温度检测系统设计说明书

合集下载

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书1.背景介绍现代工业生产和生活中,温度监测系统在各个领域中都扮演着非常重要的角色。

从工业生产中的温度控制,到医疗设备和环境监测中的温度监测,都需要可靠的温度检测系统来确保生产和生活的安全和稳定。

因此,设计一款高效、稳定、精准的温度监测系统是非常有必要的。

2.设计目标本次设计的目标是开发一款基于LabVIEW的温度监测系统,主要用于工业生产、医疗设备和环境监测等领域。

该系统需要满足以下主要设计目标:-提供高精度的温度监测功能,能够在工业生产中实时监测温度并进行控制;-能够实时采集温度数据,并能够对数据进行存储、分析和显示;-支持远程监控和控制功能,方便用户在远程地点对温度系统进行监测和控制。

3.技术需求为了实现设计目标,需要满足以下技术需求:-传感器:选择高精度、稳定的温度传感器,能够在-50℃至150℃范围内工作,并且具有快速的响应时间和高灵敏度;- LabVIEW软件:利用LabVIEW软件进行系统的设计和开发,实现数据采集、处理和显示功能;-远程通信技术:使用网络通信技术,实现远程监控和控制功能;-数据存储和分析:需要采用数据库存储技术,对采集的温度数据进行存储和分析。

4.系统设计4.1系统硬件设计传感器选择:选择一款高精度、稳定的温度传感器,例如PT1000,它具有高精度和稳定的特性,可以满足系统的测温要求。

数据采集和处理:使用DAQ卡进行数据采集和预处理,实现对温度数据的快速采集和处理。

远程监控功能:通过网络模块,实现系统远程监控和控制功能,便于用户随时随地监控温度系统的工作状态。

4.2系统软件设计数据采集和处理:使用LabVIEW软件进行数据采集和处理,通过编程实现对温度数据的实时采集和处理。

数据存储和分析:利用LabVIEW和数据库技术进行温度数据的存储和分析,实现对历史温度数据的查询和分析功能。

远程通信功能:通过LabVIEW和网络通信技术,实现对温度系统的远程监控和控制功能,方便用户进行远程操作。

温度检测系统设计报告模板

温度检测系统设计报告模板

温度检测系统设计报告模板1. 引言温度检测是现代社会中广泛应用于各个领域的一项重要技术。

不论是工业生产中的温控系统,还是医疗领域中的体温监测,都需要可靠准确的温度检测系统来提供数据支持。

本报告旨在介绍一种基于传感器技术的温度检测系统的设计方案。

2. 系统设计2.1 系统概述本温度检测系统主要由以下几个部分组成:- 传感器模块- 数据采集模块- 数据处理模块- 数据显示模块2.2 传感器模块传感器模块是温度检测系统的核心部分,用于实时感知周围的温度信息。

常见的温度传感器有热电偶、热敏电阻和半导体温度传感器等。

在本设计方案中,我们选择了半导体温度传感器作为主要传感器。

2.3 数据采集模块数据采集模块用于将传感器模块采集到的温度数据进行模拟转数字(A/D)转换,并将其转化为计算机可读的数据传输格式,如数字信号或模拟信号。

常用的数据采集芯片有MAX31855 和ADS1115 等。

2.4 数据处理模块数据处理模块接收从数据采集模块传输过来的温度数据,并进行必要的数据处理和分析。

其中包括常见的数据滤波、校准和温度单位转换等操作。

此外,如果需要实现更复杂的功能,如报警、数据存储等,也可在该模块进行相应的逻辑设计。

2.5 数据显示模块数据显示模块将处理后的温度数据以直观的方式进行展示,供用户实时监测和观察。

常见的数据显示方式包括数码管、液晶屏、计算机图形界面等。

3. 系统实现3.1 硬件实现在硬件实现方面,我们选用了Arduino 控制板作为主控制器,并通过相关传感器模块和数据采集模块与之连接。

具体连接方式可参考相关文档和示例。

3.2 软件实现在软件实现方面,我们采用了Arduino 的开发环境进行程序编写和上传。

具体程序设计涉及到传感器的读取和校准、数据传输和处理,以及数据显示等方面。

4. 系统测试为了验证系统的性能和准确性,我们进行了一系列的系统测试。

首先对传感器模块进行了静态和动态的温度测试,并与标准温度计进行了对比。

多点温度检测系统设计

多点温度检测系统设计

摘要环境温度对工业、农业、商业与人们得日常生活都有很大得影响,而温度得测量也就成为人们生产生活中一项必不可少得工作。

随着单片机技术得不断发展,单片机在日用电子产品中得应用越来越广泛,温度传感器DS18B20具有线性优良、性能稳定、灵敏度高、抗干扰能力强、使用方便等优点,广泛应用于冰箱、空调器、粮仓等日常生活中温度得测量与控制。

本设计所介绍得数字温度计使用单片机AT89s52单片机,测温传感器使用DS18B20,用4位共阴极LED数码管以动态方式实现温度显示,分时轮流通电,从而大大简化了硬件线路,同时,采用串口通信方式可大大简化硬件电路与软件程序得设计,节省了I/O口。

DS18B20数字温度传感器就是单总线器件与51单片机组成得测温系统,具有线路简单、体积小等特点,而且在一根通信线上,可以挂接多个DS18B20,因此可以构成多点温度测控系统。

