第二信使主要有cAMPcGMP

合集下载

第五节 第二信使

第五节 第二信使
第五节
第二信使
• 细胞内信息物质 在细胞内传递细胞调控信号的化学物质称为细胞内信息物 质。 • 细胞内信息物质的组成: 无机离子,如Ca2+ ; 脂类衍生物,如甘油二酯(DG)、N-脂酰鞘氨醇(Cer); 糖类衍生物,如1,4,5-三磷酸肌醇(IP3); 核苷酸。如cAMP、cGMP; 信号蛋白分子--多数为癌基因的产物,如Ras和底物酶。底物 酶主要为酪氨酸或丝/苏氨酸蛋白激酶,但它们本身又是 其他酶的底物,如JAK。Raf等。
GTP 激 素 (甾体激 素、甲状 腺激素、 胰岛素 ) 鸟苷环化酶
cGMP
生物效应
• cGMP在每种组织都有存在,但含量仅及cAMP的 1/5~1/10。在cAMP浓度较低的一些组织如脑髓、 睾丸、肺等处,cGMP的含量较高。 • 在cAMP与cGMP两种核苷酸中,一种浓度偏高就会 阻止另一种产生、代谢或效应,因而两种环状核 苷酸的效应往往相反,如收缩与松驰、糖原的合 成与分解、细胞的增生与接触抑制等。在异丙肾 上腺素促使心肌收缩时,一方面升高cAMP的浓度, 同时也降低cGMP的浓度。用茶碱类药物使细胞内 cAMP增多,也同时去除cGMP的效应。
20 FDA 批准 2015.8.19 被威朗制药(Valeant)以10 亿美元收购
• PDE4 inhibitors ----- respiratory disease • Jeon YH, Heo YS, Kim CM, Hyun YL, Lee TG, Ro S, Cho JM. Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol Life Sci. 2005 ,62(11):1198220.

第十一章-细胞的信号转导习题集及参考答案

第十一章-细胞的信号转导习题集及参考答案

第十一章细胞的信号转导一、名词解释1、细胞通讯2、受体3、第一信使4、第二信使5、G 蛋白6、蛋白激酶A二、填空题1、细胞膜表面受体主要有三类即、、和。

2、在细胞的信号转导中,第二信使主要有、、、和。

3、硝酸甘油之所以能治疗心绞痛是因为它在体内能转化为,引起血管,从而减轻的负荷和的需氧量。

三、选择题1、能与胞外信号特异识别和结合,介导胞内信使生成,引起细胞产生效应的是( )。

A、载体蛋白B、通道蛋白C、受体D、配体2、下列不属于第二信使的是()。

A、cAMPB、cGMPC、DGD、CO3、下列关于信号分子的描述中,不正确的一项是()。

A、本身不参与催化反应B、本身不具有酶的活性C、能够传递信息D、可作为酶作用的底物4、生长因子是细胞内的()。

A、结构物质B、能源物质C、信息分子D、酶5、肾上腺素可诱导一些酶将储藏在肝细胞和肌细胞中的糖原水解,第一个被激活的酶是()。

A、蛋白激酶AB、糖原合成酶C、糖原磷酸化酶D、腺苷酸环化酶6、()不是细胞表面受体。

A、离子通道B、酶连受体C、G蛋白偶联受体D、核受体7、动物细胞中cAMP的主要生物学功能是活化()。

A、蛋白激酶CB、蛋白激酶AC、蛋白激酶KD、Ca2+激酶8、在G蛋白中,α亚基的活性状态是()。

A、与GTP结合,与βγ分离B、与GTP结合,与βγ聚合C、与GDP结合,与βγ分离D、与GDP结合,与βγ聚合9、下面关于受体酪氨酸激酶的说法哪一个是错误的A、是一种生长因子类受体B、受体蛋白只有一次跨膜C、与配体结合后两个受体相互靠近,相互激活D、具有SH2结构域10、在与配体结合后直接行使酶功能的受体是A、生长因子受体B、配体闸门离子通道C、G蛋白偶联受体D、细胞核受体11、硝酸甘油治疗心脏病的原理在于A、激活腺苷酸环化酶,生成cAMPB、激活细胞膜上的GC,生成cGMPC、分解生成NO,生成cGMPD、激活PLC,生成DAG12、霍乱杆菌引起急性腹泻是由于A、G蛋白持续激活B、G蛋白不能被激活C、受体封闭D、蛋白激酶PKC功能异常13下面由cAMP激活的酶是A、PTKB、PKAC、PKCD、PKG14下列物质是第二信使的是A、G蛋白B、NOC、GTPD、PKC15下面关于钙调蛋白(CaM)的说法错误的是A、是Ca2+信号系统中起重要作用B、必须与Ca2+结合才能发挥作用C、能使蛋白磷酸化D、CaM激酶是它的靶酶之一16间接激活或抑制细胞膜表面结合的酶或离子通道的受体是A、生长因子受体B、配体闸门离子通道C、G蛋白偶联受体D、细胞核受体17重症肌无力是由于A、G蛋白功能下降B、蛋白激酶功能异常C、受体数目减少D、受体数目增加18、PIP2分解后生成的何种物质能促使钙离子的释放A、IP3B、DAGC、CaMD、PKC19下面关于PKA的说法错误的是A、它是G蛋白的效应蛋白B、它由4个亚单位组成C、它由cAMP激活D、它可导致蛋白磷酸化四、判断题1、NO作为局部介质可激活靶细胞内可溶性鸟甘酸环化酶。

