广东省清远市数学中考最后一卷
2024年广东省清远市中考数学模拟试卷(无答案)
2023-2024学年(下)数学中考模拟卷一、选择题(本大题共10小题,每小题 3 分,共30分 )1.如果a与﹣2021互为相反数,那么a是()A.﹣2021 B.2021 C.12021D.﹣120212.据报道,中国医学研究人员通过研究获得了纯化灭活新冠病毒疫苗,该疫苗在低温电镜下呈椭圆形颗粒,最小直径约为90nm,已知1nm=10﹣9m,则90nm用科学记数法表示为()A.0.09×10﹣6m B.0.9×10﹣7m C.9×10﹣8m D.90×10﹣9m3.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=6,则AB的长是().A.8 B.1 C.12 D.4第3题图第4题图4.把一张有一组对边平行的纸条,按如图所示的方式折叠,若∠EFB=35°,则下列结论错误的是()A.∠C'EF=35°B.∠AEC=120°C.∠BGE=70°D.∠BFD=110°5.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4 C.3 D.不能确定6.三角形三条()的交点叫做三角形的重心A.高B.角平分线C.外角角平分线D.中线7.若点P(1﹣2t,t﹣3)位于第三象限,则t的取值范围是()A.t<3 B.132t≤≤C.132t<<D.t12>8.关于x的一元二次方程x2+(m﹣6)x﹣3m=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.根的情况由m的值确定9.某班男同学身高情况如下表,则其中数据167cm()身高(cm) 170 169 168 167 166 165 164 163人数(人) 1 2 5 8 6 3 3 2A .是平均数B .是众数但不是中位数.C .是中位数但不是众数D .是众数也是中位数10.如图是抛物线y=ax 2+bx+c (a≠0)的图象的一部分,抛物线的顶点坐标是A (1,4),与x 轴的一个交点是B (3,0),下列结论:①abc >0;②2a+b=0;③方程ax 2+bx+c=4有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣2.0);⑤x (ax+b )≤a+b ,其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:24a b b -=______.12.不等式11326x x +-<-的解集是 ________. 13.在ABC ∆中,90︒∠=C ,若3tan 4A =,则cos B =______.14.我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有________客房间.15.如图,在Rt ABC 中,90C ∠=︒,22B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=_______°. 16.如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1 cm ,则这个扇形的半径是________cm .三、解答题(本大题共3小题,每小题6分,共18分)17.先化简,再求值:(2x +3)(2x -3)-(x +2)2+4(x +3),其中x =-1.18.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 、BE 相交于点H ,AE =BE .求证:△AEH ≌△BEC .第19题图 第18题图 19.为深化课程改革,我校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A :文学鉴赏,B :科学探究,C :文史天地,D :趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成如图所示的两个不完整的统计图.根据以上信息,解答下列问题:(1)本次调查的总人数为 人,扇形统计图中D 部分的圆心角是 度;请补全条形统计图; (2)根据本次调查,我校七年级2600名学生中,估计最喜欢“趣味数学”的学生人数为多少?四、解答题(本大题共3小题,每小题8分,共24分)20.某公司引入一条新生产线生产A ,B 两种产品,其中A 产品每件成本为100元,销售价格为120元,B 产品每件成本为75元,销售价格为100元,A ,B 两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A ,B 两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A ,B 两种产品各多少件?(2)下个月该公司计划生产A ,B 两种产品共180件,且使总利润不低于4300元,则B 产品至少要生产多少件? 21.如图,海中有一个小岛P ,一艘渔船跟踪鱼群由西向东航行,在A 点测得小岛P 在北偏东57°方向上,航行40km 到达B 处,这时测得小岛P 在北偏东35︒方向上.求小岛P 到航线AB 的距离.(结果取整数) 参考数据:tan57 1.54︒≈,tan350.70︒≈.22.如图,直线AB 与反比例函数y =xk (k >0,x >0)的图象相交于点A 和点C(3,2),与x 轴的正半轴相交于点B .(1)求k 的值;(2)连接OA ,OC ,若点C 为线段AB 的中点,求△AOC 的面积.四、解答题(本大题共2小题,每小题12分,共24分)23.如图,在Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,点M在边AB上,以2cm/s的速度由点B出发沿BA向点A匀速运动:同时点N在边AC上,以1cm/s的速度由点A出发沿AC向点C匀速运动,点M到达点A时,点M,N同时停止运动,连接MN,设点N运动的时间为ts:(1)求AB的长;(2)当t为何值时,△AMN的面积为△ABC的面积3 26(3)是否存在t值,使得以A,M,N为顶点的三角形与△ABC相似?若存在,请求出t的值;若不存在,请说明理由24.如图,在△ABC中,∠ACB=90°,AO平分∠BAC,交BC于点O.以O为圆心,OC为半径作☉O,分别交AO,BC于点E,F.(1)求证:AB是☉O的切线;(2)延长AO交☉O于点D,连接CD,CE,若AD=2AC,求tan D的值.。