关键词:单片机;多点检测;串口通信AbstractEnvironmental temperature to industry, agriculture, merce, and people's daily life has a lot of influence, and the measurement of the temperature will bee an indispensable people production and life of the work、 Along with the development of the single chip microputer technology, microputer in the daily electronic products is more and more extensive application, the temperature sensor DS18B20 have good linear, stable performance, high sensitivity, anti-interference ability strong, easy to use, widely used in the refrigerator, air conditioner, granaries, etc in daily life temperature measurement and control、The design of the digital thermometer introduced use single chip puter 89 s52 microcontroller, temperature sensor DS18B20 use, with a total of 4 cathode tube LED digital display to realize dynamic way temperature, in turn time-sharing electricity, which greatly simplified the hardware circuit, and at the same time, the serial interface munication mode can greatly simplified the hardware circuit and software program design, save the I/O port、 Digital temperature sensor DS18B20 is the single bus devices and 51 SCM position, temperature measurement system, with simple line, little volume features, but at a munications line, can be articulated multiple DS18B20, so can form multi-point temperature measurement and control system、Key Words:Single Chip Microputer; Multi-point detection; Serial mun--ication目录1 绪论 (1)1、1 前言 (1)1、2 研究背景 (1)1、3 研究意义 (1)1、4 国内外研究现状 (2)1、5 研究内容 (2)2 系统方案论证 (3)2、1 传感器部分方案论证 (3)2、2 控制部分方案论证 (4)2、3 系统整体方案 (4)3 硬件电路设计 (6)3、1 控制模块设计 (6)3、1、1 AT89S52单片机在系统中得作用 (6)3、1、2 按键电路设计 (9)3、2 测温模块电路设计 (11)3、2、1 DS18B20简介 (11)3、2、2 DS18B20在系统中得应用 (13)3、3 电平转换模块设计 (14)3、3、1 MAX232电平转换芯片简介 (14)3、3、2 MAX232在本系统中得应用 (15)3、4 报警模块电路设计 (16)3、5 电源模块电路设计 (16)4 软件设计 (19)4、1 温度转换模块程序设计 (19)4、2 串口通信模块程序设计 (20)4、2、1 串口通信方式设置 (20)4、2、2 波特率设置 (22)4、3 报警电路模块设计 (23)4、4 温度显示及控制模块程序设计 (23)4、5 系统软件整体流程 (24)5 软件仿真 (27)5、1 系统仿真环境 (27)5、2 器件参数选取 (27)5、3 仿真结果分析 (27)6 结论 (29)致谢 (30)参考文献 (31)附录一系统源程序 (32)附录二系统仿真图 (45)附录三系统原理图 (46)附录四系统PCB图 (47)1 绪论1、1 前言环境温度对工业、农业、商业与人们得日常生活都有很大得影响,而温度得测量也就成为人们生产生活中一项必不可少得工作。

基于单片机的温度检测系统硬件设计

基于单片机的温度检测系统硬件设计

基于单片机的温度检测系统硬件设计温度是工业生产和日常生活中常见的重要参数之一。

准确的温度检测对于许多应用场景至关重要,如医疗、化工、电力、食品等行业。

随着科技的不断发展,单片机作为一种集成了CPU、内存、I/O接口等多种功能于一体的微型计算机,被广泛应用于各种温度检测系统中。

本文将介绍一种基于单片机的温度检测系统硬件设计方法。

温度检测系统的主要原理是热电偶定律。

热电偶是一种测量温度的传感器,它基于塞贝克效应,将温度变化转化为电信号。

热电偶与放大器、滤波器等电路元件一起构成温度检测电路。

放大器将微弱的电信号放大,滤波器则消除噪声,提高信号质量。

将处理后的电信号输入到单片机中进行处理和显示。

在原理图设计中,我们选用了一种常见的温度检测芯片——DT-6101。

该芯片内置热电偶放大器和A/D转换器,可直接与单片机连接。

我们还选择了滤波电容、电阻等元件来优化信号质量。

原理图设计如图1所示。

软件设计是温度检测系统的核心部分。

我们采用C语言编写程序,实现温度的实时检测和显示。

程序主要分为初始化、输入处理、算法处理和输出显示四个模块。

初始化模块:主要用于初始化单片机、DT-6101等硬件设备。

输入处理模块:从DT-6101芯片读取温度电信号,并进行预处理,如滤波、放大等。

算法处理模块:实现温度计算算法,将电信号转化为温度值。

常用的算法有线性插值法、多项式拟合法等。

输出显示模块:将计算得到的温度值显示到液晶屏或LED数码管上。

硬件调试是确保温度检测系统可靠性和稳定性的关键步骤。

在组装过程中,需注意检查元件的质量和连接的正确性。

调试时,首先对硬件进行初步调试,确保各电路模块的基本功能正常;然后对软件进行调试,检查程序运行是否正确;最后进行综合调试,确保软硬件协调工作。

通过实验,我们验证了基于单片机的温度检测系统的准确性和稳定性。

实验结果表明,系统在-50℃~50℃范围内的误差小于±5℃,满足大多数应用场景的需求。

基于单片机的室内温湿度检测系统的设计

基于单片机的室内温湿度检测系统的设计

基于单片机的室内温湿度检测系统的设计
一、系统简介
本系统基于单片机,能够实时检测室内的温度和湿度,显示在
液晶屏幕上,并可通过串口输出到PC端进行进一步数据处理和存储。

该系统适用于家庭、办公室和实验室等场所的温湿度检测。

二、硬件设计
系统采用了DHT11数字温湿度传感器来实时检测室内温度和湿度,采用STC89C52单片机作为控制器,通过LCD1602液晶屏幕显示
温湿度信息,并通过串口与PC进行数据通信。

三、软件设计
1、采集数据
系统通过DHT11数字温湿度传感器采集室内的温度和湿度数据,通过单片机IO口与DHT11传感器进行通信。

采集到的数据通过计算
得到实际温湿度值,并通过串口发送给PC端进行进一步处理。

2、显示数据
系统将采集到的室内温湿度数据通过LCD1602液晶屏幕进行显示,可以实时观察室内温湿度值。

3、通信数据
系统可以通过串口与PC进行数据通信,将数据发送到PC端进
行存储和进一步数据处理。

四、系统优化
为了提高系统的稳定性和精度,需要进行优化,包括以下几点:
1、添加温湿度校准功能,校准传感器的测量误差。

2、添加系统自检功能,确保系统正常工作。

3、系统可以添加温湿度报警功能,当温湿度超过设定阈值时,系统会自动发送报警信息给PC端。

以上是基于单片机的室内温湿度检测系统的设计。

温度检测与控制试验系统设计

温度检测与控制试验系统设计

温度检测与控制实验系统设计任务书设计参数:被测温度1200C,最大误差不超过±1℃,设计要求:(1).被控对象为小型加热炉,供电电压220VAC,功率2KW,用可控硅控制加热炉温度;(2).通过查阅相关设备手册或上网查询,选择温度传感器、调节器、加热炉控制器等设备(包括设备名称、型号、性能指标等);(3).设备选型要有一定的理论计算;(4).用所选设备构成实验系统,画出系统结构图;(5).列出所能开设的实验,并写出实验目的、步骤、要求等温度检测与控制实验系统设计一摘要本文介绍了一个简单的温度检测与控制系统的设计。

