2014-2015年河北省廊坊市七年级下学期数学期末试卷及解析PDF
2015学年河北省廊坊市三河市七年级下学期数学期末试卷带答案
2014-2015学年河北省廊坊市三河市七年级(下)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.2.(2分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重4.(2分)已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A.30°B.35°C.40°D.45°5.(2分)下列运算正确的是()A.=±3 B.=2 C.﹣=﹣3 D.﹣32=96.(2分)如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2 C.∠3=∠4 D.∠B=∠57.(2分)不等式组的解在数轴上表示为()A.B.C.D.8.(2分)如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D9.(2分)如图,一块砖的外侧面积为x,那么图中残留部分墙面的面积为()A.4x B.12x C.8x D.16x10.(2分)在长方形ABCD中,放入6个形状、大小相同的长方形,所标尺寸如图所示,则阴影部分的面积为()A.38cm2B.42cm2C.40cm2D.44cm2二、填空题(每小题3分,共24分)11.(3分)不等式4x﹣3≤7的正整数解是.12.(3分)的算术平方根是.13.(3分)李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号 (30)号120123127132138141145148…电表显示(度)估计李好家六月份总月电量是度.14.(3分)把命题“平行于同一条直线的两条直线平行”改成如果…那么形15.(3分)如果点P(m+3,m﹣2)在x轴上,那么点P的坐标为.16.(3分)若的整数部分为a,小数部分为b,求a2+b﹣的值为.17.(3分)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.18.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是.三、解答题(本题共8道题,满分52分)19.(8分)解方程组:.20.(8分)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.21.(8分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C 的对应点.(1)请画出平移后的△A′B′C′(不写画法);(2)并直接写出点B′、C′的坐标:B′()、C′();(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是22.(8分)如图,∠HAB=∠ACD=110°,∠FEB=140°,∠BCD=60°,∠EFC=70°,回答下列问题:(1)∠ABC+∠BCG=°.(2)试判断EF与AB之间的位置关系,并说明理由.(3)直接写出∠EBC与∠BCD的数量关系.23.(10分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少问题?(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?24.(10分)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3:5:2,随机抽取一定数量的观众进行调查,得到如下统计图:(1)上面所用的调查方法是(填“全面调查”或“抽样调查”);(2)写出折线统计图中A、B所代表的值;A:;B:;(3)求该地区喜爱娱乐类节目的成年人的人数.2014-2015学年河北省廊坊市三河市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【解答】解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.2.(2分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.3.(2分)为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重【解答】解:本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.故选:A.4.(2分)已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A.30°B.35°C.40°D.45°【解答】解:∵∠3是△ADG的外角,∴∠3=∠A+∠1=30°+25°=55°,∵l1∥l2,∴∠3=∠4=55°,∵∠4+∠EFC=90°,∴∠EFC=90°﹣55°=35°,∴∠2=35°.故选:B.5.(2分)下列运算正确的是()A.=±3 B.=2 C.﹣=﹣3 D.﹣32=9【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、﹣=﹣3,故本选项正确;D、﹣32=﹣9,故本选项错误;故选:C.6.(2分)如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2 C.∠3=∠4 D.∠B=∠5【解答】解:A、∵∠B+∠BCD=180°,∴AB∥CD,故本选项错误;B、∵∠1=∠2,∴AD∥BC,故本选项正确;C、∵∠3=∠4,∴AB∥CD,故本选项错误;D、∵∠B=∠5,∴AB∥CD,故本选项错误.故选:B.7.(2分)不等式组的解在数轴上表示为()A.B.C.D.【解答】解:由不等式①,得3x>5﹣2,解得x>1,由不等式②,得﹣2x≥1﹣5,解得x≤2,∴数轴表示的正确方法为C.故选:C.8.(2分)如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D【解答】解:∵点M的位置用(﹣40,﹣30)表示,∴(﹣10,20)表示的位置是点A.故选:A.9.(2分)如图,一块砖的外侧面积为x,那么图中残留部分墙面的面积为()A.4x B.12x C.8x D.16x【解答】解:观察图形,利用平移的方法可将空白的部分移到一起,可发现它是由4个外侧面积为x的砖构成;整个墙面由16个外侧面积为x的砖构成,故残留部分墙面的面积为16x﹣4x=12x.故选:B.10.(2分)在长方形ABCD中,放入6个形状、大小相同的长方形,所标尺寸如图所示,则阴影部分的面积为()A.38cm2B.42cm2C.40cm2D.44cm2【解答】解:设长方形的长为xcm,宽为ycm,由题意得:,解得:,阴影部分的面积为:(6+4)×14﹣2×8×6=44(cm2),故选:D.二、填空题(每小题3分,共24分)11.(3分)不等式4x﹣3≤7的正整数解是1和2.【解答】解:移项、合并同类项得:4x≤10,系数化成1,得:x≤2.5,则正整数解是:1和2.故答案是:1和2.12.(3分)的算术平方根是2.【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.13.(3分)李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号 (30)号120123127132138141145148…电表显示(度)估计李好家六月份总月电量是120度.【解答】解:×30=120(度).14.(3分)把命题“平行于同一条直线的两条直线平行”改成如果…那么形成如果两条直线平行于同一条直线,那么这两条直线平行.【解答】解:命题:“平行于同一条直线的两条直线平行”的题设是两条直线平行于同一条直线,结论是这两条直线平行,改写成如果…那么…的形式为:如果两条直线平行于同一条直线,那么这两条直线平行.故答案为:如果两条直线平行于同一条直线,那么这两条直线平行.15.(3分)如果点P(m +3,m﹣2)在x轴上,那么点P的坐标为(5,0).【解答】解:∵点P(m+3,m﹣2)在x轴上,∴m﹣2=0,解得:m=2,把m=2代入P(m+3,m﹣2)中得(5,0),故答案为:(5,0).16.(3分)若的整数部分为a,小数部分为b,求a2+b﹣的值为6.【解答】解:∵<<,∴3<<4,∴的整数部分为:a=3,小数部分为:b=﹣3,∴a2+b﹣=32+﹣3﹣=6.故答案为:6.17.(3分)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.18.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是(2015,2).【解答】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2015次运动后,动点P的横坐标为2015,纵坐标为1,0,2,0,每4次一轮,∴经过第2015次运动后,动点P的纵坐标为:2015÷4=503余3,故纵坐标为四个数中第3个,即为2,∴经过第2015次运动后,动点P的坐标是:(2015,2),故答案为:(2015,2).三、解答题(本题共8道题,满分52分)19.(8分)解方程组:.【解答】解:,①×3+②得,5x=15,解得x=3;把x=3代入①得,3+y=2,解得y=﹣1,故原方程组的解为.20.(8分)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣(1)求(﹣2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.【解答】解:(1)∵a⊕b=a(a﹣b)+1,∴(﹣2)⊕3=﹣2(﹣2﹣3)+1=10+1=11;(2)∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,﹣3x<3,x>﹣1.在数轴上表示如下:21.(8分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C 的对应点.(1)请画出平移后的△A′B′C′(不写画法);(2)并直接写出点B′、C′的坐标:B′(﹣4,1)、C′(﹣1,﹣1);(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是(a ﹣5,b﹣2).【解答】解:(1)△A′B′C′如图所示;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)∵点A(3,4)、A′(﹣2,2),∴平移规律为向左平移5个单位,向下平移2个单位,∴P(a,b)平移后的对应点P′的坐标是(a﹣5,b﹣2).故答案为:﹣4,1;﹣1,﹣1;a﹣5,b﹣2.22.(8分)如图,∠HAB=∠ACD=110°,∠FEB=140°,∠BCD=60°,∠EFC=70°,回答下列问题:(1)∠ABC+∠BCG=180°.(2)试判断EF与AB之间的位置关系,并说明理由.(3)直接写出∠EBC与∠BCD的数量关系.【解答】解:(1)∵∠HAB=∠ACD=110°,∴AB∥GD,∴∠ABC+∠BCG=180°,故答案为:180;(2)平行,理由如下:∵∠EFC=70°,∠ACD=110°,∴∠FEC+∠ACD=180°,∴EF∥GD,又AB∥GD,∴EF∥AB;(3)由(2)可知EF∥AB,∴∠ABE+∠FEB=180°,∴∠ABE=180°﹣140°=40°,∵AB∥GD,∴∠ABC=∠BCD,∵∠EBC=∠ABC﹣∠ABE,∴∠EBC=∠BCD﹣40°.23.(10分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少问题?(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?【解答】解:(1)设小明答对了x道题.依题意得5x﹣3(20﹣x)=68.解得x=16.答:小明答对了16道题.(2)设小亮答对了y道题.依题意得因此不等式组的解集为16≤y≤18.∵y是正整数,∴y=17或18.答:小亮答对了17道题或18道题.24.(10分)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3:5:2,随机抽取一定数量的观众进行调查,得到如下统计图:(1)上面所用的调查方法是抽样调查(填“全面调查”或“抽样调查”);(2)写出折线统计图中A、B所代表的值;A:20;B:40;(3)求该地区喜爱娱乐类节目的成年人的人数.【解答】解:(1)抽样调查;(2)A=20,B=40;(3)成年人有:300000×=150000(人),×100%=30%,喜爱娱乐类节目的成年人有:150000×30%=45000(人).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
廊坊市七年级下学期数学期末考试试卷
廊坊市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七下·台山期末) -8的立方根是()A . 2B . -2C . ±2D .2. (2分)(2018·淄博) 与最接近的整数是()A . 5B . 6C . 7D . 83. (2分)已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为A . (-2,3)B . (2,-3)C . (3,-2)D . (-3,2)4. (2分)不等式组的解集在数轴上表示为()A .B .C .D .5. (2分) (2019七下·梁子湖期末) 下列调查中,适合用普查方式的是()A . 了解某班学生“50米跑”的成绩B . 了解一批灯泡的使用寿命C . 了解一批炮弹的杀伤半径D . 调查长江流域的水污染情况6. (2分)(2020·沈阳) 如图,直线,且于点,若,则的度数为()A . 65°B . 55°C . 45°D . 35°7. (2分)(2017·承德模拟) 对于平面图形上的任意两点P,Q,如果经过某种变换得到的新图形上的对应点P1 , Q1 ,下列变换中不一定保证PQ=P1Q1的是()A . 平移B . 旋转C . 翻折D . 位似8. (2分)如图,a∥b,若∠1=50°,则∠2的度数为()A . 50°B . 120°C . 130°D . 140°9. (2分) (2016高二下·孝感期末) 大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,若m3分裂后,其中有一个奇数是103,则m的值是()A . 9B . 10C . 11D . 1210. (2分)已知方程组的解中x与y之和为1,则k的值是()A . ﹣1B . 2C . ﹣2D . 1二、填空题 (共6题;共6分)11. (1分) (2019八上·新兴期中) 25的算术平方根是________,的平方根是________。
【解析版】廊坊市霸州市2014-2015学年七年级下期末数学试卷
C.(﹣4,0)
D.(0,﹣4)
5.下列命题中,是真命题的是(
)
①两条直线被第三条直线所截,同位角相等;
②在同一平面内,垂直于同一直线的两条直线互相平行
③三角形的三条高中,必有一条在三角形的内部
④三角形的三个外角一定都是锐角.
A.①②
B.②③
C.①③
D.③④
6.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其 中正确的说法的个数是( ) A.1 B.2 C.3 D.4
2.观察下面图案,在 A、B、C、D 四幅图案中,能通过如图的图案平移得到的
3.已知 a<b,下列不等式变形中正确的是(
)
A.a﹣2>b﹣2
B.
C.﹣2a>﹣2b D.3a+1>3b+1
4.如果点 P(a﹣4,a)在 y 轴上,则点 P 的坐标是(
)
A.(4,0) B.(0,4)
7.若不等式组的解集为﹣1≤x≤3,则图中表示正确的是( )
A. B.
C.
D.
8.一个自然数的平方根为 a,则它的相邻的下一个自然数的算术平方根是(
)
A.
B.a+1
C.a2+1
D.