2023清远中考数学试题及答案
2023清远中考数学试题及答案2023年清远中考数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是整数?A. 3.14B. 0.5C. -2D. 0.33333答案:C2. 以下哪个表达式等于2?A. 3 + 1B. 2 × 1C. 4 ÷ 2D. 5 - 3答案:C3. 如果一个数的平方是9,那么这个数可能是?A. 3B. -3C. 3和-3D. 以上都不是答案:C4. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 任意三角形答案:B5. 以下哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D6. 以下哪个方程的解是x=2?A. 2x - 4 = 0B. 3x + 6 = 12C. x^2 - 4 = 0D. 2x + 3 = 7答案:A7. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x答案:A8. 以下哪个选项是正确的三角函数值?A. sin(30°) = 1/2B. cos(60°) = √3/2C. tan(45°) = √2D. cot(30°) = √3答案:A9. 以下哪个选项是正确的统计量?A. 平均数B. 中位数C. 众数D. 以上都是答案:D10. 以下哪个选项是正确的几何定理?A. 勾股定理B. 泰勒斯定理C. 欧拉定理D. 以上都是答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 如果一个角的补角是120°,那么这个角是______。
答案:60°13. 一个等腰三角形的底角是45°,那么顶角是______。
答案:90°14. 一个圆的半径是5cm,那么它的周长是______。
2024年广东省中考数学真题卷含答案解析
机密★启用前2024年广东省初中学业水平考试数学满分120分 考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是( )A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D.538.410⨯4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是().A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a -=--_______.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233-⨯-+-.17. 如图,ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879在B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】的步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.的【23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.机密★启用前2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D. 538.410⨯【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =, ∴384000用科学记数法表示为53.8410⨯,故选:B .4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒【答案】C【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =【答案】D【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A. 14 B. 13 C. 12 D. 34【答案】A【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 20【答案】B【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴5=,故选:B .8. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>【答案】A【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.【答案】B【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x≤【解析】【分析】本题主要考查了求不等式组解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14. 计算:333a a a -=--_______.【答案】1【解析】的【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BF CF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCD BF h S S BC h ⋅=⋅菱形 ,即18224BF BC=,∴23BF BC =,∴2BF CF=,∴12212ABF CDF BF h S BF S CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+-.