医学细胞生物学答题汇总

医学细胞生物学答题汇总

医学细胞生物学答题汇总医学细胞生物学答题汇总1、溶酶体形成过程?溶酶体前体在内质网膜附着核糖体上合成,进入内质网腔进行糖基化,形成具有N---连接的富含有甘露糖的糖蛋白,2)通过膜泡运输呗运送到顺面高尔基体,寡糖链上的甘露糖呗磷酸化形成甘露糖—6—磷酸。

M—6-P为一种分选信号,最后溶酶体酶前体被分选入特殊的运输小泡,最终形成无被的运输小泡,3、高尔基体复合体出芽形成的无被的运输小泡与细胞内的内体融合,演变成内体性溶酶体。

4、当内体性溶酶体内PH下降到6左右,形成一种酸性房室,在酸性环境中,溶酶体酶前体与M-6-P受体分离,通过磷酸化而成熟,卸载受体以运输小泡形式送回到反面高尔基体在利用。

2、膜脂的流动方式有哪些?聼链的旋转异构运动;2、脂肪酸链的伸缩运动和振荡运动;3、膜脂分子的旋转运动;4、侧向扩散运动;5、翻转运动。

3、试述染色体构建的四级结构模型一级结构:核小体。

200bp左右的DNA和1个组蛋白八聚体及1分子组蛋白H1,或4中组蛋白(H2A、H2B、H3、H4)各2个分子组成组蛋白八聚体构成核小体的核心结构,140bp的DNA在其外缠绕1.75圈,相邻2个核心颗粒之间是60bp的DNA连线,组蛋白H1位于连线上。

二级结构:螺线管。

6个核小体一圈。

三级结构:超螺线管。

四级结构:染色单体。

4、cAMP信号通路由哪几部分组成次级型激素受体(Rs)、抑制型激素受体(Ri)、刺激型调节蛋白(Gs)、抑制型调节蛋白(Gi)、腺苷酸环化酶(AC)五部分组成。

5、G蛋白偶联受体信号转导的几个要素。

G蛋白偶联受体的结构:一条多肽链上形成7个跨膜区段,各区段之间通过3个胞外环相连,受体多肽链的N端位于胞外。

2、三聚体GTD结合调节蛋白:有α,β,γ多肽链组成,通过鸟苷酸与该蛋白α亚基的可逆性结合而发挥作用。

3、G蛋白效应器:G蛋白活化后作用于膜上的另一类蛋白质,它们多数是能催化生成第二信使的酶,称之为G蛋白效应器。

cAMP综述

cAMP综述

cAMP药理学综述化工学院药学5班石少龙学号s2012005055摘要:环磷酸腺苷(简称cAMP)的衍生物,为蛋白激酶致活剂是有机体中广泛存在的一种具有生理活性的重要物质,是细胞内传递激素和递质作用的中介因子,其灭活酶为磷酸二脂酶,是当前分子生物学研究的重要内容之一。

基础医学研究证明至少40多种疾病(包括癌症、高血压、冠心病、心肌梗塞和心源性休克等重大疾病)与cAMP的代谢有关;临床医学研究证明cAMP能舒张平滑肌、扩张血管、改善肝功能、激活蛋白、促进神经再生、抑制皮肤外层细胞分裂和转化异常细胞的功能、促进呼吸链氧化酶的活性、改善心肌缺氧并对心肌梗塞、冠心病、心源性休克、牛皮癣等疾病有显著疗效。

国内外对其生理活性、作用机理进行了大量研究,涉及疾病治疗、信号表达、基因复制等方面。

关键词:cAMP;第二信使;疾病过程中的作用1cAMP研究发现1.1cAMP的发现20世纪70年代,世界医学领域建立了“传递生命信息的两个信使”的学说,即人体各种细胞的活动是在“两个信使”系统的控制和调节下进行的。

第一信使:细胞外小分子信息物质,诸如激素、神经递质、细胞因子及生长因子等,是由腺细胞等各种细胞合成和释放的,由血液和淋巴液等各种体液运送,经过体液来调节和传递生命信息。

第二信使:cAMP、cGMP、1,2-二酰甘油 (diacylglycerol, DAG)、1,4,5-三磷酸肌醇(inosositol 1,4,5-trisphosphate, IP3)、Ca2+等。

1957年,Sutherland及其同事在进行肝糖原代谢的调节研究现,用肝细胞匀浆加ArP和M矿+,与肾上腺素或胰高血糖素一起保温,能产生一种耐热的、可透析的因子,这种因子可以模拟胰高血糖素对糖原的分解作用,很快这种因子就被确定为cAMP,它是在腺苷酸环化酶作用下由ATP分解并环化产生的。

1965Sutherland据此提出了著名的第二信使学说。

由于Sutherland在信号传导机制一突出贡献使他荣获7"1971年的诺贝尔生理医学奖(孙志贤,1995)。

细胞生物学论文完结版 Word 文档

细胞生物学论文完结版 Word 文档

DAG及IP3的生物学作用田丽丽(黑龙江八一农垦大学应用技术学院08级动物医学大庆 163319)摘要:第二信使在细胞信号转导中起重要作用,认的第二信使有cAMP、cGMP、三磷酸肌醇(IP3)和二酰基甘油(DAG),第二信使的作用是对胞外信号起转换和放大的作用。