2014-2015学年河北省廊坊市霸州市七年级(下)期 末数学试卷
一、选择题(每题只有一个正确选项,请将正确的选项填入括号内。每小题 3 分,满分 30 分) 1.下列说法正确的是( ) A.同位角相等 B.在同一平面内,如果 a⊥b,b⊥c,则 a⊥c C.相等的角是对顶角 D.在同一平面内,如果 a∥b,b∥c,则 a∥c
廊坊市七年级下学期期末数学试题题及答案
廊坊市七年级下学期期末数学试题题及答案一、选择题1.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .三角形B .四边形C .六边形D .八边形2.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .23.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( )A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩ 4.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124° 5.已知,则a 2-b 2-2b 的值为 A .4B .3C .1D .0 6.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1- 7.以下列各组线段为边,能组成三角形的是( ) A .1cm ,2cm ,4cmB .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm 8.下列等式由左边到右边的变形中,因式分解正确的是( ) A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-9.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④ 10..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .4二、填空题11.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .12.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______.13.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.14.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.15.()7(y x -+________ 22)49y x =-.16.如图,根据长方形中的数据,计算阴影部分的面积为______ .17.下列各数中: 3.14-,327-,π,2,17-,是无理数的有______个. 18.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.19.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______. 20.计算:2m·3m=______. 三、解答题21.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)22.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.23.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.24.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.25.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.26.问题1:现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.(1)探究1:如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是;(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .27.已知,关于x、y二元一次方程组237921x y ax y-=-⎧⎨+=-⎩的解满足方程2x-y=13,求a的值.28.南山植物园中现有A,B两个园区.已知A园区为长方形,长为(x+y)米,宽为(x-y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A,B两园区的面积之和并化简.(2)现根据实际需要对A园区进行整改,长增加(11x-y)米,宽减少(x-2y)米,整改后A园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x,y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C,D两种花投入的费用与吸引游客的收益如下表:C D投入(元/米2)1216收益(元/米2)1826求整改后A,B两园区旅游的净收益之和.(净收益=收益-投入)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n ,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D .【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.2.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键. 3.B解析:B【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数2⨯=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18=,再列出方程组即可.解:设用x 张制作盒身,y 张制作盒底,根据题意得:1821016x y x y+=⎧⎨⨯=⎩. 故选:B .【点睛】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”. 4.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a ∥b ,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D .【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用.解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.D解析:D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A 、1+2<4,不能组成三角形;B 、2+3=5,不能组成三角形;C 、5+6<12,不能组成三角形;D 、4+6>8,能组成三角形.故选:D .【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A 、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.9.B解析:B根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB ∥CD ;②∵∠1=∠2,∴AD ∥BC ;③∵∠3=∠4,∴AB ∥CD ;④∵∠B=∠5,∴AB ∥CD ;∴不能得到AB ∥CD 的条件是②.故选:B .【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.10.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键.二、填空题11.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.12.24xy【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A,即9x 2+12xy+4y 2=9x 2-12xy+4y 2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a 2±2ab+b 2. 13.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m=-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m +=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m=-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.14.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,∴=-=b ac===a b k c1,,81,241810,∴-⨯⨯=k2481∴=⨯,k∴=±k18.±故答案为:18.【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.15.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,--解析:7y x【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,掌握平方差公式的特征是解题的关键.16.104【解析】两个阴影图形可以平移组成一个长方形,长为,宽为8,故阴影部分的面积13×8 =104,故答案为104.解析:104【解析】-=,宽为8,故阴影部分的面积两个阴影图形可以平移组成一个长方形,长为1521313×8=104,故答案为104.17.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 18.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.19.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得: ,解得: ,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x ,y 代入方程组,首先求得m ,进而可以求得n .【详解】解:将11x y =⎧⎨=⎩代入方程组得:31=1m m n-⎧⎨-=⎩ , 解得:21m n =⎧⎨=-⎩ , 故n 的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.20.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.三、解答题21.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得:241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.22.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.23.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C''';(2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C'''即为所求;(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.24.(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x=70,∴∠A为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.25.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.解:∵AD是BC边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.26.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.27.a=4【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩解得53x y =⎧⎨=-⎩, 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.28.(1)2x 2+6xy+8y 2;(2)①3010x y =⎧⎨=⎩②57600元; 【分析】(1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;②代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)(x+y )(x ﹣y )+(x+3y )(x+3y )=x 2﹣y 2+x 2+6xy+9y 2=2x 2+6xy+8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米;(2)(x+y )+(11x ﹣y )=x+y+11x ﹣y=12x (米),(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x+2y=y (米),依题意有:123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩, 解得3010x y =⎧⎨=⎩9. 12xy=12×30×10=3600(平方米),(x+3y )(x+3y )=x 2+6xy+9y 2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A 、B 两园区旅游的净收益之和为57600元. 考点:整式的混合运算.。
廊坊市人教版七年级下册数学全册单元期末试卷及答案-百度文库(1)
廊坊市人教版七年级下册数学全册单元期末试卷及答案-百度文库(1)一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 5.计算a 2•a 3,结果正确的是( )A .a 5B .a 6C .a 8D .a 96.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( ) A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩ 7.△ABC 是直角三角形,则下列选项一定错误的是( ) A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:28.下列运算正确的是( ) A .236x x x ⋅= B .224(2)4x x -=- C .326()x x =D .55x x x ÷= 9.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( )A .12B .12±C .6D .6± 10.下列说法:2a -没有算术平方根;若一个数的平方根等于它本身,则这个数是0或1;有理数和数轴上的点一一对应;负数没有立方根,其中正确的是( )A .0个B .1个C .2个D .3个 二、填空题 11.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.12.已知关于x ,y 的方程组2133411x y m x y m+=+⎧⎨-=-⎩(m 为大于0的常数),且在x ,y 之间(不包含x ,y )有且只有3个整数,则m 取值范围______.13.计算:312-⎛⎫ ⎪⎝⎭= . 14.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.15.因式分解:224x x -=_________.16.计算:x (x ﹣2)=_____17.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.18.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.19.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.20.分解因式:m 2﹣9=_____.三、解答题21.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积. (经验发展)面积比和线段比的联系:(1)如图1,M 为△ABC 的AB 上一点,且BM =2AM .若△ABC 的面积为a ,若△CBM 的面积为S ,则S =_______(用含a 的代数式表示).(结论应用)(2)如图2,已知△CDE 的面积为1,14CD AC =,13CE CB =,求△ABC 的面积.(迁移应用)(3)如图3.在△ABC 中,M 是AB 的三等分点(13AM AB =),N 是BC 的中点,若△ABC 的面积是1,请直接写出四边形BMDN 的面积为________.22.如图,直线MN ∥GH ,直线l 1分别交直线MN 、GH 于A 、B 两点,直线l 2分别交直线MN 、GH 于C 、D 两点,且直线l 1、l 2交于点E ,点P 是直线l 2上不同于C 、D 、E 点的动点.(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .23.已知m 2,3na a ==,求①m n a +的值; ②3m-2n a 的值24.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.25.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-26.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只. (1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?27.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .28.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解3.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.4.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.5.A解析:A【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答..【详解】同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=所以23235.a a a a +⋅==故选A.【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键.6.B解析:B【分析】把x 与y 的值代入方程检验即可.【详解】解:A 、把31x y =⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4,∵左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边=5﹣3=2,右边=4,∵左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.7.B解析:B【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,和选项求出∠C(或∠B或∠A)的度数,再判断即可.【详解】解:A、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故A选项是正确的;B、∵∠A=60°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣40°=80°,∴△ABC是锐角三角形,故B选项是错误的;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC 是直角三角形,故C 选项是正确的;D 、∵∠A :∠B :∠C =1:1:2,∴∠A +∠B =∠C ,∵∠A +∠B +∠C =180°,∴2∠C =180°,∴∠C =90°,∴△ABC 是直角三角形,故D 选项是正确的;故选:B .