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+-111233⨯+-=11233=+-2=.17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,的GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m(2)66.7m【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到AQ =,接着解直角三角形得到BC =,进而求出AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴sin AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴tan CE BC CBE ==∠,∴AD =;∵180309060PAD =︒-︒-︒=︒∠,∴cos AP AD PAD =⋅=∠,∴ 6.1m PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CE BE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B 景区去游玩(2)王先生会选择A 景区去游玩(3)最合适的景区是B 景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.小问1详解】解:A 景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B 景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%815%640%615%6.9⨯+⨯+⨯+⨯=分,∵6.97.157.4<<,∴王先生会选择B 景区去游玩;【小问2详解】的【解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+的25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(23cm 【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180n ππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DF A DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F ,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O DO F DF DB DE BE ==,11O DDBDE O F =.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,216482563.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x=验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE=,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m , ∴将k y m =代入y ax =中得:k m ax =得,∴k x am=,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DHHEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =,∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴tan 30AP OP PD =︒⨯===,2AC BD AP ===,∴AB AD ===,OD BP PD =+=+, ∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-=,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。
广东省清远市2023-2024学年高一下学期7月期末考试 数学试题(含答案)
清远市2023~2024学年第二学期高中期末教学质量检测高一数学注意事项:1.本试卷满分150分,考试时间120分钟.2.答题前,考生务必将自己的姓名、准考证号等填写在答题卡的相应位置.3.全部答案在答题卡上完成,答在本试题卷上无效.4.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.5.考试结束后,将本试题卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了调查某地三所学校未成年人的视力情况,计划采用分层随机抽样的方法从该地的A ,,C 三所中学抽取130名学生进行调查,已知A ,B ,C 三所学校中分别400,560,340名学生,则从C 学校中应抽取的人数为( )A. 34 B. 40 C. 56 D. 682. 要得到函数,的图象,只需将函数,的图象( )A.横坐标向左平移个单位长度,纵坐标不变B. 横坐标向右平移个单位长度,纵坐标不变C. 横坐标向右平移个单位长度,纵坐标不变D. 横坐标向左平移个单位长度,纵坐标不变3. 下列说法中,正确的是( )A. 底面是正多边形的棱锥是正棱锥B. 一个多面体至少有4个面C. 有两个面相互平行,其余各面都是平行四边形的多面体是棱柱D. 用一个平面去截棱锥,棱锥底面与截面之间部分是棱台4. 将一个棱长为1的正方体铁块磨制成一个球体零件,则可能制作的最大零件的表面积为( )AB. C. D. 5. 弹簧挂着的小球作上下运动,它在秒时相对于平衡位置的高度厘米的关系可用函数(,)来确定,其图象如图所示,则的值是( )A.B.C.D.6. 已知正方形的边长为2,,,,则( )A. 0B. 8C.D. 7. 