该系统的被控对象为小 型加热炉,供电电压为220VAC,功率2KW,被测温度1200度,误差不超过±1℃。

本设计通过热电偶测量加热炉内液体的温度,将热电偶的输出信号直接传输到调 节器,该调节器内部集成有变送器,并且可设定给定温度值,本实验为1200度。

调节器将偏差信号变为标准的4-20MA 或l —5v 电信号。

该信号输出到调功器, 可改变晶闸管导通时间,从而调节输出平均电压的大小,实现加热炉温度的控制。

经验证此控制器的性能指标达到要求。

二系统框图本系统中,检测单元热电偶,调节器为集成变送器的数字调节器,执行器为 可控硅调功器,被控对象为加热炉,被控参数为温度。

三设备选型1热电偶热电偶要求测温度1200度,误差不超过±1℃,所以决定了只能用钳钱等贵 金属材料热电偶。

钳馅热电偶乂称高温贵金属热电偶,钳铭有单伯铭(钳铭 10-伯铭)和双祐钱(钳钱30-伯铭6)之分,它们作为温度测量传感器,通 常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以 直接测量或控制各种生产过程中0T800C 范围内的流体、蒸汽和气体介质 以及固体表面等温度。

钳籍热电偶的工作原理是伯铭热电偶是由两种不同成分的导体两 端接合成回路时,当两接合点温度不同时,就会在回路内产生热电流。

多点温度检测系统设计

多点温度检测系统设计

0 引言随着电子技术的迅速发展,特别是超大规模集成电路产生而出现的微型计算机,给人类生活带来了根本性的改变。

如果说微型计算机的出现使现代科学研究得到了质的飞跃,那么可以毫不夸张的说,单片机技术的出现则给现代工业测控领域带来了一次新的技术革命。

目前,单片机以其高可靠性、高性能价格比,在工业控制系统、数据采集系统、智能化仪器仪表、办公自动化等诸多领域得到极为广泛的应用,并已走入普通家庭,从洗衣机、微波炉到音响、汽车,到处都可见到单片机的踪影,因此,单片机技术开发和应用水平已逐步成为一个国家工业发展水平的标志之一。

许多物质的特性与温度有很大的依赖关系,温度的影响甚至是起决定作用的。

传统的温度控制系统采用模拟电路设计,存在不可避免的缺陷,如系统的电路结构复杂,操作困难,系统电路所需的功率较大,温度控制的精度差,易出现温度的漂移,电路结构复杂,缺乏友好的人机界面,温度控制的实时性差等。

单片机的出现使得温度的采集和数据处理等问题能够得到很好的解决,温度是工业对象中的一个重要的被控参数,然而所采用的测温元件和测量方法也不相同,产品的工艺不同,控制温度的精度也不相同。

因此对数据采集的精度和采用的控制方法也不相同。

本课题使用单片机作为核心进行控制,单片机具有集成度高,通用性好,功能强,特别是体积小,重量轻,耗能低,可靠性高,抗干扰能力强和使用方便等独特优点,在数字、智能化方面有广泛的用途。

本课题介绍的温度控制系统采用AT89C52单片机控制技术对温度进行调节,具有操作简单便捷、采集方便准确、适应性强、成本低以及节省能源等特点,可明显增加使用者的经济效益。

该系统不但可以推行到温室中,还可以应用于其它进行温度调节的场合。

1 绪论1.1系统背景在实际生产中,为了避免局部的温度过高或过低,需要对某个空间内多个点的温度进行监测,如温室大棚、粮仓等,以便采取相应的措施.为了改善监测人员的工作条件,监测人员一般需要远离监测对象.因此,多点温度远程监测在实际生产中具有重要的应用价值.温度测量的方法有多种,目前典型的温度测量系统是由模拟式温度传感器、A /D转换电路和单片机组成.但是,由于模拟式温度传感器输出的为模拟信号,必须经过A/D转换才能与单片机等微处理器接口,并且每个测温点都要占甩单片机一个I/0口,这种系统的远距离传输使得系统非常复杂,成本较高.此外,模拟传感器的信号在传输中易受干扰,降低了系统检测的精度和稳定性。