【点睛】本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.8.C解析:C【解析】解:A .x 2⋅ x 3= x 5,故A 错误;B .(-2x 2)2 = 4 x 4,故B 错误;C .( x 3 )2= x 6,正确;D .x 5÷ x = x 4,故D 错误.故选C .9.B解析:B【解析】【分析】利用完全平方公式的结构特征判断即可确定出a 的值.【详解】解:∵x 2-ax+36是一个完全平方式,∴a=±12,故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.A解析:A【分析】根据负数没有算术平方根判断第一句,由1的平方根是1,± 判断第二句,数轴上的点也可以表示无理数判断第三句,任意实数都有立方根判断第四句.【详解】解:当20a -=有算术平方根,所以第一句错误,1的平方根是1,±所以第二句错误,数轴上的点与实数一一对应,所以第三句错误,任意实数都有立方根,所以第四句错误,故选A .【点睛】本题考查算术平方根、平方根、立方根以及实数与数轴的关系.理解相关定理是解题关键.二、填空题11.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.12.【分析】由中的上式加下式乘以2得到,由中的上式乘以3减下式得到,则可得,再由题意为大于0的常数,在,之间(不包含,)有且只有3个整数得到,计算即可得到答案.【详解】由中的上式加下式乘以2得到解析:04m <<【分析】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,再由题意m 为大于0的常数,在x ,y 之间(不包含x ,y )有且只有3个整数得到33(52)x y m m -=--+,计算即可得到答案.【详解】由2133411x y m x y m +=+⎧⎨-=-⎩中的上式加下式乘以2得到33x m =-,由2133411x y m x y m+=+⎧⎨-=-⎩中的上式乘以3减下式得到52y m =+,则可得3352x m y m =-⎧⎨=+⎩,因为在x ,y 之间(不包含x ,y )有且只有3个整数,而33(52)25x y m m m -=--+=--,又由于m 为大于0的常数,则x ,y 之差可以为-7,-12-17,即m 的值为1、2或者3,所以可得04m <<.【点睛】本题考查二元一次方程组和不等式,解题的关键是掌握解二元一次方程组.13.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.14.14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD 的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE ,S △A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△ABC=12∴S△ACE=12S△ABC=12×12=6,∵AD=2BD,S△ABC=12∴S△ACD=23S△ABC=23×12=8,∴S1+S2=S△ACD+S△ACE=8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.15.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.解析:2(2)x x-【分析】直接提取公因式即可.【详解】2242(2)x x x x-=-.故答案为:2(2)x x-.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.16.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.17.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,故答案为:.【解析:54140 3276 x yx y+=⎧⎨+=⎩【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,54140 3276x yx y+=⎧⎨+=⎩,故答案为:54140 3276 x yx y+=⎧⎨+=⎩.【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.18.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:1(5﹣2)×180°=108°,5则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.19.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).20.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a +b)(a﹣b).【详解】解:m2﹣9=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.三、解答题21.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC∴CD=14 AC∴S△DCE=14S△ACE=1∵13CE CB = ∴CE=13CB ∴S△ACE =13S △ABC =4 ∴S △ABC =12; (3)如图3,连接BD ,设△ADM 的面积为a ,∵13AM AB = ∴BM=2AM,BM=23AB , ∴S △BDM =2S △ABM =2a, S △BCM =23S △ABC =23 设△CDN 的面积为b ,∵N 是BC 的中点,∴S △CDN =S △BDN =b ,S △ABN =12S △ABC =12∴122223a a b b b a ⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214a b ⎧=⎪⎪⎨⎪=⎪⎩ ∴四边形BMDN 的面积为2a+b=512 故答案为512.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.22.(1)∠APB =∠NAP +∠HBP ;(2)见解析;(3)∠HBP =∠NAP +∠APB【分析】(1)过P 点作PQ ∥GH ,根据平行线的性质即可求解;(2)过P 点作PQ ∥GH ,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.23.①6;②8 9【解析】解:①②24.50 .【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.25.(1)3()(2)m n x y -+;(2)22(3)(3)x x +-.【分析】(1)原式变形后,提取公因式即可;(2)原式先利用平方差公式进行因式分解,再利用完全平方公式分解即可.【详解】(1)原式3()6()x m n y m n =-+-3()3()2m n x m n y =-⋅+-⋅3()(2)m n x y =-+(2)原式()2229(6)x x =+-()()229696x x x x =+++-22(3)(3)x x =+-【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.26.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩【分析】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.【详解】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意得,70x +50(150−x )=9300,解得:x =90,150−x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意得,90a +60(200−a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.27.证明见解析.【分析】根据对顶角的性质得到BD ∥CE 的条件,然后根据平行线的性质得到∠B=∠C ,已知∠C=∠D ,则得到满足AB ∥EF 的条件,再根据两直线平行,内错角相等得到∠A=∠F .【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD ∥CE ,∴∠C=∠ABD ;又∵∠C=∠D ,∴∠D=∠ABD ,∴AB ∥EF ,∴∠A=∠F .考点:平行线的判定与性质;对顶角、邻补角.28.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652aa a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.。
河北省廊坊市七年级下学期数学期末试卷
河北省廊坊市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2014·钦州) 下列运算正确的是()A . = +B . ()2=3C . 3a﹣a=3D . (a2)3=a52. (2分)(2016·毕节) 下列运算正确的是()A . ﹣2(a+b)=﹣2a+2bB . (a2)3=a5C . a3+4a= a3D . 3a2•2a3=6a53. (2分) (2018九上·番禺期末) 下列图形中,既是轴对称图形又是中心对称图形的是().A .B .C .D .4. (2分)已知直角三角形的斜边为2,周长为.则其面积是()A .B . 1C .D . 25. (2分)一个三角形的两边长为8和10,那么它的最短边b的取值范围是()A . 2<b<8B . 8<b<10C . 2<b<18D . 2<b<106. (2分)到△ABC的三个顶点距离相等的点是()A . 三条中线的交点B . 三条角平分线的交点C . 三条高线的交点D . 三条边的垂直平分线的交点7. (2分) (2020九上·泰兴期末) 实验初中有A、B两个阅览室,甲、乙、丙三名学生各自随机选择其中的一个阅览室阅读.下列事件中,是必然事件的为()A . 甲、乙同学都在A阅览室;B . 甲、乙、丙同学中至少两人在A阅览室;C . 甲、乙同学在同一阅览室D . 甲、乙、丙同学中至少两人在同一阅览室8. (2分)(2017·海淀模拟) 二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长超过13小时的节气是()A . 惊蛰B . 小满C . 秋分D . 大寒9. (2分) (2019八上·官渡期末) 如图,D在AB上,E在AC上,且∠B=∠C,则下列条件中,无法判定△ABE≌△ACD的是()A . AD=AEB . AB=ACC . BE=CDD . ∠AEB=∠ADC10. (2分)下列命题中,有几个真命题()①同位角相等②直角三角形的两个锐角互余③平行四边形的对角线互相平分且相等④对顶角相等A . 1个B . 2个C . 3个D . 4个二、填空题 (共9题;共9分)11. (1分) (2020七下·青岛期中) 若一个角的补角是105°,则这个角的余角是________度.12. (1分) (2019八下·长春期中) 数据0.00000026用科学记数法表示为,则的值是__.13. (1分) (2019八下·宜兴期中) 如图,O是坐标原点,菱形OABC的顶点A的坐标为,顶点C在x 轴的正半轴上,则的角平分线所在直线的函数关系式为________.14. (1分) (2019七上·哈尔滨月考) 如图,于点,于点,则点到线段的距离是线段________.15. (1分)(﹣)•x2y2= ________16. (1分) (2019八上·和平期中) 如图,点N是△ABC的AB边的延长线上一点,∠NAC=42°,∠NBC=84°,则∠C的大小=________(度).17. (1分) (2015七下·深圳期中) 如图,两直线a,b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a,b的位置关系是________.18. (1分) (2016七上·开江期末) 定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,则(﹣3)⊕4的值为________.19. (1分) (2019七下·恩施月考) 如图,若AB∥CD,EF与AB、CD分别相交于点E,F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=________°.三、解答题 (共9题;共88分)20. (10分) (2020八下·长沙期末) 计算:.21. (5分) (2018七上·天台月考) 先化简,再求值:22. (10分)(2017·姜堰模拟) 小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.(1)用列表法或画树状图法,求小丽参赛的概率.(2)你认为这个游戏公平吗?请说明理由.23. (10分) (2019七上·惠山期末) 在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.已知三角形ABC的三个顶点都在格点上.(1)按下列要求画图:过点B和一格点D画AC的平行线BD,过点C和一格点E画BC的垂线CE,并在图中标出格点D和E;(2)求三角形ABC的面积.24. (10分) (2016八上·临海期末) 解答(1)计算:2(x+y)(x﹣y)﹣(x+y)2;(2)解方程:;(3)先化简,再求值:v,在0,1,2三个数中选一个合适的数并代入求值.25. (11分)(2020·阳新模拟) 如图是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA、PB分别相切于点A、B,不倒翁的鼻尖正好是圆心O.(1)若∠OAB=25°,求∠APB的度数;(2)若∠OAB=n°,请直接写出∠APB的度数.26. (11分) (2020七上·丹江口期末) 对于任意四个有理数,我们规定:,例如:,根据上述规定解决下列问题:(1)计算;(2)若有理数对,求的值.27. (11分) (2017八上·大石桥期中) 若x=2m+2,y=3+4m .(1)请用含x的代数式表示y;(2)如果x=3,求此时y的值.28. (10分) (2016九上·南开期中) 设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1 , 0),B(x2 , 0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共88分)20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、。
冀教版七年级下册数学期末卷(1)及答案
2014-2015学年第二学期期末教学质量检测试卷⑴七年级数学试卷【冀教版全册】 考生注意:1. 本卷共6页,总分100分,考试时间90分钟。
2. 答题前请将密封线左侧的项目填写清楚。
【本大题共10个小题;每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在题中的括号内】1.下面四个图形中,不能下列图案用平移得到的图案是( );A B C D2.下面四个图形中,∠1与∠2是对顶角的是( );12121212A B C D 3.两条直线被第三条所截,则( );A. 同位角相等;B. 内错角相等;C. 同旁内角互补;D. 以上都不对; 4.下面各式中计算正确的是:( );A.(x -2)(x+2)=2x -2; B. 22)2(xx=--2;C.(-2x -1)(2x -1)=142-x ; D. 9124)32(22++=--x x x ;5.等腰三角形有两边长是6厘米和10厘米,则它的周长是( );A 、 22厘米B 、 26厘米C 、 22厘米或26厘米D 、 22厘米和26厘米 6.两个式子1x -与3x -的值的符号相同,则x 的取值范围是 ( ); A.3x = B.1x < C.12x << D.1x <或3x >7.某校运动员分组训练,若每组7人,则余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( ); A .7y x 38y 5x =+⎧⎨+=⎩ B .7y x 38y 5x =-⎧⎨+=⎩ C .7y x 38y x 5=-⎧⎨=+⎩ D .7y x 38y x 5=+⎧⎨=+⎩8.下列各式的分解因式:其中正确的个数有( ); ①()()2210025105105p q q q -=+-;②()()22422m n m n m n --=-+-;③()()2632x x x -=+-; ④221142x x x ⎛⎫--+=-- ⎪⎝⎭;A 、0B 、1C 、2D 、39.改革开放30年来以来,某市的城市化推进一直保持着快速稳定的发展状态,据统计到2014年底,市中心五城区(不含高新区)常住人口已达到4410000人,对这个常住人口用科学记数法表示的序号正确的是: ;A.4.41×105人; B.4.41×106人; C.44.1×105人; D.0.441×105人; 10.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ); A .2222)(b ab a b a ++=+ ;B .2222)(b ab ab a +-=-;C. a 2-b 2=(a+b)(a-b) ; D.(a+2b)(a-b)=a 2+ab-2b 2;二、填空题:【本大题共10个小题;每小题2分,共20分; 请你把答案写在题中横线上。
七年级下期末数学试卷12含答案解析
