Mater. Chem., 2012, 22, 20465
[14]张治安,《基于氧化锰和炭材料的超级电容器研究》,电子科技大
学,2005.3
[15]闫俊,《碳/氧化锰复合材料的制备及电化学性能研究》,哈尔滨工程大学,2010.3
[16]水热条件下石墨烯与二氧化锰复合物的制备及其电容性能,高光耀等,清华大学深圳研究生院新材料研究所
[17]石墨烯基超级电容器研究进展,杨德志等,2014.1
[18]超级电容器石墨烯氧化锰复合材料研究进展,景琳舒等
[19]超级电容器用二氧化锰碳基纳米复合材料的制备与电化学性能研究进展,张育新,重庆大学
[20]石墨烯/碳纳米管复合材料的制备及应用进展,赵冬梅,化学学报,2014
[21]过渡金属氧化物/石墨烯纳米电极材料制备及其电容性质研究,邓玲娟,2013.5
[22]纳米二氧化硅对水泥基材料性能的影响及作用机理研究,徐庆磊
[23]基于氧化锰和炭材料的超级电容器研究,张治安,电子科技大学。

相关文档
最新文档