仓库温湿度检测系统设计

仓库温湿度检测系统设计

仓库温湿度检测系统设计1.引言仓库是储存物品的重要场所,对于一些物品而言,温湿度的控制非常重要。

例如,一些易腐烂的食品需要低温干燥的环境才能存放长时间,而一些高温敏感的电子设备则需要保持低湿度来防止损坏。

因此,设计一个仓库温湿度检测系统对于仓库管理非常重要。

2.系统概述2.1温湿度传感器温湿度传感器是用于测量仓库内部温湿度的设备。

常见的温湿度传感器有电子传感器和光学传感器。

系统需要选择适合的传感器来满足温湿度检测的需求。

2.2数据采集模块数据采集模块负责从温湿度传感器中读取数据,并将数据传输到数据处理模块。

可以通过有线或无线方式传输数据。

如果仓库面积较大或温湿度变化快速,无线方式可能更适合。

2.3数据处理模块数据处理模块接收来自数据采集模块的数据,并进行处理和分析。

可以使用微控制器或单片机来实现数据处理功能。

数据处理模块需要实时监控仓库温湿度状态,并根据预先设置的阈值进行判断和报警。

2.4报警系统报警系统用于在温湿度超出预设范围时发出警报。

可以使用声音、光线、手机短信等方式进行报警,并进行记录和通知相关人员。

3.系统设计在设计过程中需要考虑以下几个关键点:3.1传感器选择根据仓库大小、温湿度变化情况和系统预算等因素选择适合的温湿度传感器。

考虑到传感器精度和稳定性等因素,建议选择专业的温湿度传感器。

3.2数据采集与传输根据仓库的实际情况选择有线或无线方式进行数据采集与传输。

有线方式通常更稳定可靠,但无线方式更适合仓库面积较大或需要移动传感器的情况。

3.3数据处理与报警数据处理模块需要接收并处理来自数据采集模块的数据。

可以通过设置阈值,在数据超出预设范围时触发报警系统。

同时,数据处理模块需要进行实时监控,并记录历史数据以便后续分析。

3.4报警系统报警系统需要能够及时准确地发出警报,并记录报警事件。

可以设置不同的报警级别以便根据不同情况采取相应措施。

4.系统实施4.1硬件实施根据系统设计,选择合适的传感器和数据处理模块,并进行搭建和调试。

基于单片机的温度检测系统的设计

基于单片机的温度检测系统的设计

基于单片机的温度检测系统的设计一、引言随着科技的发展和社会的进步,温度检测在各个领域中起着至关重要的作用。

为了实现对温度变化的准确监测和控制,本文将介绍一种基于单片机的温度检测系统的设计方案。

二、系统概述本系统通过采集环境温度数据,并通过单片机进行处理和控制,实现对温度的实时监测和报警功能。

三、硬件设计3.1传感器选择在温度检测系统中,传感器是获取环境温度信息的关键部件。

本系统选择了精度高、稳定性好的数字温度传感器DS18B20作为温度采集装置。

3.2单片机选择单片机是系统的核心控制部分,负责采集传感器数据、处理数据并输出相应信号。

为了满足系统的实时性和稳定性要求,本系统选择了常用的S T M32系列单片机作为控制器。

3.3电路设计基于上述选择的传感器和单片机,我们设计了相应的电路接口和连接方式,确保传感器能够正常采集数据,并将数据传输给单片机进行处理。

四、软件设计4.1系统架构本系统采用分层架构设计,包括传感器数据采集层、数据处理层和用户界面层。

每一层都有相应的功能模块,实现温度数据的采集、处理和显示。

4.2数据采集和处理系统通过定时中断方式,周期性地读取传感器数据,并通过计算得到温度值。

采集到的数据经过滤波和校正处理后,传递给用户界面层进行显示。

4.3用户界面为了方便用户操作和监测温度变化,系统设计了简洁直观的用户界面。

用户可以通过L CD显示屏上的菜单操作,查看温度数值和设置相关参数,同时系统还具备温度报警功能。

五、系统测试与结果分析5.1硬件测试在硬件实现完毕后,进行了必要的硬件测试。

通过测量不同环境下的温度,并与实际温度进行比对,验证了系统的准确性和可靠性。

5.2软件测试系统软件的测试主要包括功能测试和性能测试。

通过模拟实际使用场景,测试了系统在不同条件下的温度检测和报警功能是否正常。

六、总结与展望本文介绍了基于单片机的温度检测系统的设计方案。

通过合理的硬件选型和软件设计,实现了对温度数据的实时监测和报警功能。

嵌入式系统课程设计(温度检测报警系统)

嵌入式系统课程设计(温度检测报警系统)

一、系统要求使用STM32F103作为主控CPU设计一个温度综合测控系统,具体要求:1、使用热敏电阻或者内部集成的温度传感器检测环境温度,每0.1秒检测一次温度,对检测到的温度进行数字滤波(可以使用平均法)。

记录当前的温度值和时间。

2、使用计算机,通过串行通信获取STM32F103检测到的温度和所对应的时间。

3、使用计算机进行时间的设定。

4、使用计算机进行温度上限值和下限值的设定。

5、若超过上限值或者低于下限值,则STM32进行报警提示。

二、设计方案本次课程设计的要求是使用STM32F103设计一个温度测控系统,这款单片机集成了很多的片上资源,功能十分强大,我使用了以下部分来完成课程设计的要求:1、STM32F103内置了3个12位A/D转换模块,最快转换时间为1us。

本次课程设计要求进行温度测定,于是使用了其中一个ADC对片上温度传感器的内部信号源进行转换。

当有多个通道需要采集信号时,可以把ADC配置为按一定的顺序来对各个通道进行扫描转换,本设计只采集一个通道的信号,所以不使用扫描转换模式。

本设计需要循环采集电压值,所以使用连续转换模式。

2、本次课程设计还使用到了DMA。

DMA是一种高速的数据传输操作,允许在外部设备和储存器之间利用系统总线直接读写数据,不需要微处理器干预。

使能ADC的DMA接口后,DMA控制器把转换值从ADC数据寄存器(ADC_DR)中转移到变量ADC_ConvertedValue中,当DMA传输完成后,在main函数中使用的ADC_ConvertedValue的内容就是ADC转换值了。

3、STM32内部的温度传感器和ADCx_IN16输入通道相连接,此通道把传感器输出的电压值转换成数字值。

STM内部的温度传感器支持的温度范围:-40到125摄氏度。

利用下列公式得出温度温度(°C)={(V25-VSENSE)/Avg_Slope}+25式中V25是VSENSE在25摄氏度时的数值(典型值为1.42V)Avg_Slope是温度与VSENSE曲线的平均斜率(典型值为4.3mV/C)利用均值法对转换后的温度进行滤波,将得到的温度通过串口输出。

第4章 多通道温度检测系统的设计

第4章  多通道温度检测系统的设计

第4章多通道温度检测系统的设计本章将以一个适用的多通道温度检测系统为设计主体,详细阐述该系统的设计方法。

第4.1节系统功能(1)单通道测试键盘上标号为0~8的八个键为单通道试键,按一次其中一个键,即开始启动一个与该键标号相对应的一个测温通道,该测温点的温度值立即在显示屏上显示出来。

温度测定值以闪烁方式显示,显示0.5s,关断0.5s。

显示五次结束。

显示屏上重新出现待命提示符“00”,等待键入新的键号。

(2)八通道巡回检测键盘上标号为8的键为八通道巡回检测键。

按一次8号键,即顺序启动八个测温通道进行巡回检测。

每测试一个通道,先在显示屏上显示该通道的通道号,然后再显示该测温点的温度值。

通道号及温度值均以闪烁方式,通道号闪烁三次,温度值显示五次。

只有按一次复位键后,巡回检测方式方可中断,显示屏上重新出现待命提示符“00”,等待键入新的键号。

(3)被测点温度溢出提示当被测点温度≤-30℃时,显示器显示温度过低溢出提示“-99”;当被测点温度≥40℃时,显示器显示温度多高提示“99”。

第4.2节系统组成图4-1给出了多通道温度检测系统的逻辑图,为了降低功耗,系统中全部使用MOS芯片。

该系统各主要组成部分的功能如下:(1)单片机8031用于系统控制,主频使用2MHz,机器周期为6μs。

有加电复位和按键复位电路。

(2)行列式键盘4行4列共16个功能键0~7键用于单通道测试,8号键用于八通道巡回检测。

9~15号键不用,可由用户根据功能需要自定义。

(3)A/D转换器ADC0809ADC0809为八个输入端,八位A/D 转换器。

用于8个通道的温度测量。

使用一个型号为WH5-1A 10K-B的电位器作为输入电路。

八个电位器分别放置在需要进行温度测试的八个测试点上,作为温度传感器。

(4)LED动态显示电路本系统采用四个七段码LED动态显示器,其结构和工作方式在第三章已经详细说明。

单通道测试时,最左边的显示器不显示任何信息;八通道巡回测试时,最左边的显示器用来显示通道号,其它三个显示器用来显示实时温度值。

地源热泵温度场测温系统说明书

地源热泵温度场测温系统说明书

地源热泵温度场远程在线监测系统一、地源热泵温度监控系统原理论述1、地源热泵温度监控系统/地源热泵测温摘要:简述地源热泵垂直埋管方式的选择原理,通过埋管井中,双U管运行时冷却水进出口水温、管内水流速计算出管内外换热热量,同时将土壤近似为半无限大空间,对管内各点与无限远处的土壤同水平点间进行传热量计算,对比数据的准确性。