2014-2015学年河北省廊坊市霸州市七年级(下)期末数学试卷一、选择题1.下列说法正确的是()A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c2.观察下面图案,在A、B、C、D四幅图案中,能通过如图的图案平移得到的是()A.B.C.D.3.已知a<b,下列不等式变形中正确的是()A.a﹣2>b﹣2 B.C.﹣2a>﹣2b D.3a+1>3b+14.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0) B.(0,4) C.(﹣4,0)D.(0,﹣4)5.下列命题中,是真命题的是()①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线的两条直线互相平行③三角形的三条高中,必有一条在三角形的内部④三角形的三个外角一定都是锐角.A.①②B.②③C.①③D.③④6.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1 B.2 C.3 D.47.若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A. B.C. D.8.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.9.设“●”“▲”“■”表示三种不同的物体,现用天平称称了两次,情况如图所示,那么●▲■这三种物体按质量从大到小的顺序排列()A.■●▲B.■▲●C.▲●■D.▲■●10.四川5.12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人,设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A. B.C.D.二、填空题11.剧院里5棑2号可用(5,2)表示,则(7,4)表示.12.不等式﹣4x≥﹣12的正整数解为.13.若一个数的立方根就是它本身,则这个数是.14.+﹣=.15.不等式组的解集是.16.“x与5的差不小于0”用不等式表示为.17.如图,CO⊥AB,EO⊥OD,如果∠1=38°,那么,∠2=.18.如图,将三角形纸板ABC沿直线AB向右平行移动,使∠A到达∠B的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为.19.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点P(m﹣2,m+1)在第二象限,则m的值为.20.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.三、解答题(共60分)21.解方程组或不等式组:(1)(2)(3)解不等式组,并求其整数解.22.已知:如图,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.23.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b=;(2)补全条形统计图;(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)均有名.24.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元,已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.问至少购进乙种电冰箱多少台?25.在平面直角坐标系中,A、B、C三点的坐标分别为(﹣6,7)、(﹣3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=,n=.26.某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?27.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)2014-2015学年河北省廊坊市霸州市七年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列说法正确的是( )A .同位角相等B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥cC .相等的角是对顶角D .在同一平面内,如果a ∥b ,b ∥c ,则a ∥c【考点】平行公理及推论;对顶角、邻补角;平行线的判定.【分析】根据平行线的性质和判定以及对顶角的定义进行判断.【解答】解:A 、只有在两直线平行这一前提下,同位角才相等,故A 选项错误;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ∥c ,故B 选项错误;C 、相等的角不一定是对顶角,因为对顶角还有位置限制,故C 选项错误;D 、由平行公理的推论知,故D 选项正确.故选:D .【点评】本题考查了平行线的性质、判定,对顶角的性质,注意对顶角一定相等,但相等的角不一定是对顶角.2.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过如图的图案平移得到的是( )A .B .C .D .【考点】利用平移设计图案.【分析】根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移可直接得到答案.【解答】解:根据平移得到的是B.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.注意结合图形解题的思想.3.已知a<b,下列不等式变形中正确的是()A.a﹣2>b﹣2 B.C.﹣2a>﹣2b D.3a+1>3b+1【考点】不等式的性质.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B;根据不等式的性质3,可判断C;根据不等式的性质1,2,可判断D.【解答】解;A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘同一个正数,不等号的方向不变,不B错误;C、不等式两边都乘以同一个负数,不等号的方向改变,故C正确;D、不等式两边都加上同一个数,不等式的两边都乘以同一个正数,不等号的方向不变,故D错误;故选:C.【点评】本题考查了不等式的性质,不等式两边都乘以同一个负数,不等号的方向改变.4.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0) B.(0,4) C.(﹣4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据y轴上点横坐标等于零,可得答案.【解答】解:由点P(a﹣4,a)在y轴上,得a﹣4=0,解得a=4,P的坐标为(0,4),故选:B.【点评】本题考查了点的坐标,y轴上点的横坐标等于零是解题关键.5.下列命题中,是真命题的是()①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线的两条直线互相平行③三角形的三条高中,必有一条在三角形的内部④三角形的三个外角一定都是锐角.A.①②B.②③C.①③D.③④【考点】命题与定理.【分析】根据平行线的性质对①、②进行判断;根据三角形高线的定义对③进行判断;根据三角形外角定理对④进行判断.【解答】解:两条平行直线被第三条直线所截,同位角相等,所以①错误;在同一平面内,垂直于同一直线的两条直线互相平行,所以②正确;三角形的三条高中,必有一条在三角形的内部,所以③正确;三角形的三个外角最多只有一个锐角,所以④错误.故选B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A.1 B.2 C.3 D.4【考点】无理数.【分析】根据无理数的定义以及实数的分类即可作出判断.【解答】解:(1)π是无理数,而不是开方开不尽的数,则命题错误;(2)无理数就是无限不循环小数,则命题正确;(3)0是有理数,不是无理数,则命题错误;(4)正确;故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A. B.C.D.【考点】在数轴上表示不等式的解集.【分析】本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.【解答】解:不等式组的解集为﹣1≤x≤3在数轴表示﹣1和3以及两者之间的部分:故选:D.【点评】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.本题还可根据不等式解集可知x的夹在两个数之间的,由此可排除ABC,选D.8.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.【考点】算术平方根;平方根.【专题】探究型.【分析】设这个自然数为x,则x=a2,故与之相邻的下一个自然数为a2+1,再根据算术平方根的定义进行解答即可.【解答】解:设这个自然数为x,∵x平方根为a,∴x=a2,∴与之相邻的下一个自然数为a2+1,其算术平方根为:.故选D.【点评】本题考查的是平方根及算术平方根的定义,属较简单题目.9.设“●”“▲”“■”表示三种不同的物体,现用天平称称了两次,情况如图所示,那么●▲■这三种物体按质量从大到小的顺序排列()A.■●▲B.■▲●C.▲●■D.▲■●【考点】不等式的性质;等式的性质.【分析】本题可先将天平两边相同的物体去掉,比较剩余的数的大小,可知■>▲,2个●=一个▲,即▲>●,由此可得出答案.【解答】解:由图1可知1个■的质量大于1个▲的质量,由图2可知1个▲的质量等于2个●的质量,因此1个▲质量大于1个●的质量.故选B.【点评】本题主要考查了不等式的基本性质.用到的知识点:不等式两边减去同一个数(或式子),不等号的方向不变.10.四川5.12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人,设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A. B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】此题中的等量关系有:①甲种帐篷的顶数+乙种帐篷的顶数=2000顶;②甲种帐篷安置的总人数+乙种帐篷安置的总人数=9000人.【解答】解:根据甲、乙两种型号的帐篷共2000顶,得方程x+y=2000;根据共安置9000人,得方程6x+4y=9000.列方程组为.故选D.【点评】列方程组解应用题的关键是找准等量关系.此题中要能够分别根据帐篷数和人数列出方程.二、填空题11.剧院里5棑2号可用(5,2)表示,则(7,4)表示7排4号.【考点】坐标确定位置.【分析】根据有序数对的第一个数表示排数,第二个数表示号数解答.【解答】解:∵5排2号可以用(5,2)表示,∴(7,4)表示7排4号.故答案为:7排4号.【点评】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键.12.不等式﹣4x≥﹣12的正整数解为1,2,3.【考点】一元一次不等式的整数解.【分析】首先解不等式,再从不等式的解集中找出适合条件的整数即可.【解答】解:不等式﹣4x≥﹣12的解集是x≤3,因而不等式﹣4x≥﹣12的正整数解为1,2,3.故答案为:1,2,3.【点评】正确解不等式,求出解集是解诀本题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.13.若一个数的立方根就是它本身,则这个数是1,﹣1,0.【考点】立方根.【分析】如果一个数x的立方等于a,那么x是a的立方根,所以根据立方根的对应即可求解.【解答】解:∵立方根是它本身有3个,分别是±1,0.故答案±1,0.【点评】本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3个,分别是±1,0.如立方根的性质:(1)正数的立方根是正数.(2)负数的立方根是负数.(3)0的立方根是0.14.+﹣=1.【考点】实数的运算.【专题】计算题.【分析】原式利用立方根及算术平方根定义计算即可得到结果.【解答】解:原式=2+0﹣=1,故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.不等式组的解集是x>3.【考点】不等式的解集.【专题】计算题.【分析】不等式组中第二个不等式求出解集,利用取解集的方法即可得到解集.【解答】解:变形得:,则不等式组的解集为x>3.故答案为:x>3【点评】此题考查了不等式的解集,不等式组取解集的方法为:同大取大,同小取小,大大小小无解,大小小大取中间.16.“x与5的差不小于0”用不等式表示为x﹣5≥0.【考点】由实际问题抽象出一元一次不等式.【分析】x与5的差即x﹣5,不小于0即≥0,据此列不等式.【解答】解:由题意得,x﹣5≥0.故答案为:x﹣5≥0.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.17.如图,CO⊥AB,EO⊥OD,如果∠1=38°,那么,∠2=52°.【考点】垂线.【分析】根据图示知,∠1与∠2互为余角.【解答】解:如图,点A、O、B共线.∵EO⊥OD,∴∠EOD=90°.∴∠1+∠2=180°﹣∠EOD=90°.又∵∠1=38°,∴∠2=52°.故答案是:52°.【点评】本题考查了垂线.要注意领会由垂直得直角这一要点.18.如图,将三角形纸板ABC沿直线AB向右平行移动,使∠A到达∠B的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为30.【考点】平移的性质.【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠CBE的度数.【解答】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠CBE的度数为:180°﹣50°﹣100°=30°.故答案为:30°【点评】此题主要考查了平移的性质以及三角形内角和定理,得出∠CAB=∠EBD=50°是解决问题的关键.19.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点P(m﹣2,m+1)在第二象限,则m的值为0或1.【考点】点的坐标.【分析】根据第二象限内的点的横坐标是负数,纵坐标是正数列出不等式组,求解后再根据格点的定义可知m是整数解答.【解答】解:∵P(m﹣2,m+1)在第二象限,∴,解不等式①得,m<2,解不等式②得,m>﹣1,∴m的取值范围是﹣1<m<2,由格点的定义,m是整数,∴m的值为0或1.故答案为:0或1.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).20.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【考点】平方根.【专题】计算题.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.三、解答题(共60分)21.解方程组或不等式组:(1)(2)(3)解不等式组,并求其整数解.【考点】解一元一次不等式组;解二元一次方程组;一元一次不等式组的整数解.【分析】(1)由①得出③把③代入②得出y﹣4y=5,求出y=﹣,把y=﹣代入③求出x即可.(2)先求出两个不等式的解集,再求其公共解;(3)先求出两个不等式的解集,再求其公共解,然后写出范围内的整数解即可.【解答】解:(1)由①得x=y,③把③代入②得y﹣4y=5,解这个方程得y=﹣,把y=﹣代入③,得x=﹣1,所以方程组的解是;(2)由①得x<2,由②得x≥﹣1;所以,不等式组的解集是﹣1≤x<2;(3)由①得x>﹣1,由②得x≤3;所以,不等式组的解集是﹣1<x≤3;所以,原不等式的所有整数解为:0,1,2,3.【点评】本题主要考查了二元一次方程组的解法和一元一次不等式组解集的求法,熟练掌握解方程组的方法以及解不等式组的方法是解题的关键.22.已知:如图,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.【考点】平行线的性质.【专题】证明题.【分析】由AB∥EF,BC∥ED,根据平行线的性质,即可得∠E=∠AGD,∠B=∠AGD,继而证得结论.【解答】证明:∵AB∥EF,∴∠E=∠AGD,∵BC∥ED,∴∠B=∠AGD,∴∠B=∠E.【点评】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.23.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了80名同学的体育测试成绩,扇形统计图中B级所占的百分比b= 40%;(2)补全条形统计图;(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)均有190名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由等级A的人数除以所占的百分比求出调查的总学生;进一步求出B占的百分比;(2)求出C级的学生数,补全条形统计图即可;(3)求出A,B,C的百分比之和,乘以600即可得到结果.【解答】解:(1)根据题意得:20÷25%=80(人),B占的百分比为×100%=40%;(2)C级的人数为80﹣(20+32+4)=24(人),补全条形图,如图所示:(3)根据题意得:200×=190(人),则估计该校九年级同学体育测试达标的人数约为190人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意,从统计图中得到必要的信息是解决问题的关键.24.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元,已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.问至少购进乙种电冰箱多少台?【考点】一元一次不等式的应用.【分析】设购进乙冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台,根据购买三种电冰箱的总金额不超过132000元,列不等式求解.【解答】解:设购进乙冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台,由题意得,1200×2x+1600x+(80﹣3x)×2000≤132000,解得:x≥14.答:至少购进乙冰箱14台.【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的不等关系,列不等式求解.25.在平面直角坐标系中,A、B、C三点的坐标分别为(﹣6,7)、(﹣3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=3,n=1.【考点】作图-平移变换.【专题】作图题.【分析】(1)根据平面直角坐标系找出点A、B、C的位置,然后顺次连接即可,再利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解;(2)根据网格结构找出点A、B平移后的对应点A′、B′的位置,然后顺次连接即可,再根据平面直角坐标系写出A′、B′的坐标;(3)根据向右平移横坐标加,向下平移纵坐标减列出方程求解即可.【解答】解:(1)如图,△ABC如图所示;△ABC的面积=6×7﹣×3×7﹣×3×3﹣×4×6,=42﹣10.5﹣4.5﹣12,=42﹣27,=15;(2)△A′B′C′如图所示,A′(﹣1,8),B′(2,1);(3)由题意得,﹣3+4=n,m﹣6=﹣3,解得m=3,n=1.故答案为:3,1.【点评】本题考查了利用平移变换作图,三角形的面积计算,平移的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.26.某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【考点】二元一次方程组的应用.【专题】阅读型;方案型.【分析】(1)根据题目给出的条件得出的等量关系是:60座客车每辆每天的租金﹣45座客车每辆每天的租金=200元,4辆60座的一天的租金+2辆45座的一天的租金=5000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】解:(1)设平安公司60座和45座客车每天每辆的租金分别为x元,y元.由题意列方程组解得答:平安公司60座和45座客车每天每辆的租金分别为900元,700元;(2)九年级师生共需租金:5×900+1×700=5200(元)答:共需资金5200元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:60座客车每辆每天的租金﹣45座客车每辆每天的租金=200元,4辆60座的一天的租金+2辆45座的一天的租金=5000元;列出方程组,再求解.27.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)【考点】平行线的性质;三角形的外角性质.【专题】开放型;探究型.【分析】关键过转折点作出平行线,根据两直线平行,内错角相等,或结合三角形的外角性质求证即可.【解答】解:如图:(1)∠APC=∠PAB+∠PCD;证明:过点P作PF∥AB,则AB∥CD∥PF,∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等).(2)∠APC+∠PAB+∠PCD=360°;(3)∠APC=∠PAB﹣∠PCD;(4)∵AB∥CD,∴∠POB=∠PCD,∵∠POB是△AOP的外角,∴∠APC+∠PAB=∠POB,∴∠APC=∠POB﹣∠PAB,∴∠APC=∠PCD﹣∠PAB.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.。
【解析版】2014-2015年河北省廊坊市七年级下期末数学试卷
A. ∠3=∠4 B. ∠A+∠ADC=180° C. ∠1=∠2 D. ∠A=∠5 11.某校测量了初三(1)班学生的身高(精确到 1cm),按 10cm 为一段进行分组,得到 如下频数分布直方图,则下列说法正确的是( )
A. 该班人数最多的身高段的学生数为 7 人 B. 该班身高低于 160.5cm 的学生数为 15 人 C. 该班身高最高段的学生数为 20 人 D. 该班身高最高段的学生数为 7 人 12.点 P(m+3,m﹣1)在 x 轴上,则点 P 的坐标为( ) A. (0,﹣2) B. (2,0) C. (4,0) D. (0,﹣4)
8.一个正方形的面积是 12,估计它的边长大小在( )
A. 2 与 3 之间 B. 3 与 4 之间 C. 4 与 5 之间 D. 5 与 6 之间 9.如图,已知点 A,B 的坐标分别为(4,0)、(0,3),将线段 AB 平移到 CD,若点 C 的坐标为(6,3),则点 D 的坐标为( )
A. (2,6) B. (2,5) C. (6,2) D. (3,6) 10.下列条件不能判定 AB∥CD 的是( )
6.如图,点 A、D 在射线 AE 上,直线 AB∥CD,∠CDE=140°,那么∠A 的度数为( )
A. 140° B. 60° C. 50° D. 40°
7.下列说法正确的是( ) A. 相等的角是对顶角 B. 在同一平面内,若 a 丄 b,b 丄 c,则 a∥c C. 内错角相等 D. 过一点有且只有一条直线与已知直线平行
2.9 的平方根是( ) A. 3 B. ﹣3 C. ±3 D. 81
3.下列四个实数中,是无理数的是( )
A.