设为复数,若,则的最小值为( )A. 1B. 2C. 3D. 4的.B ()2sin 23f x x ⎛⎫=- ⎪⎝⎭x ∈R ()sin 2g x x =x ∈R π3π31313π6π4π6πt h sin h A t ω=0A >0ω>ωπ8π6π414ABCD AB a =BC b =AC c =a b c ++= z 2i 1z +=z8. 已知正方体棱长为为棱的中点,为侧面的中心,过点的平面垂直于,则平面截正方体所得的截面面积为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 抛掷一枚质地均匀的骰子,记随机事件:“点数为奇数”,“点数为偶数”,“点数大于2”,“点数不大于2”,“点数为1”.则下列结论正确的是( )A. ,为对立事件 B. ,为互斥不对立事件C. ,不是互斥事件 D. ,是互斥事件10. 甲、乙两名同学近五次数学测试成绩数据分别为:甲68 71 72 72 82乙66 70 72 78 79则( )A. 甲组数据的极差大于乙组数据的极差B. 甲组数据的平均数等于乙组数据的平均数C. 甲组数据的方差小于乙组数据的方差D. 甲乙两组数据混合后的方差大于乙组数据的方差11. 在中,角,,的对边分别为,,,若,,满足,且,则下列结论正确的是( )A. B. 角的最大值为C. D. 若,则三、填空题:本题共3小题,每小题5分,共15分.12. 复数,则的虚部为______.13. 在三角形中,角,,所对的边分别为,,,已知,,,则______.14. 如图,在四棱锥中,底面是矩形,底面,且点满足,已知,,,则到平面的距离为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15. 已知复数,求当实数为何值时;(1)为实数;(2)为纯虚数;(3)为虚数.16. 某高校承办了某大型运动会志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组,第二组,第三组,第四组,第五组,绘制成如图所的1111ABCD A B C D -4,M DC N 1BC M αDN α1AC E =F =G =H =R =E F G H E G G R ABC V A B C a b c a b c ()1,3m =-(),n a b c a b c =++-+ m n ⊥2a c b +=B π3:1:2A C =sin 4sin a A c C =1cos 4A =-34i z =-2iz+ABC A B C a b c π3B =b =4a =c =P ABCD -ABCD PA ⊥ABCD E 13PE PC =2AB =AD =2PA =P ABE ()226215i 3m m z m m m --=+--+m z z z [)45,55[)55,65[)65,75[)75,85[]85,95示的频率分布直方图.已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.(1)估计这100名候选者面试成绩的众数;(2)求,的值;(3)估计这100名候选者面试成绩的第80百分位数.17. 中,角,,的对边分别为,,,若.(1)求;(2)若且的面积为,求边长.18. 如图,在四棱锥中,为边上的中点,为边上的中点,平面平面,,,,.(1)求证:平面;(2)求证:;(3)若直线与底面所成角的余弦值为,求二面角的正切值.19. 将连续正整数()从小到大排列构成一个数,为这个数的位数.例如:当时,此数为123456789101112,共有15个数字,则.现从这个数中随机取一个数字,为恰好取到0的概率.(1)求;(2)当时,求表达式;(3)令为这个数中数字9个数,为这个数中数字0的个数,,,求当时的最大值.的的a b ABC V A B C a b c cos sin 0b C C a c +--=B π4C =ABC V 3+c P ABCD -M AP N CP PBC ⊥ABCD 90PBC ∠=︒//AD BC 90ABC ∠=︒222AB AD BC ====//MN ABCD CD PD ⊥PD ABCD 13B PCD --1,2,3,,n ⋅⋅⋅*n ∈N 123n ⋅⋅⋅()F n 12n =()1215F =()P n ()101P 2024n ≤()F n ()f n ()g n ()()()h n f n g n =-(){}*1,100,S n h n n n ==≤∈N n S ∈()P n参考答案1. A2. C.3. B.4. B.5. C6. D7. A .8. D.9. ACD.10. ABC.11. ABD.12. 13. 5.14.15. (1)(2)或 (3)且16. (1);(2); (3).17. (1) (2)18.(1)证明:如图,连接,因为为边上的中点,为边上的中点,所以,又平面,又平面,所以平面.(2)证明在四边形中,,,,则,所以,则,所以都是等腰直角三角形,则,又平面平面,,即,平面平面,平面,所以平面,又平面,所以,又,又平面,所以平面,又平面,所以.(3115-5m =3m =2m =-3m ≠-5m ≠700.025,0.005a b ==77.5π3B =c =AC M AP N CP //MN AC MN ⊄ABCD AC ⊂ABCD //MN ABCD ABCD //AD BC 90ABC ∠=︒222AB AD BC ====1,2AB AD CD BC ====BD ==222BD CD BC +=V CD DB ⊥PBC ⊥ABCD 90PBC ∠=︒PB BC ⊥PBC ⋂ABCD BC =PB ⊂PBC PB ⊥ABCD CD ⊂ABCD PB CD ⊥PB DB B ⋂=PB DB ⊂、PBD CD ⊥PBD PD ⊂PBD CD PD ⊥19. (1)(2) (3)465(),1929,10993108,10099941107,1002024n n n n F n n n n n ≤≤⎧⎪-≤≤⎪=⎨-≤≤⎪⎪-≤≤⎩119。
广东省清远市中考数学试卷及答案