运用已经确定的导热量,计算出管与管壁导热后管外壁点的温度,与热泵系统运行时,温度探测器测量到的地埋管在不同深度、不同时间段时各点的温度,对两组数据进行整理与分析,来探讨地源热泵地埋管系统运行时温度场的变化规律。

2、地源热泵温度监控系统/地源热泵测温关键词:地源热泵垂直埋管 U型管土壤温度场3、地源热泵温度监控系统/地源热泵测温引言:热泵技术在现代社会已经是一项实用且普遍的建筑制冷取暖技术,其中的土壤源热泵是利用地下浅层地热资源进行供热和制冷的高效节能的新型能源利用技术。

它利用卡诺循环和逆卡诺循环原理实现与大地土壤进行冷热交换的目的。

地源热泵系统由于其具有节能效果好、利用可再生资源、环保效益显著、使用寿命长等优点,现在越来越被广泛运用。

4、地源热泵温度监控系统/地源热泵测温正文:热泵是能够在夏天提供制冷的同时也提供冬天供暖的一种系统,从能量的角度来看,热泵系统是通过高品位电能驱动压缩机促使制冷剂工质相变循环与强制循环的土壤或者空气进行传热。

在夏季的时候将室内的高温传入介质中,同时通过冷却水的循环将建筑物内部达到适宜的温度;冬季时则吸取介质中的热量,通过一定的处理之后输送给建筑物内部进行取暖。

5、地源热泵温度监控系统/地源热泵测温理论计算公式地下换热器的目的在于让管内的流体与地下土壤间进行热交换,所以地面温度场是研究地下换热器的基础数据,首先对土壤的地温特性进行描述。

受地面空气和太阳对地表面辐射作用以及地温梯度的影响,地表层温度发生着日间的变化,其温度变化规律可用公式(1)关系式来描述:(1)式中:t(z.τ):地下岩土在深为z,时刻为T时的温度℃;tep: 地表面某一时间周期的平均温度℃;A0:地表面温度的一阶谐量振幅℃;a:地下岩土的导温系数,a=λ/ρc p㎡ /s ;ω:圆频率,ω=2π/T0 1/s:T0:温度变化周期,日周期为To=24hZ: 距地面的距离 mτ:时刻s1/30:地温梯度℃/m2009年9月30日温度变化可近似用公式(2)表示,可算出地面对应时间的地面温度:Y(t)=-4.5cos(π/12)t+24.5(2)已知冷却出水水温Tf1、冷却回水Tf2及流速Q,水在双U管内的循环流动过程,将双U管视为左右完全对称,参考文献,可将水温看做线性变化,水温度随管长变化见公式(3),可计算出相应时间点对应深度的管内流体温度:T=(Tf2-Tf1)/202+Tf1(3)土壤为半无限大非稳态温度场,无限远处温度t(z.τ)稳定,流体在双U管内流动过程可以看做为管内流体与无限远处进行导热的过程。

温度屏幕自动检测机设备说明书

温度屏幕自动检测机设备说明书

Temperature Screening KioskSolution OverviewHelp your business determine presence of elevated temperature with employees, visitors, staff, students, or attendees entering your facilityFeatures•8” screen with camera•Temperature accuracy ±0.9o F •Store up to 30,000 records•Steel base plate & aluminum pedestal •LAN or Wi-Fi connectivity •FCC & CE certified•Contactless, Non-Invasive Screening •Fast Detection (~1 second) with Alarm •Accurate Facial Recognition •Quick & Easy ScreeningTemperature Screening KioskHow does the technology work?•The kiosks support human body temperaturedetection and temperature display, with anaccuracy of ±0.9°F. The kiosk reads the forehead skin temperature.• A distance of 2-3feet is recommended for most accurate readings, with 3½ feet being the longest distance temperature can be measured.•It only takes a few seconds for detection and an alarm will sound automatically when temperature abnormality is detected -at a threshold set by the facility.O P T I O N A L S E RV I C E S•On-Boarding & Training Support •Hot Swap Loaner Program •Extended WarrantyC A PA B I L I T I E S•Temperature Verification •Facial Recognition •Mask Detection •Alarm Threshold •Temperature Calibration•Wi-Fi Enabled •Two Modes •Stranger mode•Recognition mode (Facial)F E AT U R E S•Helps ensure the success of a return to work and health & safety program •Adherence to federal and state health recommendations •Completely touchless with no human assistance required •Ability to show employees they take the health and safety of their workforce serious •Workforce feels confident returning to work knowing that they are in a safe environment•Designed for reliability and ease of useB E N E F I T S•Hands-free, touchless device with voice prompts •Fast ~1 second detection with auto alarm •Temperature accuracy ±0.9°F•Ability to turn off the audible alarm so as not to alienate any individuals •Facial recognition with face mask & Stranger mode •Moisture and dust resistant •Industrial-grade infrared camera•Easy Plug & Play for temperature screening •LAN or Wi-Fi Connectivity •FCC & CE CertifiedIdentify distance configuration Support UI Interface configuration Support Upgrade remotely SupportInterfaceInterfaces include device management,personnel, photo management, record query, Deployment method Support public cloud deployment, privatized deployment, LAN use, stand-alone use Temperature detection SupportTemp detection distance39 inches (optimal distance 20 inches)Temp measurement accuracy ≤ ±0.9ºF Temp measurement range 50ºF~108ºF Thermal field of view 32x32ºC Visitors temperature isnormal and released directly SupportAbnormal temperature alarm Support (temperature alarm value can be set)PowerDC12V (±10%)Operating temperature 32ºF~140ºF Storage temperature -4ºF~140ºF Power consumption 13.5W (max)Installation method Gate bracket installationSizeStandard: 274.24*128*21.48 (mm)IC card / ID card: 296.18*132.88*25 (mm)Temperature Screening Kiosk Power Adapter ManualCertificate of conformityInfrared thermal imaging moduleGeneralIncludedFunctionResolution 2 million pixelsType Binocular wide dynamic camera ApertureF2.4Focusing distance 20-40 inches White balance AutoPhoto flood light LED and IR dual photo flood light Size8.0 inch IPS LCD screen Resolution 800 x 1280Touch Not supported (optional support)CPURK3288 quad-core (optional RK3399 six-core, MSM8953 eight-core)StorageEMMC 8GNetwork module Ethernet and wireless (WIFI)Audio 2.5W / 4R speakersUSB1 USB OTG, 1 USB HOST standard A port Serial communication 1 RS232 serial portRelay output 1 door open signal outputWiegandOne Wiegand 26/34 output, one Wiegand input Upgrade button Support Uboot upgrade button Wired network 1 RJ45 Ethernet socketCredit card reader None (optional IC card reader, ID card)Face detection Supports detection and tracking of multiple people at the same time Face LibraryUp to 30,0001:N face recognition Support 1:1 face comparison Support Stranger detectionSupportFunctionCameraScreenProcessorInterfaceElectronic Head Unit Dimensions58“10.25“1.4“3.5”5.25”。