B. 0 C. D.
4.方程 kx+3y=5 有一组解是
廊坊市七年级数学下册期末测试卷及答案
廊坊市七年级数学下册期末测试卷及答案一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b2.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +3.计算:202020192(2)--的结果是( )A .40392B .201932⨯C .20192-D .2 4.下列各式中,不能用平方差公式计算的是( ) A .(x -y )(-x +y ) B .(-x -y )(-x +y ) C .(x -y )(-x -y ) D .(x +y )(-x +y ) 5.计算23x x 的结果是( )A .5xB .6xC .8xD .23x 6.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米B .2.62米C .3.62米D .4.62米7.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .8.计算a 10÷a 2(a≠0)的结果是( ) A .5a B .5a - C .8a D .8a - 9.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4 B .5 C .6 D .8 10.七边形的内角和是( )A .360°B .540°C .720°D .900°二、填空题11.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m . 12.若x +3y -4=0,则2x •8y =_________.13.若分解因式221(3)()x mx x x n +-=++,则m =__________.14.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.15.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______. 16.一个n 边形的内角和是它外角和的6倍,则n =_______.17.计算:23()a =____________.18.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限. 19.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .20.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.三、解答题21.计算: (1)(y 3)3÷y 6; (2)2021()(3)2π--+-.22.把下列各式分解因式: (1)4x 2-12x 3 (2)x 2y +4y -4xy (3)a 2(x -y )+b 2(y -x )23.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格. (1)请在图中画出平移后的△A ′B ′C ′; (2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )24.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________; (3)四边形BCC B ''的面积为_______.25.如图,在△ABC 中,∠ACB =90°,∠ABC 与∠BAC 的角平分线相交于点P ,连接CP ,过点P 作DE ⊥CP 分别交AC 、BC 于点D 、E ,(1)若∠BAC =40°,求∠APB 与∠ADP 度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程). 26.因式分解:(1)2()4()a x y x y ---(2)2242x x -+- (3)2616a a -- 27.计算: (1)()22020113.142π-⎛⎫-+-+ ⎪⎝⎭(2)()2462322x y x xy --(3)()()22342a b a a b --- (4)()()2323m n m n -++- 28.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c 故选:C 【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.2.D解析:D 【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【详解】 矩形的面积为: (a+4)2-(a+1)2 =(a 2+8a+16)-(a 2+2a+1) =a 2+8a+16-a 2-2a-1 =6a+15. 故选D .3.B解析:B 【分析】将原式整理成2020201922+,再提取公因式计算即可. 【详解】 解:202020192(2)--=2020201922+ =20192(21)⨯+ =201932⨯, 故选:B . 【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.4.A解析:A 【分析】根据公式(a+b )(a-b )=a 2-b 2的左边的形式,判断能否使用.A 、由于两个括号中含x 、y 项的符号都相反,故不能使用平方差公式,A 符合题意;B 、两个括号中,含x 项的符号相同,含y 的项的符号相反,故能使用平方差公式,B 不符合题意;C 、两个括号中,含x 项的符号相反,y 项的符号相同,故能使用平方差公式,C 不符合题意;D 、两个括号中,含x 项的符号相反,y 项的符号相同,故能使用平方差公式,D 不符合题意; 故选:A . 【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.5.A解析:A 【分析】根据同底数幂相乘,底数不变,指数相加即可求解. 【详解】解:∵23235x x x x +==, 故选A . 【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.6.A解析:A 【分析】根据平移的性质即可得到结论. 【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米, 故选:A . 【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.7.D解析:D 【详解】解:A 、能通过其中一个四边形平移得到,不符合题意; B 、能通过其中一个四边形平移得到,不符合题意; C 、能通过其中一个四边形平移得到,不符合题意;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意. 故选D .8.C解析:C 【解析】 【分析】根据同底数幂的除法法则即可得. 【详解】1021028(0)a a a a a -÷==≠故选:C. 【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.9.C解析:C 【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案. 【详解】解:设外角为x ,则相邻的内角为2x , 由题意得,2180x x +=︒, 解得,60x =︒,多边形的边数为:360606÷︒=, 故选:C . 【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.10.D解析:D 【分析】n 边形的内角和是(n ﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和. 【详解】(7﹣2)×180°=900°. 故选D . 【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.二、填空题 11.. 【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为 与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解析:89.110-⨯. 【解析】 【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000000091m 用科学记数法表示为89.110m -⨯. 故答案为89.110-⨯. 【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.12.16 【分析】根据幂的运算公式变形,再代入x+3y=4即可求解. 【详解】 ∵x +3y -4=0 ∴x +3y=4∴2x•8y =2x•(23)y =2x+3y =24=16. 故答案为:16. 【点睛】解析:16 【分析】根据幂的运算公式变形,再代入x+3y=4即可求解. 【详解】 ∵x +3y -4=0 ∴x +3y=4∴2x •8y =2x •(23)y =2x+3y =24=16. 故答案为:16. 【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.13.【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.解:, ∴, 解得:, 故答案为:. 【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关 解析:4-【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可. 【详解】解:2(3)()(3)3x x n x n x n ++=+++, ∴3321n mn +=⎧⎨=-⎩,解得:74n m =-⎧⎨=-⎩,故答案为:4-. 【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关键.14.【分析】先连接BE ,则BE∥AM,利用△AME 的面积=△AMB 的面积即可得出 , ,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作 解析:40392【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n =,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF , ∴BE ∥AM ,∴△AME 与△AMB 同底等高, ∴△AME 的面积=△AMB 的面积, ∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392. 【点睛】此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键.15.24xy 【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A, 即9x2+12xy+4y2=9x2-12xy+解析:24xy 【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A, 即9x 2+12xy+4y 2=9x 2-12xy+4y 2+A ∴A=24xy, 故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键. 完全平方公式:(a±b)2=a 2±2ab+b 2.16.14 【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.17..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236()=(1)()a a a.-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.18.四【分析】根据题意得到关于m、n的二元一次方程组,确定点M坐标,判断M所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.19.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.【分析】利用多项式乘以多项式法则计算(x ﹣4)(x +6)=x2+2x ﹣24,从而得出m =2.【详解】解:∵(x ﹣4)(x +6)=x2+2x ﹣24=x2+mx ﹣24,∴m =2,故答案为2解析:2【分析】利用多项式乘以多项式法则计算(x ﹣4)(x +6)=x 2+2x ﹣24,从而得出m =2.【详解】解:∵(x ﹣4)(x +6)=x 2+2x ﹣24=x 2+mx ﹣24,∴m =2,故答案为2.【点睛】本题主要考查了整式乘法的运算,准确分析题目中的式子是解题的关键.三、解答题21.(1)y 3;(2)12.【分析】(1)先计算幂的乘方,然后计算同底数幂除法;(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.【详解】解:(1)原式=y 9÷y 6=y 3;(2)原式=4﹣1+9=12.【点睛】本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.22.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式. 23.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.24.(1)见解析;(2)平行且相等;(3)28【分析】''';(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】'''即为所求;解:(1)如图,ΔA B C(2)根据平移的性质可得:BB '与CC '的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B ''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.25.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析.【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°,50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒. 114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.26.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解. 【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.27.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.28.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x 2-2 x +1)-(4x 2-9) =4x 2-8 x +4-4x 2+9=-8 x +13当x =-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.。
河北省廊坊市七年级下学期数学期末考试试卷
河北省廊坊市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分.) (共10题;共30分)1. (3分) (2018七上·佳木斯期中) 下列计算正确的是()A . ﹣(﹣1)2+(﹣1)=0B . ﹣22+|﹣3|=7C . ﹣(﹣2)3=8D .2. (3分)下列现象是数学中的平移的是()A . 树叶从树上落下B . 电梯由一楼升到顶楼C . 碟片在光驱中运行D . 卫星绕地球运动3. (3分) (2020七上·平顶山期末) 下列调查中,适合普查的是()A . 全国中学生的环保意识B . 一批节能灯的使用寿命C . 对“天宫二号”空间实验室零部件的检查D . 白龟山水库水质的污染情况4. (3分) 2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为()A . 2.5×10-6B . 2.5×10-5C . -2.5×10-5D . -2.5×10-65. (3分)(2019·福田模拟) 下列运算正确的是()A . a2•a5=a10B . a6÷a3=a2C . (a+b)2=a2+b2D .6. (3分)若4x2-2(k-1)x+9是完全平方式,则k的值为()A . ±2B . ±5C . 7或-5D . -7或57. (3分)与分式的值,始终相等的是()A .B .C .D .8. (3分)甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时后甲追上乙.那么甲的速度是乙的()A . 倍B . 倍C . 倍D . 倍9. (3分) (2019七上·遂平期中) 计算-2×32-(-2×3)2的值是()A . 0B . -54C . -72D . -1810. (3分) (2019八下·如皋月考) 如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD 的周长是在14,则DM等于()A . 1B . 2C . 3D . 4二、填空题(本题有8题,每小题3分,共24分) (共8题;共24分)11. (3分)当 =2时,分式的值是________.12. (3分) 20150=________.13. (3分)(2018·嘉兴模拟) 因式分解: =________.14. (3分)某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表进球数876543(个)人数214782请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为________ ;(2)选择长跑训练的人数占全班人数的百分比是________ ,该班共有同学________ 人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,参加训练之前的人均进球数为________ .15. (3分) (2017七下·乌海期末) 已知方程组,如果x>y,那么m的取值范围是________.16. (3分) (2020九上·浦东月考) 如图,在△ABC中,AB=6,DE∥AC,将△DBE绕点B顺时针旋转得到△D'BE',点D的对应点落在边BC上,已知BE'=5,D'C=4,则BC的长为________。
廊坊市七年级下学期期末数学试题