二酰基甘油(DAG)是一些磷脂水解产生的一种有重要功能的第二信使,肌醇磷酸脂代谢的中间产物1,4,5-三磷酸肌醇在细胞内外的信号转换系统中起着重要的媒介作用,IP3增加并不能直接刺激IP3开放,而是起到一种分子开关的作用。

肌醇三磷酸(IP3)和二酰甘油(DAG)作为新德第二信使,是20世纪80年代中期细胞信使研究的有一飞跃。

关键词:关键词1:第二信使关键词4:作用关键词2:磷脂酰肌醇关键词3:信号一第二信使(一)第二信使的组成细胞可通过两个途径将细胞外的激素类信号转换成细胞内信号,然后通过级联放大作用,引起细胞的应答。

这种由细胞表面受体转换而来的细胞内信号通常称为第二信使。

而将细胞外的信号称为第一信使。

第二信使至少有两个基本特性:①是第一信使同其膜受体结合后最早在细胞膜内侧或胞浆中出现的仅在细胞内部起作用的信号分子;②能启动或调节细胞内稍晚出现的信号应答。

第二信使都是小的分子或离子。

细胞内有五种重要的第二信使:cAMP、cGMP、二酰甘油(DAG)、肌醇三磷酸(IP3)、Ca2+等。

肌醇三磷酸(IP3)和二酰甘油(DAG)作为新德第二信使,是20世纪80年代中期细胞信使研究的有一飞跃。

它们由细胞膜上的肌醇磷脂水解而来,IP3作用于内质网膜上的IP3受体,引起Ca2+通道开放,Ca2+释放,DAG在质膜上短暂形成,并激活蛋白激酶C,进一步靶分子中的丝氨酸和苏氨酸磷酸化,因而肌醇磷脂信号通路又称为双信使途径系统,即IP3信使途径和DAG信使途径。

(二)第二信使的作用第二信使在细胞信号转导中起重要作用,它们能够激活级联系统中酶活性以及非酶蛋白的活性。

细胞信号转导知识点总结归纳

细胞信号转导知识点总结归纳

细胞信号转导知识点总结归纳
第二信使(细胞内小分子信使)
如钙离子、环腺苷酸(cAMP)、环鸟苷酸(cGMP)、环腺苷二磷酸核糖、甘油二酯(DAG)、肌醇-1,4,5-三磷酸(IP3),花生四烯酸、神经酰胺、一氧化氮、一氧化碳
cAMP和cGMP的上游信号转导分子分别为腺苷酸环化酶(AC)和鸟苷酸环化酶(GC),下游分子分别为蛋白激酶A(PKA)和蛋白激酶G(PKG)。

磷脂酰肌醇激酶(PI-K)催化磷脂酰肌醇(PI)的磷酸化。

磷脂酰肌醇特异性激酶C(PLC)可将磷脂酰肌醇-4,5-二磷酸(PIP2)分解成DAG和IP3。

钙离子的下游信号转导分子为钙调蛋白,钙调蛋白本身无活性,形成Ca2+/CAM复合物后可调节钙调蛋白依赖性蛋白激酶的活性。

钙离子还可以结合PKC、AC和cAMP-PDE等多种信号转导分子。

NO可通过激活鸟苷酸环化酶、ADP-核糖转移酶和环氧化酶等传递信号。

细胞内一氧化氮合酶可催化精氨酸分解产生瓜氨酸和NO。

第二信使学说

第二信使学说

,
5-AMP
PDE
Mg2+
cAMP 胞内 第二信号 无活性PKA 无活性 胞内效应
ATP
Ac:腺苷酸环化酶 腺苷酸环化酶 PKA:蛋白激酶 蛋白激酶A 蛋白激酶
有活性PKA 有活性 靶蛋白磷酸化
PDE:环核苷酸磷酸 环核苷酸磷酸 通过激活鸟苷酸环化酶,使胞内 通过激活鸟苷酸环化酶 使胞内 二脂酶 cGMP增高,而激活一种特异蛋白激酶A使 增高,而激活一种特异蛋白激酶 使 增高 胞内靶蛋白磷酸化从而产生效应。 胞内靶蛋白磷酸化从而产生效应。
启动基因转录和蛋白质的合成 DNA合成 DNA合成
激活磷酸酶 和蛋白激酶
调节细胞 增殖活动
底物蛋白磷酸化
调节细胞内的代谢活动
3、cGMP信使体系 cGMP信使体系
• cGMP由鸟苷酸环化酶分解 由鸟苷酸环化酶分解GTP产生 由鸟苷酸环化酶分解 产生 • 转换蛋白为 蛋白 转换蛋白为G蛋白 • cAMP信使体系与 cGMP信使体系存在拮抗关系 信使体系与 信使体系存在拮抗关系 • cAMP浓度升高,促进细胞分化 浓度升高, 浓度升高 • cGMP浓度升高,加快细胞内DNA复制,促进细胞分 浓度升高,加快细胞内 复制, 浓度升高 复制 裂 • 肝细胞中, cAMP浓度升高时,糖原分解;cGMP浓度 肝细胞中, 浓度升高时, 浓度升高时 糖原分解; 浓度 升高时,糖原合成加快。 升高时,糖原合成加快。
信号转导机制的放大效应
一个信号→多个受体( );一个活化R 多个G蛋白; 一个信号→多个受体(R);一个活化R→多个G蛋白; 一个活化 一个G蛋白→多个效应器( 一个G蛋白→多个效应器(酶)→许多第二信使→磷酸 许多第二信使→ 化更多靶蛋白( 化更多靶蛋白(酶)→产生放大效应。 产生放大效应。 因此,一个信号体系好比一个信号扩大器,将细胞外 因此,一个信号体系好比一个信号扩大器, 微小的信号逐级放大,产生明显效应。 微小的信号逐级放大,产生明显效应。如引起糖原分解 的必需肾上腺浓度为10 mol/L,可产生10 的必需肾上腺浓度为10-10mol/L,可产生10-6 mol /L 万倍)。 cAMP (万倍)。