室内温湿度检测系统设计

室内温湿度检测系统设计

室内温湿度检测系统设计一、引言随着人们对室内环境舒适度的要求越来越高,室内温湿度的监测和控制变得越来越重要。

尤其是在现代建筑中,室内温湿度不仅影响人们的舒适感,还会影响建筑物的结构和室内设备的正常运行。

设计一套可靠、准确的室内温湿度检测系统对于建筑物的设计和管理至关重要。

本文将介绍一种基于传感器和数据处理技术的室内温湿度检测系统设计方案。

二、系统需求分析1. 准确性和稳定性室内温湿度检测系统需要具有高精度和稳定性,以确保监测数据的准确性。

尤其是在变化较大的室内环境中,系统的响应速度和精度需达到一定标准。

2. 实时监测系统需要能够实时监测室内温湿度,并能够及时反馈监测数据。

这对于建筑物的管理和设备的正常运行至关重要。

3. 数据存储和分析系统需要能够将监测数据进行存储和分析,以便根据历史数据进行预测和调整。

4. 跨平台适配系统需要具有较好的可扩展性和跨平台适配性,能够适用于不同类型的建筑物和环境中。

三、系统设计方案1. 传感器选择室内温湿度检测系统首先需要选择合适的传感器来进行监测。

目前市场上常见的温湿度传感器有电阻式和电容式两种,两者各有优缺点。

在选择传感器时需要考虑监测精度、响应速度、耐用性等因素。

2. 数据采集通过选取合适的数据采集模块,将传感器采集到的温湿度数据进行采集、传输和处理。

数据采集模块需要具有良好的稳定性和数据传输速度,以保证监测数据的实时性和准确性。

3. 数据处理通过嵌入式系统或者单片机进行温湿度数据的处理和分析,可以利用算法进行数据的平滑处理和预测分析,以提高数据的准确度和系统的稳定性。

4. 数据存储与展示将处理后的数据存储到数据库中,并通过网络接口进行实时监测数据的展示。

这样可以方便用户在任何时候对室内温湿度进行监测,并能够方便地进行历史数据的查看和分析。

四、系统实施与应用1. 硬件设计根据系统设计方案进行硬件电路的设计和制作,选择合适的传感器、数据采集模块和数据处理模块进行集成,并保证系统的稳定性和可靠性。

粮仓多点温度监测系统设计

粮仓多点温度监测系统设计

粮仓多点温度监测系统设计一、系统概述:本系统通过安装多个传感器在粮仓内不同位置进行温度检测,将检测到的温度数据采集、传输给中心控制器,经过分析和处理后,将数据显示在人机界面上,并通过声光报警装置提示用户。