廊坊市七年级下学期期末数学试题一、选择题1.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角2.下列运算正确的是( )A .()3253a b a b =B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 33.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( ) A .8 B .-8C .0D .8或-8 4.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 12 5.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .6.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )A .13B .9C .9-D .13-7.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .8.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-9.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140°10.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.等式01a =成立的条件是________.13.已知方程组,则x+y=_____. 14.计算:32(2)xy -=___________.15.计算:312-⎛⎫ ⎪⎝⎭= . 16.已知一个多边形的每个外角都是24°,此多边形是_________边形.17.二元一次方程7x+y =15的正整数解为_____. 18.若x a y b =⎧⎨=⎩是二元一次方程2x ﹣3y ﹣5=0的一组解,则4a ﹣6b =_____. 19.若2m =3,2n =5,则2m+n =______.20.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.三、解答题21.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.22.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;23.化简与计算:(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 324.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.25.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).26.将下列各式因式分解(1)xy 2-4xy(2)x 4-8x 2y 2+16y 427.计算(1) (-a 3) 2·(-a 2)3(2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ 28.南山植物园中现有A ,B 两个园区.已知A 园区为长方形,长为(x +y)米,宽为(x -y)米;B 园区为正方形,边长为(x +3y)米.(1)请用代数式表示A ,B 两园区的面积之和并化简.(2)现根据实际需要对A 园区进行整改,长增加(11x -y)米,宽减少(x -2y)米,整改后A 园区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C ,D 两种花投入的费用与吸引游客的收益如下表:求整改后A ,B 两园区旅游的净收益之和.(净收益=收益-投入)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.2.C解析:C【分析】根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.【详解】解:A 、(a 2b )3=a 6b 3,故A 错误;B 、a 6÷a 2=a 4,故B 错误;C 、5y 3•3y 2=15y 5,故C 正确;D 、a 和a 2不是同类项,不能合并,故D 错误;故选:C .【点睛】此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.3.B解析:B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.4.A解析:A【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A 、a 4÷a 3=a ,故本选项正确;B 、a 4和a 3不能合并,故本选项错误;C 、 (-a 3)2=a 6,故本选项错误;D 、a 4⋅a 3=a 7,故本选项错误.故选:A .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.6.A解析:A【分析】先解方程组425x yx y+=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y+=与32x by+=-即可求出a、b的值,进一步即可求出答案.【详解】解:解方程组425x yx y+=⎧⎨-=⎩,得31xy=⎧⎨=⎩,把31xy=⎧⎨=⎩代入7ax y+=,得317a+=,解得:a=2,把31xy=⎧⎨=⎩代入32x by+=-,得92b+=-,解得:b=﹣11,∴a-b=2-(﹣11)=13.故选:A.【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.7.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A、B、C选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D .【点睛】本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A 、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.9.C解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,故选:C .【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.【详解】∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.12..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 解析:0a ≠.【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 13.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2. 解析:2 【解析】由题意得,两个方程左右相加可得,,故答案为2.14.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.解析:264x y【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 15.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.16.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.17.或【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.18.10【分析】已知是二元一次方程2x﹣3y﹣5=0的一组解,将代入二元一次方程2x﹣3y﹣5=0中,即可求解.【详解】∵是二元一次方程2x﹣3y﹣5=0的一组解∴2a-3b=5∴4a-6b解析:10【分析】已知x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解,将x ay b=⎧⎨=⎩代入二元一次方程2x﹣3y﹣5=0中,即可求解.【详解】∵x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解∴2a-3b=5∴4a-6b=10故答案为:10【点睛】本题考查了二元一次方程组解的定义,能使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解.由于使二元一次方程的左右两边的值相等的未知数的值不止一组,故每个二元一次方程都有无数组解.19.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.20.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为-解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.三、解答题21.2021514- 【分析】根据题目信息,设S =1+5+52+53+…+52020,求出5S ,然后相减计算即可得解.【详解】解:设S =1+5+52+53+ (52020)则5S =5+52+53+54 (52021)两式相减得:5S ﹣S =4S =52021﹣1, 则202151.4S -= ∴1+5+52+53+54+…+52020的值为2021514-. 【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.22.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c的正方形,即可得出答案.【详解】(1)小刚:(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2ac+2bc(2)小王:(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+b2+2ab+2ac+2bc+c2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.23.(1)-11;(2)6a9【分析】(1)根据负指数幂运算法则,零指数幂运算法则进行运算即可求解(2)根据幂的乘方运算法则,同底数幂乘方和除法运算法则,先算乘法,后算乘除即可求解.【详解】(1)120 1(3)(2)3π-⎛⎫---+-⎪⎝⎭=391--+=-11故答案为:-11(2)(﹣2a3)3+(﹣4a)2•a7﹣2a12÷a3=-8a9+16a2•a7-2a9=-8a9+16a9-2a9=6a9故答案为:6a9【点睛】本题考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.要熟练掌握负指数幂运算法则,零指数幂运算法,幂的乘方运算法则,同底数幂乘法和除法运算法等.24.(1)(a+b)2-(a-b)2=4ab;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy,将x+y=5,x•y=94代入(x+y)2-(x-y)2=4xy,即可求得x-y的值(3)因为(2019﹣m)+(m﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.25.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB,∵∠BDC=180︒-12(∠ACB+∠ABC)=180︒-12(180︒-α)=90︒+1α2,∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α,同①,说明MN在旋转过程中∠NDC-∠MDB的度数只与∠A有关系,而∠A始终不变,故:MN在旋转过程中∠NDC-∠MDB的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC,由②知∠BDC=90︒+1α2,∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2.故∠NDC与∠MDB的关系是∠NDC+∠MDB=90︒-1α2.【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.26.(1)()4xy y -;(2)()()2222x y x y -+.【分析】(1)提出公因式xy 即可得出答案;(2)先利用完全平方公式,然后再利用平方差公式分解即可.【详解】解:(1)()244xy xy xy y -=-; (2)()()()()()22222242246=2842221x y x y x y x y x y x y x y ⎡⎤-=-=-++⎣-+⎦. 【点睛】 本题主要考查因式分解,因式分解的步骤:一提,二套,三分组,四检查,分解要彻底;熟练掌握提公因式法、公式法的应用是解题的关键.27.(1)-12a ;(2)-522x 10y 12xy +-;(3)1034. 【分析】(1)先计算幂的乘方,然后计算同底数幂相乘,即可得到答案;(2)先计算完全平方公式和平方差公式,然后合并同类项,即可得到答案;(3)先计算负整数指数幂,零指数幂,绝对值,然后合并同类项,即可得到答案.【详解】解:(1)32236612()()()a a a a a -•-=•-=-;(2)2(23)(3)(3)x y y x x y --+- =22224129(9)x xy y x y -+--=2251210x xy y --+;(3)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ =311824+++ =3104; 【点睛】 本题考查了负整数指数幂,零指数幂,完全平方公式,平方差公式,以及同底数幂的乘法,解题的关键是熟练掌握运算法则进行解题.28.(1)2x 2+6xy+8y 2;(2)①3010x y =⎧⎨=⎩②57600元; 【分析】 (1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;②代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)(x+y )(x ﹣y )+(x+3y )(x+3y )=x 2﹣y 2+x 2+6xy+9y 2=2x 2+6xy+8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米;(2)(x+y )+(11x ﹣y )=x+y+11x ﹣y=12x (米),(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x+2y=y (米),依题意有:123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩, 解得3010x y =⎧⎨=⎩9. 12xy=12×30×10=3600(平方米),(x+3y )(x+3y )=x 2+6xy+9y 2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A 、B 两园区旅游的净收益之和为57600元.考点:整式的混合运算.。
河北省廊坊市七年级下学期数学期末考试试卷
河北省廊坊市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题有10个小题,每小题3分,共30分. (共10题;共30分)1. (3分)(2019·井研模拟) 下列说法正确的是()A . 了解“乐山市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B . 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C . 一口袋中装有除颜色外其余均相同的红色小球2个,蓝色小球1个,从中随机一次性摸出2个小球,则恰好摸到同色小球的概率是D . “任意画一个三角形,其内角和是360°”这一事件是不可能事件【考点】2. (3分) (2019七下·延庆期末) 北京世园会于2019年4月28日开幕,核心景观区以妫汭湖为中心.其中,“什锦花坊”集中展示海内外的特色花卉,呈现出百花齐放的美丽景象.园区内鲜花烂漫,空气中弥漫着各种花粉,有一种花粉的直径约为0.000035米,其中0.000035用科学记数法表示为()A . 0.35×10﹣4B . 3.5×10﹣5C . 35×10﹣4D . 3.5×10﹣6【考点】3. (3分) (2020七下·奉化期中) 若多项式是一个完全平方式,则常数的值是()A . 6B . 3C .D .【考点】4. (3分)如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是()A . 20°B . 35°C . 40°D . 70°【考点】5. (3分)(2018·阜新) 某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A . 众数为14B . 极差为3C . 中位数为13D . 平均数为14【考点】6. (3分)根据“x减去y的差的8倍等于8”的数量关系可列方程()A .B .C .D .【考点】7. (3分) (2017七下·宜兴期中) 如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个【考点】8. (3分)(2019·太原模拟) 计算的结果为()A .B .C . a-2D . a+2【考点】9. (3分)已知a+b=2,ab=1,化简(a-2)(b-2)的结果为()A . 1B . 2C . -1【考点】10. (3分)设a、b、c和S分别为三角形的三边长和面积,关于x的方程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的大小关系为().A . Δ=16S2B . Δ=-16S2C . Δ=16SD . Δ=-16S【考点】二、填空题:本大题有6个小题,每小题4分,共24分. (共6题;共24分)11. (4分)(2017·官渡模拟) 函数的自变量的取值范围是________.【考点】12. (4分) (2020七下·瑞安期末) 因式分解:a2-4a=________。
2014—2015七年级下册期末数学试题
2014—2015 学年度第二学期期末学业水平检测七年级数学试题(考试时间:120 分钟 分值:120 分)注意事项: 1、 答题前,考生务必将自己的姓名、考号、考试科目等填写在试题上; 2、 选择题每题选出答案后,都必须用 2B 铅笔把答题卡上对应题目的答案标号【ABCD】涂 黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用 0.5mm 碳素笔答在答题 卡的相应位置上; 3、 考试时,不允许使用科学计算器. 题号 得分 评卷人一二 19 20 21三 22 23 24 25总分得分评卷人一、选择题:本大题共 10 小题,在每小题给出的四个选项中, 只有一项是正确的,请把正确的选项选出来. 每小题选对得 3 分, 选错、不选或选出的答案超过一个均记零分. ) B. 3 C. 9 D. 91. 81 的平方根是( A. 32. 直线 y x 1 经过的象限是( A.第一、二、三象限 C.第二、三、四象限 3. 下列命题中是真命题的是( )) B.第一、二、四象限 D.第一、三、四象限1 2 3A.如果 a 2 b 2 ,那么 a b B.对角线互相垂直的四边形是菱形 C.旋转前后的两个图形,对应点所连线段相等 D.线段垂直平分线上的点到这条线段两个端点的距离相等(第 4 题图)4. 如图, 将三角形纸板的直角顶点放在直尺的一边上,1 20, 2 40 , 则 3 等于( ) B. 30 ) C. 20 D. 15 A. 50 5. 算式( 6+ 10× 15)× 3之值为何? (七年级数学试题第 1 页 (共 1 页)A.2 42B.12 5C.12 13D.18 26. 已知果农贩卖的西红柿,其重量与价钱成线型函数关系,今小华向果农买一 竹篮的西红柿,含竹篮秤得总重量为 15 公斤,付西红柿的钱 250 元.若他再加 买 0.5 公斤的西红柿,需多付 10 元,则空竹篮的重量为多少公斤?( A.1.5 B.2 C.2.5 D.3 )7. 如图数轴上有 A、B、C、D 四点,根据图中各点的位置,判断那一点所表示 的数与 11﹣2 39最接近? ( )A.A B.B C.C D.D 8. 图为歌神 KTV 的两种计费方案说明. 若晓莉和朋友们打算在此 KTV 的一间包 厢里连续欢唱 6 小时, 经服务生试算后,告知他们选择包厢计费方案会比人数计 费方案便宜,则他们至少有多少人在同一间包厢里欢唱? ( )A.6 B.7 C.8 D.9 9. 2014 年某市有 28000 名初中毕业生参加了升学考试, 为了了解 28000 名考生 的升学成绩,从中抽取了 300 名考生的试卷进行统计分析,以下说法正确的是 ( ) A.28000 名考生是总体 B.每名考生的成绩是个体 C.300 名考生是总体的一个样本 D.以上说法都不正确 10. 如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话 纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何? ( )七年级数学试题第 2 页 (共 2 页)(第 10 题图) A.向北直走 700 公尺,再向西直走 100 公尺 B.向北直走 100 公尺,再向东直走 700 公尺 C.向北直走 300 公尺,再向西直走 400 公尺 D.向北直走 400 公尺,再向东直走 300 公尺 答题卡:1 2 3 4 [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] 5 6 7 8 [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] 9 [A] [B] [C] [D] 10 [A] [B] [C] [D]得分评卷人二、填空题:本大题共8小题,每小题 4 分,共 32 分.只要 求填写最后结果. . .11. 点 P(m,1-2m)在第四象限,则 m 的取值范围是 12. 写出一个大于 2 小于 3 的无理数(第 13 题图)(第 16 题图)(第 18 题图)13. 如 图 , 已 知 AB,CD,EF 互 相 平 行 , 且 ∠ ABE =70° ,∠ ECD = 150° ,则∠ BEC =________. 14. 已知点 O(0,0)B(1,2)点 A 在坐标轴上,S 三角形 OAB=2,求满足条件的点 A 的坐标 . 七年级数学试题 第 3 页 (共 3 页)15. 计算:= __________.16. 如图所示,周长为 34cm 的长方形 ABCD 被分成 7 个大小完全一样的小长方 形,求每个小长方形的面积是多少? . 17. 要了解我市中小学生的视力情况,你认为最合适的调查方式是___________. 18. 如图,在平面直角坐标系中 ,有若干个整数点,其顺序按图中“→”方向排列 , 如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)„根据这个规律探索可得, 第 100 个点的坐标为 __________.得分评卷人三、解答题:本大题共 7 小题,共 58 分.解答要写出必要的文 字说明、证明过程或演算步骤.19.(本题满分 8 分) (1)64(x+1)3+27=0(2)20.(本题满分 10 分)(1)解方程组:七年级数学试题第 4 页 (共 4 页)x2 <1, (2) 解不等式组: 3 把解集在数轴上表示出来,并将解集中的整数解表 2(1 x)≤5.示出来.21.(本题满分 8 分)东营市某中学开展以“我最喜欢的职业”为主题的调查活动, 通过对学生的随机抽样调查得到一组数据, 如图是根据这组数据绘制成的不完整 统计图.人数80 60 40 20 0 教 师 医 生 公 务 员 军 人 其 职业 他 (第 21 题图) 其他 _ 军人 10% 教师 医生 15% 公务员 20%(1)求出被调查的学生人数;(2)把折线统计图补充完整; (3)求出扇形统计图中,公务员部分对应的圆心角的度数;(4) 若从被调查的学生中任意抽取一名, 求抽取的这名学生最喜欢的职业是 “教 师”的概率.七年级数学试题第 5 页 (共 5 页)22.(本题满分 8 分)阅读下列材料:1, y<0 ,试确定 x y 的取值范围”有如下解法: 解答“已知 x y 2 ,且 x>解x y 2, x y 2 、y 2> 1.1, 又 x> y>-1.又y<0, 1<y<0 。