第二信使环腺苷酸和环鸟苷酸检测方法研究进展

第二信使环腺苷酸和环鸟苷酸检测方法研究进展

第二信使环腺苷酸和环鸟苷酸检测方法研究进展王友升;王胜杰;马国为【摘要】3',5'-环腺苷酸(cAMP)和3',5'-环鸟苷酸(cGMP)是真核细胞内常见的调节众多功能的第二信使,最近以cAMP/cGMP信号通路为靶点研发的功能食品也越来越多,因此检测cAMP/cGMP的含量至关重要。

介绍了放射性同位素法、均相非放射性同位素法、非均相非同位素法等近年来广泛使用的cAMP/cGMP检测方法的原理及其实际应用情况,分析了各种方法的优缺点及灵敏度。

其中,荧光共振能量转移技术、均相时间分辨荧光共振能量转移技术、极化荧光检测技术等均相非放射性同位素法因其操作便捷、特异性强、灵敏度高而适用于cAMP/cGMP的高通量检测。

【期刊名称】《食品科学技术学报》【年(卷),期】2017(035)006【总页数】8页(P48-54)【关键词】cAMP;cGMP;检测方法;灵敏度【作者】王友升;王胜杰;马国为【作者单位】北京工商大学北京食品营养与人类健康高精尖创新中心/食品质量与安全北京实验室/北京市食品添加剂工程技术研究中心,北京100048;北京工商大学北京食品营养与人类健康高精尖创新中心/食品质量与安全北京实验室/北京市食品添加剂工程技术研究中心,北京100048;北京工商大学北京食品营养与人类健康高精尖创新中心/食品质量与安全北京实验室/北京市食品添加剂工程技术研究中心,北京100048【正文语种】中文【中图分类】TS201.43′,5′-环腺苷酸(cAMP)和3′,5′-环鸟苷酸(cGMP)是细胞内常见的调节众多功能的第二信使,通过开放离子通道来调节基因表达,进而调节众多机体生理功能[1]。

据报道,白藜芦醇[2]、茶多酚[3-4]、皂苷、花青素等许多食品功能因子通过直接或间接影响cAMP/cGMP信号通路来发挥其功效。

研究对cAMP/cGMP信号通路的影响首先需要检测cAMP/cGMP,因其水平变化对解析相关食品功能因子的作用机理有一定的实际意义,尤其是需要借助高通筛选技术来筛选相关的食品功能因子。

关于磷酸二酯酶的重要成果

关于磷酸二酯酶的重要成果

有关“磷酸二酯酶”的重要成果有关“磷酸二酯酶”的重要成果如下:磷酸二酯酶(PDEs)是一类能够水解细胞内第二信使环磷酸腺苷(cAMP)和环磷酸鸟苷(cGMP)的酶类,参与了多种信号传递和生理活动。

PDEs由21个基因编码组成,根据其对抑制剂敏感性和氨基酸序列的不同分为11个家族(PDE1~11)。

近年来,PDEs作为新的治疗靶点,引起了众多学者广泛的关注,成为一个新的研究热点。

PDEs参与了炎症、哮喘、抑郁等多种疾病病理过程的发生和发展,可作为治疗各类复杂疾病的重要靶点。

因此,着力于发现包括合成类和天然来源的PDEs抑制剂先导化合物,是促进该类抑制剂新药研发的关键。

目前,合成的PDEs抑制剂药物虽然在治疗炎症、哮喘、神经退行性疾病、银屑病等疾病方面具有良好的效果,但同时也存在一系列不良反应。

如PDE4抑制剂罗氟司特,临床上用于慢性阻塞性肺疾病(COPD)的治疗,伴随的副作用主要表现为恶心、头痛、腹泻甚至失眠和抑郁等。

用于治疗斑块型银屑病的药物阿普斯特(Apremilast),可以选择性抑制PDE4A1A,进而改善银屑病关节炎患者的体征和症状,其半数抑制浓度(IC50)为14μmol/L。