本系统具有实时性、准确性、可操作性等特点,能够在第一时间发现粮仓内的温度异常情况并进行及时处理,确保粮食的质量和安全。

二、系统组成:本系统主要由温度传感器、数据采集器、通信模块、中心控制器、电源、人机交互界面、报警装置等组成。

1、温度传感器:本系统所采用的温度传感器为PT1000型号的热敏电阻传感器,可测量室内温度范围为-50~150°C。

传感器精度高、测量范围广,且使用寿命长,是目前较为常用的温度传感器之一。

2、数据采集器:数据采集器主要用来采集传感器所检测到的温度数据,将数据通过模拟信号转换为数字信号,再将数字信号通过通信模块传输至中心控制器。

3、通信模块:本系统所采用的通信模块为GSM/GPRS通讯模块,可通过短信或GPRS网络将数据传输至中心控制器,并可接收中心控制器发送的控制指令,实现远程控制。

4、中心控制器:中心控制器是本系统的核心部件,主要用于数据处理、控制指令下达和人机交互。

数据处理方面,中心控制器能够对传感器采集到的温度数据进行实时分析和处理,并根据设定的阈值进行判断和判定,当温度超过或低于设定的值时,自动触发报警装置。

在控制指令下达方面,中心控制器可以通过短信或GPRS网络向本系统发送远程控制指令,以实现远程控制功能。

5、人机交互界面:人机交互界面是本系统与用户直接交互的界面,主要用来显示温度监测数据、操作控制系统,并展示报警信息。

界面采用易于操作的界面设计,将温度数据以清晰直观的形式呈现给用户,方便用户对仓内温度变化情况进行监控和控制。

6、报警装置:报警装置主要用来提示用户粮仓内温度异常情况,并引起用户的重视和注意。

在温度超过或低于设定的值时,报警装置将立即发出声光报警信号,提醒用户进行处理。

温度检测系统的上位机软件设计

温度检测系统的上位机软件设计

图2 参数 设置界 面 Pr oe 属性 :设置 或返 回串 口的状态 ,其值 为布 尔类型 。 otp n Ip t nu 属性 和O tu 属性 : 用于 从接 收 缓冲 区 读取 数据 和 向发送 缓冲 u pt 区写入数 据 。其值均 为变量 类型 。 Ip toe 性 :设置 或返 回Ip t 性取 回 的数据 的类 型。其 属性值 nuM d属 n u属 cm nuM dT x表示 数据通 过 Ipt 0Ip toe et nu 属性 以文字 形式取 回 ,Cm nuM d o Ipto e
在 一个复 杂 的工业现 场 中,实 时监控 功能 是必不 可少 的 ,它 可 以给现
场 工作 人员 清晰 、 明确地显 示及 时工 况 ,而且 可 以存储历 史 工况数 据 为将 来 地分析 作为参考 。
由于 下位机 中所用 的操 作系统 的 驱动模 块 中 已经加 载 了UR 的 串口驱 AT 动 ,并且 对 于串 口通 讯 的相 关参 数 已经 设 定, 为 了使 操作 简单 ,设 计者 只 需要 在上位 机的软件 中把 相关参 数对应 匹配就 够 了。 1 位机 软件总体 方案 的设计 上 为 了使此 软 件具 有 一定 的通 用 性 , 也就 是 说可 以在 相 类 似 的场 合使 用 ,因此相 关 的参数 包括 : 串口选择 、波 特率 设置 、有 无奇 偶校 验位 的设 定 、数 据位 设置 、停止 位 的设置 这 些要 素的 值可 以采 用下 拉菜 单 的方式 进 行选择 ,这 样可 以只 需要 选择 不 同的参 数就 可 以和别 的下 位机进 行 匹配
了。另外 就是 采集 界面 了,采 集 界面不 仅 需要把 及 时数据 显示 出来 ,还 需
数 。其属 性值 格 式为 “B B ,D ” ,缺 省值 为 “ 60 ,8 ”, BB ,P ,S 90 ,n ,i 表示波 特率为 90 bs 60p ,无奇 偶校 验位 ,8 数据位 , l 位 位停止 位 。参数设 置

红外温度监测系统设计报告

红外温度监测系统设计报告

红外温度监测系统设计报告一、引言红外温度监测系统是一种使用红外传感器来实时检测物体表面温度的系统。

它可以广泛应用于工业生产、医疗、安防等领域,具有非接触、实时、高精度等优势。

本报告将介绍一个基于红外传感器的温度监测系统设计方案。

二、系统设计方案1. 功能需求本系统需要实现以下功能:- 实时获取物体表面的温度数据- 将温度数据传输至显示设备- 在显示设备上实时显示监测结果- 发出警报以提醒异常温度值的出现2. 硬件设计系统硬件设计包括红外传感器、显示设备和控制器。

- 红外传感器:用于感知物体表面的红外辐射,将红外信号转换为电信号。

- 显示设备:通常为液晶显示屏,用于实时显示温度数据和报警信息。

- 控制器:负责数据的处理和控制,包括温度数据的采集、传输和处理,以及警报的触发和控制。

3. 软件设计系统软件设计包括数据处理和警报触发。

- 数据处理:控制器通过红外传感器采集物体表面的温度数据,然后通过通信接口将数据传输至显示设备。

显示设备上的软件负责解析并显示温度数据。

- 警报触发:控制器将采集到的温度数据与设定的阈值进行比较,当温度超过预设阈值时,触发警报并通过通信接口将警报信息传输至显示设备。

4. 系统结构系统结构如下图所示:![系统结构图](system_structure.png)三、系统实施系统实施的步骤如下:1. 硬件组装:将红外传感器、显示设备和控制器按照设计要求进行组装和连接。

2. 软件开发:编写控制器和显示设备上的软件代码,实现数据采集、传输和显示功能,以及警报触发逻辑。

3. 系统调试:测试硬件和软件功能是否正常,校准红外传感器的测温精度,并调整阈值和警报逻辑。

4. 系统部署:将系统安装在需要进行温度监测的场所,并进行测试运行。

5. 系统维护:定期检查和维护硬件设备,更新软件版本以修复和优化功能。

四、系统性能系统性能指标如下:- 测温精度:本设计要求红外传感器的测温精度达到±0.5C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机课程设计说明书题目:温度检测系统设计系部:专业:班级:学生姓名:学号:指导教师:年月日目录1 设计任务与要求 (1)1.1 设计任务 (1)1.2 设计要求 (1)2 设计方案 (1)3 硬件电路设计 (1)3.1 最小系统电路 (1)3.2 温度采集模块 (3)3.3 显示模块 (4)3.4 硬件总体仿真图 (7)4 主要参数计算与分析 (7)4.1 DS18B20的主要参数 (7)4.2 STC89C52RC的主要参数 (8)4.3 LCD1602的主要参数 (8)5 软件设计 (9)5.1 主程序流程图 (9)5.2 温度测量系统各子模块 (9)6 心得体会 (12)7 参考文献 (12)8 附录 (12)8.1 实物图 (12)8.2 元件清单 (13)8.3 C语言程序 (14)1设计任务与要求1.1设计任务设计一个温度检测系统。

1.2设计要求(1)用温度传感器18B20测环境温度,用LCD1602显示测量结果。

(2)用PROTEUS仿真。

(3)焊接电路板并调试运行。

2设计方案总体设计方案采用S T C89C52R C单片机作控制器,温度传感器选用DS18B20来设计数字温度计。

主控制器由单片机S T C89C52R C实现,测温电路由温度传感器DS18B20实现,显示电路由LCD1602液晶显示器直读显示。

本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用。

该设计控制器使用单片机S T C89C52R C,测温传感器使用DS18B20,实现温度显示,能准确达到以上要求。

如图一所示。

图一总体设计方案3硬件电路设计3.1 最小系统电路单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统,对于51系列单片机来说,最小系统包括:单片机、时钟电路、复位电路。