河北省廊坊市七年级下学期期末考试数学试题
河北省廊坊市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2014·茂名) 下列选项中能由左图平移得到的是()A .B .C .D .2. (2分)(2018·北海模拟) 下面调查中,适合采用全面调查的是()A . 对南宁市市民进行“南宁地铁1号线线路”B . 对你安宁市食品安全合格情况的调查C . 对南宁市电视台《新闻在线》收视率的调查D . 对你所在的班级同学的身高情况的调查3. (2分) (2016七下·莒县期中) 实数,﹣,0.1010010001,,π,中,无理数的个数是()A . 1B . 2C . 3D . 44. (2分)下列数组中,不是x+y=7的解是()A .B .C .D .5. (2分) (2019七下·北京期中) 在数轴上表示不等式组的解集,正确是()A .B .C .D .6. (2分) (2019七下·滨州期中) 将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n 排,从左到右第m个数,如(4,2)表示实数9,则表示实数2019的有序实数对是()A .B . (64,62)C .D .二、填空题 (共6题;共8分)7. (3分)的算术平方根是________,的立方根是________,绝对值是________.8. (1分) (2017八上·金堂期末) 如图,正方形ABCD的边长为4,点A的坐标为(-1,1),平行于X轴,则点C的坐标为________.9. (1分)给你一对值,请你写一个二元一次方程组,使这对数是这个方程组的解,这个方程组为________.10. (1分) (2019八下·宁化期中) 如图,中, ,点在上,,将线段沿方向平移得到线段,点分别落在边上,则的周长是________cm.11. (1分) (2015八下·苏州期中) 若关于x的方程﹣2= 的解为正数,则m的取值范围是________.12. (1分) (2020八下·北镇期末) 如图,直线,等边的顶点B在直线m上,边与直线m所夹锐角为,则的度数为________.三、解答题。
廊坊市人教版七年级下学期期末数学试题
廊坊市人教版七年级下学期期末数学试题一、选择题1.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .三角形B .四边形C .六边形D .八边形 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 3.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2 4.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 25.下列计算错误的是( ) A .2a 3•3a =6a 4 B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 6.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .67.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 48.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣89.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩10.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .二、填空题11.已知等腰三角形的两边长分别为4和8,则它的周长是_______.12.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______.13.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 14.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.15.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.16.计算:(12)﹣2=_____. 17.若等式0(2)1x -=成立,则x 的取值范围是_________.18.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.19.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”) 三、解答题21.解方程组:41325x y x y +=⎧⎨-=⎩. 22.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).23.先化简,再求值:(x ﹣2y )(x +2y )﹣(x ﹣2y )2,其中x =3,y =﹣1.24.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.25.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°.如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点.(1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案)(2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .26.因式分解:(1)16x 2-9y 2(2)(x 2+y 2)2-4x 2y 227.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-28.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x x x ÷-=- 正确.D.()32628.x x -=- 故错误. 故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.3.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D 正确;故选D .【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.4.C解析:C【分析】直接利用图形面积求法得出等式,进而得出答案.【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2,故a 2-b 2=(a +b )(a -b ).故选:C .【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.5.C【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意故选:C【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.6.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x-<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a<4,∴a=1, 3,∴1+3=4,∴所有满足条件的整数a的值之和为4.故选:C.【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.7.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a•a2=a1+2=a3.故选:C.【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.8.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n即可.【详解】解:0.00000012=1.2×10﹣7,故选:C.【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.B解析:B【分析】把x与y的值代入方程检验即可.【详解】解:A、把31xy=⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4,∵左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边=5﹣3=2,右边=4,∵左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.10.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.二、填空题11.20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8解析:20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=20.故答案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+解析:24xy【解析】∵(3x+2y)2=(3x﹣2y)2+A,∴(3x)2+2×3x×2y+(2y)2=(3x)2-2×3x×2y+(2y)2+A,即9x2+12xy+4y2=9x2-12xy+4y2+A∴A=24xy,故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.13.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1.3 =-故答案为1. 3 -【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 15.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,故答案为:.【解析:54140 3276 x yx y+=⎧⎨+=⎩【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,54140 3276x yx y+=⎧⎨+=⎩,故答案为:54140 3276 x yx y+=⎧⎨+=⎩.【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.16.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】 解:(12)﹣2=2112⎛⎫ ⎪⎝⎭=114=4, 故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可. 17.【分析】根据非0数的0次幂等于1列出关于的不等式,求出的取值范围即可.【详解】解:成立,,解得.故答案为:.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义 解析:2x ≠【分析】根据非0数的0次幂等于1列出关于x 的不等式,求出x 的取值范围即可.【详解】解:0(2)1x -=成立,20x ∴-≠,解得2x ≠.故答案为:2x ≠.【点睛】本题考查了0指数幂的意义,即非0数的0次幂等于1,0的0次幂无意义.18.28°【分析】根据平行线的性质求出∠DEF 的度数,然后根据折叠的性质算出∠GED 的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF 的度数,然后根据折叠的性质算出∠GED 的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD ∥BC ,∴∠DEF=∠EFG=52°,∵EFNM是由EFCD折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.19.﹣【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣.解析:﹣1 2【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣12.故答案为:﹣12.【点睛】此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可. 【详解】解:∵π0=1,2-1=12,1>12, ∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键. 三、解答题21.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩.本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.22.(1)20°;(2)11 22 n m【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.4xy﹣8y2,﹣20【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,最后代入求出即可.【详解】(x﹣2y)(x+2y)﹣(x﹣2y)2=x2﹣4y2﹣(x2﹣4xy+4y2)=x2﹣4y2﹣x2+4xy﹣4y2=4xy﹣8y2,当x =3,y =﹣1时,原式=4×3×(﹣1)﹣8×(﹣1)2=﹣20.【点睛】本题考查整式的化简求值,涉及平方差公式、完全平方公式、合并同类项等知识,熟练掌握整式的乘法运算法则和乘法公式的运用是解答的关键.24.(1)16;4;(2)m=3n ;【分析】(1)利用a m +n =a m ⋅a n 和a m -n =a m ÷a n 进行计算;(2)利用23=8再结合同底数幂的运算法则进行分析计算.【详解】(1)m n a +=a m ×a n =16;m n a -=a m ÷a n =4;(2)∵, ∴∴【点睛】本题考察了同底数幂的运算法则,熟练掌握同底数幂的运算法则是解题的关键.25.知识回顾:∠A+∠B ;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A 和∠P 之间的数量关系是:∠P =∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC 度数,进而求得∠ACB 度数;(2)已知∠A 度数,即可求得∠ABC+∠ACB 度数,进而求得∠DBC+∠ECB 度数. 拓展延伸:(1)连接AP ,根据三角形外角性质,∠DBP =∠BAP+∠APB ,∠ECP =∠CAP+∠APC , 得到∠DBP+∠ECP =∠BAC+∠BPC ,已知∠BAC =70°,∠BPC =150°,即可求得∠DBP+∠ECP 度数;(2)如图⑤,设∠DBO =x ,∠OCE =y ,则∠OBP =∠DBO =x ,∠PCO =∠OCE =y , 由(1)同理得:x+y =∠A+∠O ,2x+2y =∠A+∠P ,即可求出∠A 和∠P 之间的数量关系; (3)如图,延长BP 交CN 于点Q ,根据角平分线定义,∠DBP =2∠MBP ,∠ECP =2∠NCP ,且∠DBP+∠ECP =∠A+∠BPC ,∠A =∠BPC ,得到∠BPC =∠MBP+∠NCP ,因为∠BPC =∠PQC+∠NCP ,证得∠MBP =∠PQC ,进而得到BM ∥CN .【详解】知识回顾:∵∠ACD+∠ACB =180°,∠A+∠B+∠ACB =180°,∴∠ACD =∠A+∠B ;故答案为:∠A+∠B ;初步运用:(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM ∥CN .【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.26.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可; (2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.27.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a+•-=121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.28.(1)400;(2)补全条形统计图见解析,54°;(3)180人【分析】(1)根据A类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B种情况下的人数为:400-80-60-20=240(人),补全的条形统计图如图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:60360400︒⨯=54°,故答案为:54°;(3)203600400⨯=180(人),即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.。
河北省廊坊市数学七年级下学期期末考试试卷
河北省廊坊市数学七年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2020·重庆模拟) 下列各数比1大的是()A . 0B .C .D . ﹣32. (2分)下列各组数中,是方程3x+2y=7的解的是A .B .C .D .3. (2分) (2017八下·泰兴期末) 如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A . 2 -2B . -1C . -1D . 2-4. (2分) (2015七下·卢龙期中) 如果x=﹣2是方程a(x+1)=2(x﹣a)的解,则a等于()A .B . ﹣C . ﹣2D . ﹣45. (2分)(2018·灌南模拟) 如图,在平面直角坐标系xoy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l的对称点A2 ,将A2向右平移2个单位得到点A3;再作A3关于直线l的对称点A4 ,将A4向右平移2个单位得到点A5;….则按此规律,所作出的点A2015的坐标为()A . (1007,1008)B . (1008,1007)C . (1006,1007)D . (1007,1006)6. (2分)小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是()A . 46B . 42C . 32D . 27二、填空题 (共8题;共9分)7. (1分)(2017·石家庄模拟) 27的立方根为________.8. (1分) (2019七下·通化期中) 如果点A(m,n)在第一象限,那么点B(m+1,-n)在第________象限.9. (1分)某学校在全校进行了一个调查,共有3402人参加.内容是:你认为一名高素质的教师最需要具备如下哪个条件?较强的教学能力(604人),合理的知识结构(235人),对学生的爱心(838人),现代教育观念(1725人).请回答以下问题:从这次调查中,认为一名教师最需要具备的条件是________ ,所占比例约为________ .10. (2分) (2019七下·新疆期中) 如图,直线a、b被直线c所截,,∠1=70°,则∠2=________.11. (1分) (2018八上·揭西期末) 二元一次方程组的解是________。
14-15第二学期期末七年级数学答案