但其也具有一定的不良反应,如恶心、呕吐、腹泻、上呼吸道感染、紧张性头痛,甚至抑郁等。

PDE3选择性抑制剂米力农存在心脏毒性。

天然产物一直是防病、治病药物的主要来源,在神经退行性疾病治疗方面有悠久的历史和坚实的基础。

尽管人工合成的药物在药物研发中占有相当大的比重,但是临床上应用的很多药物都是直接或间接来源于天然产物。

天然产物依然是治疗重大疾病的药物或先导化合物的主要源泉之一。

因此,从天然产物中寻找高效低毒且选择性强的PDEs活性抑制成分越来越受到科学家的重视。

第二信使

第二信使

第二信使科技名词定义中文名称:第二信使英文名称:second messenger定义1:配体与受体结合后并不进入细胞内,但间接激活细胞内其他可扩散,并能调节调节信号转导蛋白活性的小分子或离子。

如钙离子、环腺苷酸、环鸟苷酸、环腺苷二磷酸核糖、二酰甘油、肌醇-1,4,5-三磷酸、花生四烯酸、磷脂神经酰胺、一氧化氮和一氧化碳等。

应用学科:生物化学与分子生物学(一级学科);信号转导(二级学科)定义2:受细胞外信号的作用,在胞质溶胶内形成或向胞质溶胶释放的细胞内小分子。

通过作用于靶酶或胞内受体,将信号传递到级联反应下游,如环腺苷酸、环鸟苷酸、钙离子、肌醇三磷酸和肌醇磷脂等。

应用学科:细胞生物学(一级学科);细胞通信与信号转导(二级学科)本内容由全国科学技术名词审定委员会审定公布目录定义作用方式基本特性编辑本段定义第二信使(second messengers)第二信使学说是 E.W.萨瑟兰于1965年首先提出。

他认为人体内各种含氮激素(蛋白质、多肽和氨基酸衍生物)都是通过细胞内的环磷酸腺苷(cAMP)而发挥作用的。

首次把cAMP叫做第二信使,激素等为第一信使。

已知的第二信使种类很少,但却能转递多种细胞外的不同信息,调节大量不同的生理生化过程,这说明细胞内的信号通路具有明显的通用性。

细胞表面受体接受细胞外信号后转换而来的细胞内信号称为第二信使,而将细胞外的信号称为第一信使(first messengers)。

第二信使为第一信使作用于靶细胞后在胞浆内产生的信息分子,第二信使将获得的信息增强,分化,整合并传递给效应器才能发挥特定的生理功能或药理效应。

第二信使包括:环磷腺苷,环磷鸟苷,肌醇磷脂,钙离子,廿碳烯酸类,一氧化氮等。

编辑本段作用方式第二信使的作用方式一般有两种:①直接作用。

如Ca能直接与骨骼肌的肌钙蛋白结合引起肌肉收缩;②间接作用。

这是主要的方式,第二信使通过活化蛋白激酶,诱导一系列蛋白质磷酸化,最后引起细胞效应。

第二信使的名词解释生物化学

第二信使的名词解释生物化学

第二信使的名词解释生物化学1.引言1.1 概述第二信使是一个在生物化学中非常重要的概念。

它指的是一种分子,能够在细胞内传递信号并触发一系列生物反应。

与第一信使相比,第二信使在细胞内传递信号的过程中扮演了重要的角色。

细胞内信号传递是细胞内外信息交流的关键过程。

当细胞受到外界刺激时,例如激素、神经递质或环境因子,会通过一个受体蛋白来感知这些刺激。

这个受体蛋白与细胞内的第二信使分子结合,并引发一系列的信号级联反应,最终导致细胞的特定行为或功能改变。

第二信使可以是多种类型的物质,包括小分子、离子或蛋白质。

常见的第二信使有环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)、钙离子(Ca2+)和各种激酶等。

这些第二信使能够在细胞内迅速传递信号,触发一系列酶促反应或激活特定的细胞功能。

第二信使在生物化学中扮演了重要的角色。

它们能够调节多种细胞过程,包括细胞增殖、分化、凋亡、代谢和细胞运动等。

此外,第二信使还参与了许多疾病的发生和发展过程,如心血管疾病、肿瘤、神经系统疾病和免疫疾病等。

了解第二信使的定义和作用对于深入理解细胞信号传递以及相关疾病的机制非常重要。

因此,本文将详细介绍第二信使在生物化学中的重要性,旨在为读者提供更全面的知识和理解,同时为未来的研究方向提供一些思考。

通过对第二信使的深入研究,我们可以更好地探索细胞内信号传递的机制,并为相关疾病的治疗提供新的靶点和策略。

1.2文章结构1.2 文章结构本篇文章主要围绕第二信使的定义、作用以及在生物化学中的重要性展开。

下面是具体的章节安排:第一章引言1.1 概述1.2 文章结构1.3 目的第二章正文2.1 第二信使的定义和作用2.2 第二信使在生物化学中的重要性第三章结论3.1 总结第二信使的概念和作用3.2 展望第二信使在未来的研究方向在引言部分,我们将对第二信使进行概述,介绍第二信使的定义和作用,以及论文的目的。