如图二所示:图二最小系统电路3.1.1 时钟电路STC89C52内部有一个用于构成振荡器的高增益反相放大器,引脚RXD和TXD分别是此放大器的输入端和输出端。

时钟可以由内部方式产生或外部方式产生。

在RXD和TXD引脚上外接定时元件,内部振荡器就产生自激振荡。

定时元件通常采用石英晶体和电容组成的并联谐振回路。

晶体振荡频率可以在1.2~12MHz之间选择,电容值在5~30pF之间选择,电容值的大小可对频率起微调的作用。

外部方式的时钟,RXD接地,TXD接外部振荡器。

对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。

片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。

如图三所示:图三时钟电路3.1.2 复位及复位电路复位是单片机的初始化操作。

其主要功能是把PC初始化为0000H,使单片机从0000H单元开始执行程序。

除了进入系统的正常初始化之外,当由于程序运行出错或操作错误使系统处于死锁状态时,为摆脱困境,也需按复位键重新启动。

RST引脚是复位信号的输入端。

复位信号是高电平有效,其有效时间应持续24个振荡周期(即二个机器周期)以上。

若使用颇率为6MHz的晶振,则复位信号持续时间应超过4us才能完成复位操作。

整个复位电路包括芯片内、外两部分。

外部电路产生的复位信号(RST)送至施密特触发器,再由片内复位电路在每个机器周期的S5P2时刻对施密特触发器的输出进行采样,然后才得到内部复位操作所需要的信号。

复位操作有上电自动复位相按键手动复位两种方式。

复位电路如图四所示:图四复位电路3.2 温度采集模块3.2.1 温度传感器的选择DS18B20是常用的温度传感器,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。

DS18B20测温原理如图3所示。

图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。

高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。

计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

3.2.2 DS18B20管脚功能及接线方法管脚功能:GND为电源地、DQ为数字信号输入/输出端、VDD为外接供电电源输入端(在寄生电源接线方式时接地)接线方法:面对着平的那一面,左负右正,一旦接反就会立刻发热,有可能烧毁!同时,接反也是导致该传感器总是显示85℃的原因。

实际操作中将正负反接,传感器立即发热,液晶屏不能显示读数,正负接好后显示85℃。

另外,如果使用51单片机的话,那么中间那个引脚必须接上4.7K—10K的上拉电阻,否则,由于高电平不能正常输入/输出,要么通电后立即显示85℃,要么用几个月后温度在85℃与正常值上乱跳。

DS18B20管脚如图五所示。

图五 DS18B20管脚DS18B20与单片机的连接电路,如图六所示。

图六 DS18B20与单片机的连接电路3.3 显示模块3.3.1 LCD的选择LCD是一种工业型字符液晶,它能够显示32个字符(16列×2行),工作电压为3.3V或5V,对比度可自行调节,LCD的内部内部含有复位电路,用来提供各种控制命令,如:清屏、字符闪烁、光标闪烁、显示移位等多种功能。

由于LCD1602功耗低、体积小、显示多样,常用在微型仪表和低功耗应用中。

市面上字符液晶绝大多数是基于HD44780液晶芯片,LCD1602控制原理也基于HD44780。

LCD1602采用标准14脚(无背光)或16脚(有背光)接口。

3.3.2 LCD1602显示器的管脚功能LCD1602采用标准的14脚(无背光)或16脚(带背光)接口,各引脚接口说明如下表一所示。

表一 LCD1602显示器引脚说明图七 LCD1602管脚图第1脚:VSS为地电源。

第2脚:VDD接5V正电源。

第3脚:VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度。

第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚:R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。

当RS和R/W共同为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS为高电平R/W为低电平时可以写入数据。

第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。

第7~14脚:D0~D7为8位双向数据线。

第15脚:背光源正极。

第16脚:背光源负极。

液晶与单片机的连接电路如图八所示。

图八液晶与单片机的连接电路3.4 硬件总体仿真图本设计大体可分为三个部分,即CPU处理模块、温度采集模块、显示模块。

CPU 处理模块采用单片机STC89C52RC,包括时钟电路、复位电路;温度采集模块采用温度传感器DS18B20进行温度采集,通过P3.6管脚发送到CPU进行处理;显示模块采用16管脚的LCD1602,数据通过单片机的P2口传输到LCD1602,最终LCD1602将温度显示出来。

如图九所示。

图九硬件总体仿真图4主要参数计算与分析4.1DS18B20的主要参数(1) 独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(2) 测温范围 -55℃~+125℃,固有测温误差(注意,不是分辨率,这里之前是错误的)1℃。

(3) 支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。

(4) 工作电源: 3.0~5.5V/DC (可以数据线寄生电源)(5) 在使用中不需要任何外围元件(6) 测量结果以9~12位数字量方式串行传送(7) 不锈钢保护管直径Φ6(8) 适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温(9) 标准安装螺纹 M10X1, M12X1.5, G1/2"任选(10) PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。

4.2STC89C52RC的主要参数(1) 增强型8051 单片机,6 时钟/机器周期和12 时钟/机器周期可以任意选择,指令代码完全兼容传统8051.[2]?(2) 工作电压:5.5V~3.3V(5V 单片机)/3.8V~2.0V(3V 单片机)(3) 工作频率范围:0~40MHz,相当于普通8051 的0~80MHz,实际工作频率可达48MHz(4) 用户应用程序空间为8K 字节(5) 片上集成512 字节RAM(6) 通用I/O 口(32 个),复位后为:P0/P1/P2/P3 是准双向口/弱上拉, P0 口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为 I/O 口用时,需加上拉电阻。

(7) ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,数秒即可完成一片(8) 具有EEPROM 功能(9)具有看门狗功能(10) 共3 个16 位定时器/计数器。

即定时器T0、T1、T2(11) 外部中断4 路,下降沿中断或低电平触发电路,Power Down 模式可由外部中断低电平触发中断方式唤醒(12) 通用异步串行口(UART),还可用定时器软件实现多个UART(13) 工作温度范围:-40~+85℃(工业级)/0~75℃(商业级)4.3LCD1602的主要参数显示容量:16×2个字符芯片工作电压:4.5—5.5V工作电流:2.0mA(5.0V)模块最佳工作电压:5.0V字符尺寸:2.95×4.35(W×H)mm5软件设计5.1主程序流程图图十主程序流程图5.2温度测量系统各子模块5.2.1 DS18B20读取温度部分读温度值模块需要调用4个子程序,分别为:DS18B20初始化子程序:让单片机知道DS18B20在总线上且已准备好操作DS18B20写字节子程序:对DS18B20发出命令DS18B20读字节子程序:读取DS18B20存储器的数据延时子程序:对DS18B20操作时的时序控制读温度值模块流程,如图十一所示:图十一读温度值模块流程DS18B20初始化子程序流程图,如图十二所示:图十二 DS18B20初始化子程序流程本系统中液晶显示器初始化程序流程,如图十三所示:图十三液晶显示器初始化程序流程6心得体会经过两周时间的努力,基于单片机的简易温度系统设计基本完成。

相关文档
最新文档