2009年清远市初中毕业生学业考试数学科试题说明:1.全卷共4页,考试时间为100分钟,满分120分.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指字区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域. 不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的清洁,考试结束后,将本试卷和答题卡一半交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上.1. —5等于()A . 5 B. -5 C. -1 D.-5 52 .不等式X-2 < 0的解集在数轴上表示正确的是()-3 -2 -1 0 1 2 3C.3.今年我国参加高考人数约为10200000,将10200000用科学记数法表示为2, 2 A. a b2 3B. a b2」6C. a bA. 10.2勺07 B • 1.02W07 C. 0.102X107 D. 102X1074 .某物体的三视图如图1所示,那么该物体形状可能是(A.圆柱B.球C.正方体D.长方体5.小明记录某社区七次参加“防甲型33, 32, 32, 31, 32, 28, A .26.6.28 C. 32H1N1流感活动”的人数分别如下:这组数据的众数是()D. 33方程X2 =16的解是(A .7 .已知OO的半径r ,圆心是(A.相交C. X = -4D. X=16O到直线l的距离为d ,当d = r时,直线l与OO的位置关系8.计算:B.相切3 2(ab3)=(C.相离D.以上都不对-3 ^2 -1 0 1 2 3A. _3 -2-10 1 2 3B.I J I I u u I-3 -2-10 1 2 3D.9.如图 2, AB // CD , A . 20° B. 60° EF_LAB 于 E, EF 交 CD 于 F ,已知 4 = 60°,则』2=()C. 30°D.45图2 图310.如图3, AB 是CDO 的直径,弦 则 tan£COE=( A . 3 B. 4 5 5 、填空题(本大题共 应题号的答题卡上. CD_LAB 于点 E,连结 OC ,若 OC=5, CD =8, 八 3C,— 4 6小题,每小题 D. 4 3 3分,共18分)请把下列各题的正确答案填写在相 11 .计算:3乂(-2)= 12.当 X = 时,分式 x —2 1 …、——无意义. k 13.已知反比例函数 y=-的图象经过点(2,3),则此函数的关系式是 14 .如果a 与5互为相反数,那么 a=. 15.如图4所示,转盘平面被等分成四个扇形,并分别填上红、黄两种颜色,自由转动这个 转盘,当它停止转动时,指针停在黄色区域的概率为 05NB4)。
清远中考数学试题及答案
清远中考数学试题及答案一、选择题:1. 若函数f(x)在区间[0,5]上连续,则f(x)=|x-3|的最小值是()A. 0B. 1C. 2D. 32. 三个有理数x,y,z满足x<y<z,若x、y、z能被7整除,则x、y、z的最小值是()A. -5B. 0C. 1D. 23. 已知函数f(x)=3x^2+2x+1,则f(-1)+f(1)=()A. 2B. 4C. 6D. 84. 二次函数y=(-x+4)(x+a)的图象与x轴交于点(-3,0)和(1,0),则a的值为()A. 6B. -6C. -2D. 25. 已知等差数列{an}的前n项和为Sn=n(2n+1),则a1的值为()A. 1B. 3C. 5D. 7二、填空题:1. 设函数f(x)=ax^2+bx+c的图像经过点(1,1),则a+b+c=()。
2. 若正方形ABCD的边长为2a,则对角线AC的长为()。
3. 将20元纸币兑换成1元、5元和10元三种零钱,其中1元纸币4张,10元纸币2张,剩下的都是5元纸币,那么共有()张5元纸币。
4. 解方程|x-3|=7的解集为()。
5. 若a:b=3:5,b:c=4:7,c:d=9:7,则a:b:c:d=()。
三、解答题:1. 用有理数表示根号12的最简形式。
2. 某商品原价800元,现在打折6折出售。
小明购买该商品需要支付的金额是多少?3. 解方程组:{2x-y=3{3x+y=44. 某数乘以它的倒数等于1,这个数是多少?5. 在△ABC中,∠B=60°,AB=8,AC=4,则BC的长度为多少?答案:一、选择题:1. B 2. D 3. C 4. B 5. A二、填空题:1. -1 2. 2a√2 3. 3 4. {-4, 10} 5. 27:45:28:35三、解答题:1. 2√32. 480元3. {x=2, y=1}4. 15. 4以上为清远中考数学试题及答案,供参考。
2023年广东省中考数学试卷及答案解析
2023年广东省中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作()A.﹣5元B.0元C.+5元D.+10元2.(3分)下列出版社的商标图案中,是轴对称图形的为()A.B.C.D.3.(3分)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为()A.0.186×105B.1.86×105C.18.6×104D.186×103 4.(3分)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=()A.43°B.53°C.107°D.137°5.(3分)计算的结果为()A.B.C.D.6.(3分)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了()A.黄金分割数B.平均数C.众数D.中位数7.(3分)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为()A.B.C.D.8.(3分)一元一次不等式组的解集为()A.﹣1<x<4B.x<4C.x<3D.3<x<49.(3分)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()A.20°B.40°C.50°D.80°10.(3分)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣4二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)因式分解:x2﹣1=.12.