这将为读者提供一个整体上的认识和了解。

接下来的正文部分将首先对第二信使的定义和作用进行详细介绍,解释第二信使在细胞信号传导中的重要作用以及其与其他信使分子之间的关系。

细胞生物学名词解释和简答题

细胞生物学名词解释和简答题

细胞生物学名词解释1、细胞:由膜转围成的、能进行独立繁殖的最小原生质团,是生物体电基本的开矿结构和生理功能单位。

其基本结构包括:细胞膜、细胞质、细胞核(拟核)。

2、病毒(virus):迄今发现的最小的、最简单的专性活细胞内寄生的非胞生物体,是仅由一种核酸(DNA或RNA)和蛋白质构成的核酸蛋白质复合体。

3、病毒颗粒:结构完整并具有感染性的病毒。

4、原核细胞:没有由膜围成的明确的细胞核、体积小、结构简单、进化地位原始的细胞。

5、原核(拟核、类核):原核细胞中没有核膜包被的DNA区域,这种DNA不与蛋白质结合。

6、细菌染色体(或细菌基因组):细菌内由双链DNA分子所组成的封闭环折叠而成的遗传物质,这样的染色体是裸露的,没有组蛋白和其他蛋白质结合也不形成核小体结构,易于接受带有相同或不同物种的基因的插入。

7、质粒:细菌细胞核外可进行自主复制的遗传因子,为裸露的环状DNA,可从细胞中失去而不影响细胞正常的生活,在基因工程中常作为基因重组和基因转移的载体。

8、芽孢:细菌细胞为抵抗外界不良环境而产生的休眠体。

9、细胞器:存在于细胞中,用光镜、电镜或其他工具能够分辨出的,具有一定开矿特点并执行特定机能的结构。

10、类病毒:寄生在高等生物(主要是植物)内的一类比任何已知病毒都小的致病因子。

没有蛋白质外壳,只有游离的RNA分子,但也存在DNA型。

11、细胞体积的守恒定律:器官的总体积与细胞的数量成正比,而与细胞的大小无关。

1、分辨率:区分开两个质点间的最小距离。

2、细胞培养:把机体内的组织取出后经过分散(机械方法或酶消化)为单个细胞,在人工培养的条件下,使其生存、生长、繁殖、传代,观察其生长、繁殖、接触抑制、衰老等生命现象的过程。

3、细胞系:在体外培养的条件下,有的细胞发生了遗传突变,而且带有癌细胞特点,失去接触抑制,有可能无限制地传下去的传代细胞。

4、细胞株:在体外一般可以顺利地传40—50代,并且仍能保持原来二倍体数量及接触抑制行为的传代细胞。

细胞生物学填空题

细胞生物学填空题

第一章绪论1、细胞生物学是研究细胞基本生命活动规律的科学,是在显微水平、亚显微水平、和分子水平三个不同层次上,以研究细胞的细胞结构与功能、细胞增殖分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为主要内容的一门科学。

2、 1665 年英国学者胡克第一次观察到细胞并命名为cell;后来第一次真正观察到活细胞有机体的科学家是列文虎克。

3、1838—1839年,施莱登和施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。

4、19世纪自然科学的三大发现是细胞学说,能量转化与守恒定律,达尔文的进化论。

5、1858年德国病理学家魏尔肖提出细胞来自细胞的观点,通常被认为是对细胞学说的一个重要补充。

6、人们通常将1838—1839年施莱登和施旺确立的细胞学说;1859年达尔文确立的进化论1866年孟德尔确立的遗传学,称为现代生物学的三大基石。

7、细胞生物学的发展历史大致可分为细胞的发现,细胞学说的建立,细胞学经典时期,实验细胞学时期和分子细胞生物学几个时期。

第二章细胞基本知识概要1、所有细胞的表面均有由脂类和蛋白质构成的细胞膜;所有的细胞都含有两种核酸;所有细胞都以二分分裂方式增殖;所有细胞内均存在蛋白质生物合成的机器核糖体。

2、病毒是迄今发现的最小的、最简单的专性活细胞内寄生的非细胞生物。

3、病毒核酸是病毒的遗传信息唯一的贮存场所,是病毒的感染单位;病毒蛋白质构成病毒的外壳(壳体),具有保护作用。

***4、病毒的增殖一般可分为病毒侵入细胞、病毒核酸的侵染;病毒核酸的复制、转录与蛋白质的合成;病毒的装配、成熟与释放三个阶段。

5、原核细胞的遗传信息量小遗传信息载体仅由一个环状的DNA构成,细胞内没有专门的细胞器和核膜,其细胞膜具有多功能性性。

6、一个细胞生存与增殖必须具备的结构为细胞膜、遗传信息载体DNA与RNA、进行蛋白质生物合成的一定数量的核糖体和催化酶促反应所需要的酶。

第二信使的信号通路

第二信使的信号通路

请注意方法学的应用
AC在复杂研究中的意义及其生物信息学方法
四、cGMP信号转导通路 (二) cGMP的产生和灭活
鸟苷酸环化酶 (guanylate cyclase,GC)
Soluble (sGC) GC Membrane (mGC,rGC)
cGMP的分子结构和水解部位 (灭活)
2. cGMP的发生 -通过鸟苷酸环化酶(GC)的酶促反应
PDE的作用 PDE的基本结构
(四)cAMP信号转导通路 包括产生cAMP的上游组分和cAMP的作用底物。
胞外信号 表6-2
受体 上游组分 G蛋白 AC 刺激性受体 Rs 抑制性受体 Ri Gs Gi 催化ATP产生cAMP PKA CNG GEF
作用底物及其效应 下游组分 PDE 分解灭活
cAMP信号转导通路的放大效应 (其它信号通路遵循相同的原则)
(四)cGMP调节的生理功能
在视觉信号转导中的作用
NO-cGMPPKG 通路
开放钾离子通道 关闭钙离子通道 抑制内质网释放钙 PKG使MLC去磷酸化 血管平滑肌细胞舒张的典型过程
1998 Nobel Prize Winners in Physiology or Medicine :
State University of New York in Brooklyn
第二信使: cAMP cGMP IP3 DAG Ca2+
第六章 一、cAMP的发现和第二信使学说
Earl W. Sutherland, Jr. USA Vanderbilt University Nashville, TN, USA b. 1915, d. 1974 The Nobel Prize in Physiology or Medicine 1971 "for his discoveries concerning the mechanisms of the action of hormones"