2014-2015学年第二学期期末七年级数学答案 第1页(共2页)2014—2015学年第二学期期末考试七年级数学试题参考答案及评分标准一、选择题(每小题2分,共30分)二、填空题(每小题2分,共10分)16.﹣3 17.70 18.125° 19.24 20.5,6 三、解答题(本大题共6个小题,共60分.解答应写出文字说明或演算步骤) 21. (每个4分,共16分)解:(1)5 (2)1 (3)⎩⎨⎧-==12y x (4)12- x22.(本题满分8分)解:(1)A 1(0,3);B 1(﹣3,﹣4);C 1(5,1) -----------------各1分共3分图略------------------------------------------------------------5分(2)3-----------------------------------------------------------------------------------------------8分23.(本题满分8分) 证明:(1) ∵BD ⊥AC ,EF ⊥AC∴∠CFE=∠CDB=90°∴BD ∥EF ----------3分 (2) ∵GF ∥BC ∴∠2=∠CBD∵∠1=∠2 ∴∠CBD=∠1 ∴GF ∥BC -----6分 ∵MD ∥BC ∴MD ∥GF∴∠AMD=∠AGF. ------------------------------8分 24.(本题满分10分)解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;--------2分 (2)由(1)可知C 条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50, 即C 的条形高度改为50; C ; ----------------------6分 (3)D 的人数为:200×15%=30;如图 -------------8分 (4)600×(20%+40%)=360(人), -------------10分(第23题图)A C FD M HBG 122014-2015学年第二学期期末七年级数学答案 第2页(共2页)25.(本题满分10分)解:(1)设买x 台A 型,则买 (10-x)台B 型,根据题意得:105)10(1012≤-+x x ------------------------------------------------------3分解得:25≤x答:可买10台B 型;或 1台A 型,9台B 型;或2台A 型,8台B 型.-------5分 (2) 设买x 台A 型,则由题意可得200(10)204240x x +-≥-----------------------------------8分解得 1≥x当x=1时,花费 102910112=⨯+⨯ (万元);当x=2时,花费 104810212=⨯+⨯ (万元) 答:买1台A 型,9台B 型设备时最省钱. ------------------------------10分26.(本题满分10分) 解:(1)设:甲队工作一天商店应付x 元,乙队工作一天商店付y 元. 由题意得-----------------------------------------------------------3分解得答:甲、乙两队工作一天,商店各应付300元和140元.----------------5分 (2)单独请甲队需要的费用:300×12=3600元. 单独请乙队需要的费用:24×140=3360元.答:单独请乙队需要的费用少.-------------------------------------------------7分 (3)请两队同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元; 乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元; 甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元; 因为5120<6000<8160, 所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.------------------------------------------10分15.解:由题中规律可得出如下结论:设点P m 的横坐标的绝对值是n ,则在y 轴右侧的点的下标分别是4(n ﹣1)和4n ﹣3,在y 轴左侧的点的下标是:4n ﹣2和4n ﹣1;判断P 99的坐标,就是看99=4(n ﹣1)和99=4n ﹣3和99=4n ﹣2和99=4n ﹣1这四个式子中哪一个有负整数解,从而判断出点的横坐标.由上可得:点P 第99次跳动至点P 99的坐标是(﹣25,50) 20.解:根据题意得:3≤[]<4,解得:5≤x <7,则满足条件的所有正整数为5,6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年河北省廊坊市七年级(下)期末数学试卷一、选择题(本大题共16个小题,1-6小题,每小题2分;7-16小题,每小题2分;共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(2分)9的平方根是()A.3 B.﹣3 C.±3 D.813.(2分)下列四个实数中,是无理数的是()A.B.0 C.D.4.(2分)方程kx+3y=5有一组解是,则k的值是()A.1 B.﹣1 C.0 D.25.(2分)下列调査中,适合采用全面调査(普査)方式的是()A.调査某池塘中现有鱼的数量B.对端午节期间市场上粽子质量情况的调査C.企业招聘,对应聘人员进行面试D.对某类烟花爆竹燃放安全情况的调査6.(2分)如图,点A、D在射线AE上,直线AB∥CD,∠CDE=140°,那么∠A 的度数为()A.140°B.60°C.50°D.40°7.(3分)下列说法正确的是()A.相等的角是对顶角B.在同一平面内,若a丄b,b丄c,则a∥cC.内错角相等D.过一点有且只有一条直线与已知直线平行8.(3分)一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.(3分)如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为()A.(2,6) B.(2,5) C.(6,2) D.(3,6)10.(3分)下列条件不能判定AB∥CD的是()A.∠3=∠4 B.∠BAD+∠ADC=180°C.∠1=∠2 D.∠BAD=∠511.(3分)某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如下频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高低于160.5cm的学生数为15人C.该班身高最高段的学生数为20人D.该班身高最高段的学生数为7人12.(3分)点P(m+3,m﹣1)在x轴上,则点P的坐标为()A.(0,﹣2)B.(2,0) C.(4,0) D.(0,﹣4)13.(3分)如图,在数轴上表示﹣1,﹣的对应点为A,B,若点A是线段BC的中点,则点C表示的数为()A.1﹣B.2﹣C.﹣1 D.﹣214.(3分)已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.415.(3分)若关于x的不等式组无解,则实数a的取值范围是()A.a<﹣4 B.a=﹣4 C.a>﹣4 D.a≥﹣416.(3分)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题横线上)17.(3分)x与1的差不大于3.用不等式表示为.18.(3分)数学活动中.张明和王丽向老师说明他们的位置(单位:m).张明:我这里的坐标是(﹣200,300);王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是m.19.(3分)小亮将一个直角三角板和一把直尺(如图所示)叠放在一起,如果∠β=32°,那么∠α是度.20.(3分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为,点A2015的坐标为.三、解答题(本大题共6个小题,总计66分,解答应写出文字说明、证明过程或演算步骤)21.(16分)(1)计算:|1﹣|+×﹣(2)解方程组:(3)解不等式组并把它的解集表示在如图数轴上.22.(6分)列方程或方程组解决问题:某学校计划购进一批电脑和电子白板,经过市场调研得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?23.(10分)如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.(Ⅰ)建立以点B为原点,AB边所在直线为x轴的直角坐标系.写出点A、B、C、D的坐标;(Ⅱ)求出四边形ABCD的面积;(Ⅲ)请画出将四边形ABCD向上平移5格,再向左平移2格后所得的四边形A′B′C′D′.24.(10分)某中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为度;(2)共抽查了名学生;(3)在图2中,将“体育”部分的图形补充完整;(4)爱好“书画”的人数占被调查人数的百分比;(5)估计现有学生中,有人爱好“书画”.25.(7分)完成下面的证明:(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=(),∵DF∥CA,∴∠A=(),∴∠FDE=∠A;(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,求证:AC∥BD;证明:∵∠C=∠COA,∠D=∠BOD,∵∠COA=∠BOD(),∴∠C=,∴AC∥BD().26.(5分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.27.(12分)为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台)a b处理污水量(吨/月)240200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.2014-2015学年河北省廊坊市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-6小题,每小题2分;7-16小题,每小题2分;共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(1,﹣2)在第四象限.故选:D.2.(2分)9的平方根是()A.3 B.﹣3 C.±3 D.81【解答】解:∵(±3)2=9,∴9的平方根是±3.故选:C.3.(2分)下列四个实数中,是无理数的是()A.B.0 C.D.【解答】解:=2,是有理数,0,是有理数,∴只有为无理数.故选:C.4.(2分)方程kx+3y=5有一组解是,则k的值是()A.1 B.﹣1 C.0 D.2【解答】解:把是代入方程kx+3y=5中,得2k+3=5,解得k=1.故选:A.5.(2分)下列调査中,适合采用全面调査(普査)方式的是()A.调査某池塘中现有鱼的数量B.对端午节期间市场上粽子质量情况的调査C.企业招聘,对应聘人员进行面试D.对某类烟花爆竹燃放安全情况的调査【解答】解:A、调査某池塘中现有鱼的数量,用抽样调查,故错误;B、对端午节期间市场上粽子质量情况的调査,用抽样调查,故错误;C、企业招聘,对应聘人员进行面试,用普查方式,正确;D、对某类烟花爆竹燃放安全情况的调査,用抽样调查,故错误;故选:C.6.(2分)如图,点A、D在射线AE上,直线AB∥CD,∠CDE=140°,那么∠A 的度数为()A.140°B.60°C.50°D.40°【解答】解:延长CD,∵∠CDE=140°,∴∠EDF=40°.∵AB∥CD,∴∠A=∠EDF=40°.故选:D.7.(3分)下列说法正确的是()A.相等的角是对顶角B.在同一平面内,若a丄b,b丄c,则a∥cC.内错角相等D.过一点有且只有一条直线与已知直线平行【解答】解:A、相等的角的两边不一定互为反向延长线,故本选项错误;B、正确;C、两直线平行,内错角相等,故本选项错误;D,过直线外一点有且只有一条直线与已知直线平行,故本选项错误;故选:B.8.(3分)一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选:B.9.(3分)如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为()A.(2,6) B.(2,5) C.(6,2) D.(3,6)【解答】解:∵A(4,0)、C(6,3)是对应点,∴平移规律为向右平移2个单位,向上平移3个单位,∴0+2=2,3+3=6,∴点D的坐标为(2,6).故选:A.10.(3分)下列条件不能判定AB∥CD的是()A.∠3=∠4 B.∠BAD+∠ADC=180°C.∠1=∠2 D.∠BAD=∠5【解答】解:A、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD(同旁内角互补,两直线平行),故本选项错误.C、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),判定的不是AB∥CD,故本选项正确;D、∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),故本选项错误;故选:C.11.(3分)某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如下频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高低于160.5cm的学生数为15人C.该班身高最高段的学生数为20人D.该班身高最高段的学生数为7人【解答】解:由频数直方图可以看出:该班人数最多的身高段的学生数为20人;该班身高低于160.5cm的学生数为20人;该班身高最高段的学生数为7人;故选:D.12.(3分)点P(m+3,m﹣1)在x轴上,则点P的坐标为()A.(0,﹣2)B.(2,0) C.(4,0) D.(0,﹣4)【解答】解:∵点P(m+3,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:C.13.(3分)如图,在数轴上表示﹣1,﹣的对应点为A,B,若点A是线段BC 的中点,则点C表示的数为()A.1﹣B.2﹣C.﹣1 D.﹣2【解答】解:设C表示的数是x,∵A是BC中点,∴=﹣1,∴x=﹣2.故选:D.14.(3分)已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2 B.C.2 D.4【解答】解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选:C.15.(3分)若关于x的不等式组无解,则实数a的取值范围是()A.a<﹣4 B.a=﹣4 C.a>﹣4 D.a≥﹣4【解答】解:解①移项得,2x﹣4x>7+1,合并同类项得,﹣2x>8,系数化为1得,x<﹣4,故得,由于此不等式组无解,故a≥﹣4.故选:D.16.(3分)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°【解答】解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选:C.二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题横线上)17.(3分)x与1的差不大于3.用不等式表示为x﹣1≤3.【解答】解:由题意得,x﹣1≤3.故答案为:x﹣1≤3.18.(3分)数学活动中.张明和王丽向老师说明他们的位置(单位:m).张明:我这里的坐标是(﹣200,300);王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是500m.【解答】解:∵张明的坐标是(﹣200,300),王丽的坐标是(300,300),∴两人之间的距离为300﹣(﹣200)=300+200=500.故答案为:500.19.(3分)小亮将一个直角三角板和一把直尺(如图所示)叠放在一起,如果∠β=32°,那么∠α是58度.【解答】解:延长AC交直尺于点E,∵∠β与∠CDE是对顶角,∠β=32°,∴∠CDE=∠β=32°,∴∠DEC=90°﹣32°=58°.∵直尺的两边互相平行,∴∠α=∠AED=58°.故答案为:58.20.(3分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为(﹣3,1),点A2015的坐标为(﹣3,1).【解答】解:∵点A1的坐标为(3,1),∴A2(﹣1+1,3+1)即(0,4),A3(﹣3,﹣1+2)即(﹣3,1),A4(1﹣1,﹣3+1)即(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2015÷4=503余3,∴点A2015的坐标与A3的坐标相同,为(﹣3,﹣1+2),即(﹣3,1);故答案为:(﹣3,1);(﹣3,1).三、解答题(本大题共6个小题,总计66分,解答应写出文字说明、证明过程或演算步骤)21.(16分)(1)计算:|1﹣|+×﹣(2)解方程组:(3)解不等式组并把它的解集表示在如图数轴上.【解答】解:(1)|1﹣|+×﹣=+()×==﹣(2)由②,可得:x=3y+18,把x=3y+18代入①,可得8(3y+18)+9y=12,解得y=﹣4,把y=﹣4代入x=3y+18,可得x=3×(﹣4)+18=6,∴方程组的解为:.(3)解不等式①,可得:x<2,解不等式②,可得:x≥﹣1,∴不等式组的解集是:﹣1≤x<2,把它的解集表示在数轴上为:.22.(6分)列方程或方程组解决问题:某学校计划购进一批电脑和电子白板,经过市场调研得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?【解答】解:设每台电脑x万元,每台电子白板y万元,由题意得,,解得:.答:每台电脑0.5万元,每台电子白板1.5万元.23.(10分)如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.(Ⅰ)建立以点B 为原点,AB 边所在直线为x 轴的直角坐标系.写出点A 、B 、C 、D 的坐标;(Ⅱ)求出四边形ABCD 的面积;(Ⅲ)请画出将四边形ABCD 向上平移5格,再向左平移2格后所得的四边形A′B′C′D′.【解答】解:(1)如图所示:A (﹣4,0)、B (0,0)、C2,2)、D (0,3);(2)∵S △DCB =×3×2=3,S △ABD =×3×4=6, ∴S 四边形ABCD =S △ABD +S △CBD =9;(3)如图所示:四边形A′B′C′D′即为所求.24.(10分)某中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为126度;(2)共抽查了80名学生;(3)在图2中,将“体育”部分的图形补充完整;(4)爱好“书画”的人数占被调查人数的百分比10%;(5)估计现有学生中,有287人爱好“书画”.【解答】解:(1)根据题意得:360°×35%=126°;(2)根据题意得:28÷35%=80(人);(3)“体育“部分的是80﹣(28+24+8)=20人,补全统计图,如图所示:(4)根据题意得:8÷80=10%;(5)根据题意得:2870×10%=287(人).故答案为:(1)126;(2)80;(4)10%;(5)287.25.(7分)完成下面的证明:(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等),∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等),∴∠FDE=∠A;(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,求证:AC∥BD;证明:∵∠C=∠COA,∠D=∠BOD,∵∠COA=∠BOD(对顶角相等),∴∠C=∠D,∴AC∥BD(内错角相等,两直线平行).【解答】(1)证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等),∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等),∴∠FDE=∠A,故答案为:∠BFD,两直线平行,内错角相等,∠BFD,两直线平行,同位角相等;(2)证明:∵∠C=∠COA,∠D=∠BOD,又∵∠COA=∠BOD(对顶角相等),∴∠C=∠D,∴AC∥BD(内错角相等,两直线平行),故答案为:对顶角相等,∠D,内错角相等,两直线平行.26.(5分)如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.27.(12分)为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台)a b处理污水量(吨/月)240200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【解答】解:(1)根据题意得:,∴;(2)设购买污水处理设备A型设备x台,B型设备(10﹣x)台,则:12x+10(10﹣x)≤105,∴x≤2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10﹣x)≥2040,∴x≥1,又∵x≤2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.。