(3分)计算:=.13.(3分)某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为.当R=12Ω时,I的值为A.14.(3分)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打折.15.(3分)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(10分)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.17.(7分)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.18.(7分)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.20.(9分)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.21.(9分)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表实验序号12345678910 A线路所用时间15321516341821143520 B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a=;b=;c=;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.23.(12分)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.2023年广东省中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】本题考查负数的概念问题,负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,进而作答.【解答】解:把收入5元记作+5元,根据收入和支出是一对具有相反意义的量,支出5元就记作﹣5元.故答案为A.【点评】本题考查负数和正数是具有相反意义的量,收入和支出是一对具有相反意义的量,解题的关键是理解相反意义的含义,进而作答.2.【分析】利用轴对称图形的定义进行分析即可.【解答】解:选项B,C,D中的图形都不能确定一条直线,使图形沿这条直线对折,直线两旁的部分能够完全重合,不是轴对称图形,选项A中的图形沿某条直线对折后两部分能完全重合,是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将186000用科学记数法表示为:1.86×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】由平行线的性质即可求解.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=137°,故选:D.【点评】本题考查平行线的性质,熟练掌握性质解解题关键.5.【分析】本题考查同分母分式的加减法,分母不变,分子相加减.【解答】解:==.故本题选:C.【点评】本题考查同分母分式相加减,分母不变,分子相加减.解题的关键是类比同分母分数的相加减进行计算即可.6.【分析】根据黄金分割的定义,即可解答.【解答】解:我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了黄金分割数,故选:A.【点评】本题考查了黄金分割,算术平均数,中位线,众数,统计量的选择,熟练掌握这些数学知识是解题的关键.7.【分析】直接利用概率公式可得答案.【解答】解:∵共有“种植”“烹饪”“陶艺”“木工”4门兴趣课程,∴明恰好选中“烹饪”的概率为.故选:C.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.8.【分析】求出第一个不等式的解集,再求出其公共解集即可.【解答】解:,由不等式x﹣2>1得:x>3,∴不等式的解集为3<x<4.故选:D.【点评】本题考查了解一元一次不等式组,解题的关键是熟知解集的规律.9.【分析】由AB是⊙O的直径,得∠ACB=90°,而∠BAC=50°,即得∠ABC=40°,故∠D=∠ABC=40°,【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵∠BAC=50°,∴∠ABC=40°,∵=,∴∠D=∠ABC=40°,故选:B.【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.10.【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.【点评】本题考查了待定系数法求二次函数的解析式,根据图象得出抛物线经过的点的坐标是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.【分析】本题考查二次根式的乘法计算,根据×=和=a(a>0)进行计算,【解答】解:方法一:×=×2=2×3=6.方法二:×===6.故答案为:6.【点评】本题考查二次根式的计算,考查的关键是准确运用×=和=a (a>0)进计算.13.【分析】直接将R=12代入I=中可得I的值.【解答】解:当R=12Ω时,I==4(A).故答案为:4.【点评】此题考查的是反比例函数的应用,掌握反比例函数的点的坐标是解决此题的关键.14.【分析】利润率不能少于10%,意思是利润率大于或等于10%,相应的关系式为:(打折后的销售价﹣进价)÷进价≥10%,把相关数值代入即可求解.【解答】解:设这种商品最多可以按x折销售,则售价为5×0.1x,那么利润为5×0.1x﹣4,所以相应的关系式为5×0.1x﹣4≥4×10%,解得:x≥8.8.答:该商品最多可以8.8折,故答案为:8.8.