第二信使名词解释细胞生物学

第二信使名词解释细胞生物学

第二信使名词解释细胞生物学
第二信使是细胞生物学中的一个术语,指的是参与细胞信号转导的一类分子。

在细胞信号转导中,细胞通过感受外部或内部的刺激,产生一系列的化学信号,以调节细胞的功能和行为。

其中,第一信使是刺激物(如激素、生长因子等)与细胞膜上的受体结合后产生的,而第二信使则是在激活后,起到传递信号、放大信号和调节下游分子活性的分子。

常见的第二信使包括环磷酸腺苷(cAMP)、鸟苷酸环化酶(cGMP)、磷酸肌醇(IP3)、二鸟苷酸(DAG)等。

这些分子能够通过不同的机制,在细胞内引发一系列级联的反应,从而调节细胞的功能。

第二信使的产生可以通过细胞膜上的受体激活酶、离子通道或其他信号传递蛋白等方式实现。

第二信使在多种生理过程中发挥着重要的作用,包括细胞增殖、分化、凋亡、细胞运动、代谢调节等。

对于了解细胞内的信号传递机制以及药物研发和疾病治疗方面的研究,第二信使的研究具有重要的意义。

磷酸二酯酶

磷酸二酯酶

磷酸二酯酶科技名词定义中文名称:磷酸二酯酶英文名称:phosphodiesterase定义:编号:EC 3.1.4.-。

催化寡核苷酸及多核苷酸中双重酯化的磷酸分子进行水解的酶类。

分为内切核酸酶及外切核酸酶两种类型。

所属学科:生物化学与分子生物学(一级学科);酶(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片磷酸二酯酶磷酸二酯酶(PDEs)具有水解细胞内第二信使(cAMP,环磷酸腺苷或cGMP,环磷酸鸟苷)的功能,降解细胞内cAMP或cGMP,从而终结这些第二信使所传导的生化作用。

cAMP和cGMP对于细胞活动起着重要的调节作用。

而其浓度的调节主要由核苷酸环化酶的合成和磷酸二酯酶(PDEs)水解作用之间的平衡决定。

PDEs在人体内分布广泛,生理作用涉及多个研究领域。

近年来,PDEs作为新的治疗靶点,引起了众多学者广泛的关注,成为一个新的研究热点,选择性PDE 4和PDE 5抑制剂的临床研究受到格外的重视。

目录概述酯酶(PDEs)水解作用之间的平衡决定。

PDEs在人体内分布广泛,生理作用涉及多个研究领域。

近年来,PDEs作为新的治疗靶点,引起了众多学者广泛的关注,成为一个新的研究热点,选择性PDE 4和PDE 5抑制剂的临床研究受到格外的重视。

基因分型:作用机制: cAMP和cGMP作为神经递质、激素、光和气味等物质的第二信使,广泛作用于细胞内靶器官,如:激酶、离子通道及各种PDEs。

当外来信号经跨膜传递并引起一系列生理反应使核苷酸环化酶激活后(如图1所示),cAMP和cGMP产生,PDEs家族的使命便是使之水解失活为5?单磷酸核5(monophosphate nucleoside5, ?AMP)。

核苷酸环化酶的合各型磷酸=酯酶:1、磷酸=酯酶1 pDE]有3种同功酶:PDE1A、1B和1C,分别由不同的基因编码。

PDE1的催化活性是通过两个caM结合区域来调控的,然而每种同功酶都有其被激活的独特ca 阚值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cAMP作为第二信使可以直接激活离子通道。 人体的嗅觉即依靠该途径产生。


气味分子与G蛋白偶联型受体结合,可激活 AC,产生cAMP,开启cAMP门控通道, 引起钠离子内流,膜去极化,产生神经冲 动,最终形成嗅觉。

更多细胞中,cAMP可以特异性活化cAMP 依赖性蛋白激酶A( cAMP dependent protein kinase, PKA)。

IP3可在酶作用下水解。 DAG通过两种途径终止其信使作用:一是被DAG 激酶磷酸化成为磷脂酸,进入肌醇脂循环再生; 二是被DAG酯酶水解成甘油和花生四烯酸。
Ca2+-CaM介导的胞外信号诱导的细胞反 应
Ca2+-钙调蛋白(calmodulin, CaM)-钙调蛋白依 赖性蛋白 CaM为钙结合蛋白,有4个Ca2+结合位点,结 合钙离子后可发生构象改变,形成的Ca2+CaM复合物具有活性,磷酸化蛋白质的丝氨酸 /苏氨酸,激活蛋白激酶或磷酸酶。
cAMP被降解成5’-AMP
ห้องสมุดไป่ตู้
活化的激酶在磷酸酶的作用下去磷酸化, 进入失活状态。
海南霍乱疫情


从10月29日开始,海南大学部分学院有少数学生 发生腹泻。截止到11月1日12时,共发现有腹泻 症状者30人,其中22 例症状较轻的病人隔离在海 大医院并进行采样和预防性服药,8例病人在市医 院传染病科进行隔离治疗。经核实为诊断病例7例, 疑似病例1例。 10月3至11月2日,海南省共发生霍乱病人51例, 已治愈出院29例,康复11例,现患病人11例,无 死亡病例。

光照使视黄醛的构象变为反式,Rh分解为 视黄醛和视蛋白,构象改变的视蛋白激活 cGMP磷酸二酯酶,将细胞中的cGMP水解, 关闭离子通道,减少神经递质释放,产生 视觉。
H R GC cGMP
GC与cGMP
GTP
cGMP-依赖性蛋白激酶 蛋白激酶G (PKG) (效应蛋白磷酸化)

鸟苷酸环化酶(guanylate cyclase, GC) 与AC类似,可分解GTP成为cGMP作为第 二信使。GC一般有胞膜结合型和可溶性两 种存在形式。

胞膜结合型GC是跨膜蛋白,胞外区域是配 体结合部位,能与神经肽等配体结合,引 发构象改变;胞内区域为GC催化结构域, 可分解GTP产生cGMP。

cGMP作为第二信使可以直接激活离子通道。
视觉:视杆细胞中含视紫红质(rhodopsin, Rh),Rh是G蛋白偶联受体。由跨膜蛋白 和一个11顺-视黄醛组成。 黑暗条件下视杆细胞中cGMP浓度较高, cGMP门控离子通道开放,离子内流,引起 膜去极化,突触持续向神经元释放神经递 质。

PKA

PKA可进入细胞核中,将cAMP反应元件结 合蛋白(cAMP responsive element binding protein, CREB)磷酸化,后者激 活后调控特定基因的表达。

细胞质中的 PKA可以激 活磷酸化酶 激酶,后者 将糖原降解。

cAMP实现其第二信使的使命后在环核苷酸 磷酸二酯酶(cAMP phosphodiesterase, PDE)的作用下被降解成5’-AMP,浓度降 低,停止后续反应。
第二信使主要有:cAMP、cGMP、
IP3、DAG、Ca2+ 、NO 第二信使的作用:信号转换、信号放 大。
第二信使介导的下游信号体系

腺苷酸环化酶与cAMP

20世纪50年代,Sutherland发现cAMP, cAMP由腺苷酸环化酶合成。
腺苷酸环化酶(adenylate cyclase, AC) 是G蛋白的效应蛋白,目前发现6种亚型, 位于细胞膜上,跨膜12次。催化结构域在 胞质面,Mg2+或Mn2+存在的条件下可催化 ATP生成cAMP。 AC是cAMP信号传递系统的关键酶。

PIP2 Hydrolysis
磷脂酰肌醇途径

IP3与内质网上的IP3受体门控钙通道结合, 开启钙通道,使胞内Ca2+浓度升高,激活 各类依赖钙离子的蛋白。


DAG结合于质膜上,可活化与质膜结合的蛋白激 酶C(Protein Kinase C,PKC)。PKC以非活 性形式分布于细胞质中,有一个催化中心和一个 膜结合区域。 当细胞接受刺激,产生IP3 ,使Ca2+浓度升高, 同时PKC转位到质膜内表面,被DAG活化,此时 它与Ca2+的亲和力增加,在Ca2+ 、DAG和膜磷脂 的共同作用下具有了对底物进行磷酸化的功能。
第二信使介导的下游信号体系

磷脂酰肌醇途径
该途径是G蛋白激活了磷脂酶C (phospholipase C, PLC),将PIP2 (phosphatidyliositol 4,5-biphospate)分 解成两个第二信使:IP3(inositol 1,4,5triphospate)和DAG (diacylglycerol)。 配体主要有生长因子、神经递质、肽类激 素等。
细胞信号转导

G蛋白下游效应蛋白种类:离子通道、AC、 磷脂酶C、磷脂酶A2、磷酸二酯酶。
细胞外信号分子(配体) 不能穿过靶细胞 膜,只能经膜上的信号转换机制实现信号 传递,所以又称为第一信使。 效应蛋白在跨膜信号传递过程中促使细胞 产生第二信使,在细胞内延续信号传递。

第二信使Second messenger
Ca2+- CaM的底物谱广泛: 激活磷酸二脂酶(PDEⅠ)、肌球蛋白轻链激酶 转录因子活化 Ca2+-CaM→神经钙蛋白→NFAT →启动转录 间接激活GC
Ca2+由质膜上 的Ca2+泵和 Na+-Ca2+交换 器泵出细胞外, 或由内质网膜 上的钙泵抽进 内质网
第二信使介导的下游信号体系

霍乱是由霍乱弧菌引起的急性肠道传染病, 患者剧烈腹泻、呕吐、发烧,短时间内即 可发生死亡。

霍乱毒素能与膜受体结合,催化ADP核糖基 共价结合到Gs的α亚基上,致使α亚基处于持 续激活状态并丧失GTP酶的活性,持续激活 AC ,大量产生cAMP,细胞因此持续分泌 Cl-和HCO3-,细胞内Na+和水大量外流,造 成严重腹泻而脱水。
相关文档
最新文档