【点评】此题主要考查了一元一次不等式的应用,解决本题的关键是得到利润率的相关关系式,注意“不能低于”用数学符号表示为“≥”;利润率是利润与进价的比值.15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.【点评】本题考查的是相似三角形的判定与性质,解决本题的关键是掌握相似三角形的对应边成比例.三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.【分析】(1)利用立方根的性质、绝对值的性质以及负数指数幂的性质进行化简计算即可.(2)将(0,1)与(2,5)代入y=kx+b解方程组即可.【解答】(1)解:原式=2+5﹣1=6.(2)解:将(0,1)与(2,5)代入y=kx+b得:,解得:,∴一次函数的表达式为:y=2x+1.【点评】本题考查了实数的运算,待定系数法求一次函数表达式,正确化简各数,将点的坐标代入后能正确解方程组是解题的关键.17.【分析】设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意列方程即可得到结论.【解答】解:设乙步行的速度为xkm/分,则甲骑自行车的速度为1.2xkm/分,根据题意得﹣=,解得x=12.经检验,x=12是原分式方程的解,答:乙骑自行车的速度为12km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.【分析】连接AB,取AB中点D,连接CD,根据AC=BC,点D为AB中点,可得∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin50°=,解得AD=10×sin50°≈7.66(m),故AB=2AD≈15.3(m).【解答】解:连接AB,取AB中点D,连接CD,如图,∵AC=BC,点D为AB中点,∴中线CD为等腰三角形的角平分线(三线合一),AD=BD=AB,∴∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin∠ACD=,∴sin50°=,∴AD=10×sin50°≈7.66(m),∴AB=2AD=2×7.66=15.32≈15.3(m),答:A、B的距离大约是15.3m.【点评】本题考查解直角三角形的应用,解题的关键是掌握锐角三角函数的定义.四、解答题(二):本大题共3小题,每小题9分,共27分.19.【分析】(1)由基本作图即可解决问题;(2)由锐角的余弦求出AE的长,即可得到BE的长.【解答】解:(1)如图E即为所求作的点;(2)∵cos∠DAB=,∴AE=AD•cos30°=4×=2,∴BE=AB﹣AE=6﹣2.【点评】本题考查基本作图,平行四边形的性质,解直角三角形,关键是掌握基本作图,由锐角的余弦求出AE的长.20.【分析】(1)根据等腰直角三角形的性质即可求解;(2)根据勾股定理和勾股定理的逆定理和正方形的性质即可求解.【解答】解:(1)∠ABC=∠A1B1C1;(2)∵A1C1为正方形对角线,∴∠A1B1C1=45°,设每个方格的边长为1,则AB==,AC=BC==,∵AC2+BC2=AB2,∴由勾股定理的逆定理得△ABC是等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠A1B1C1.【点评】本题考查了正方形的性质,勾股定理和勾股定理的逆定理,等腰直角三角形的判定与性质,得到△ABC是等腰直角三角形是解题的关键.21.【分析】本题考查数据的分析,数据的集中和波动问题,(1)平均数,中位数,众数的计算.(2)方差的实际应用.【解答】解:(1)求中位数a首先要先排序,从小到大顺序为:14,15,15,16,18,20,21,32,34,35.共有10个数,中位数在第5和6个数为18和20,所以中位数为=19,求平均数b==26.8,众数c=25,故答案为:19,26.8,25.(2)小红统计的选择A线路平均数为22,选择B线路平均数为26.8,用时差不太多.而方差63.2>6.36,相比较B路线的波动性更小,所以选择B路线更优.【点评】本题考查数据的波动与集中程度,解题的关键是能够平均数,中位数,众数进行准确的计算,理解方差的意义,并进行作答.五、解答题(三):本大题共2小题,每小题12分,共24分.22.【分析】(1)根据轴对称的性质可得AE=A′E,AA′⊥BD,根据四边形ABCD是矩形,得出OA=OC,从而OE∥A′C,从而得出AA′⊥CA′;(2)①设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,可证得OG=OF=OE,从而得出∠EAO=∠GAO=∠GBO,进而得出∠EAO=30°,从而;②设⊙O切CA′于点H,连接OH,可推出AA′=2OH,CA′=2OE,从而AA′=CA′,进而得出∠A′AC=∠A′CA=45°,∠AOE=∠ACA′=45°,从而得出AE=OE,OD=OA=AE,设OA=OE=x,则OD=OA=,在Rt△ADE中,由勾股定理得出=1,从而求得x2=,进而得出⊙O的面积.【解答】(1)证明:∵点A关于BD的对称点为A′,∴AE=A′E,AA′⊥BD,∵四边形ABCD是矩形,∴OA=OC,∴OE∥A′C,∴AA′⊥CA′;(2)①证明:如图2,设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,∴OF⊥CD,OF=OE,∵四边形ABCD是矩形,∴OB=OD=BD,AB∥CD,AC=BD,OA=AC,∴OG⊥AB,∠FDO=∠BOG,OA=OB,∴∠GAO=∠GBO,∵∠DOF=∠BOG,∴△DOF≌△BOG(ASA),∴OG=OF,∴OG=OE,由(1)知:AA′⊥BD,∴∠EAO=∠GAO,∵∠EAB+∠GBO=90°,∴∠EAO+∠GAO+∠GBO=90°,∴3∠EAO=90°,∴∠EAO=30°,由(1)知:AA′⊥CA′,∴tan∠EAO=,∴tan30°=,∴;②解:如图3,设⊙O切CA′于点H,连接OH,∴OH⊥CA′,由(1)知:AA′⊥CA′,AA′⊥CA′,OA=OC,∴OH∥AA′,OE∥CA′,∴△COH∽△CAA′,△AOE∽△ACA′,∴,∴AA′=2OH,CA′=2OE,∴AA′=CA′,∴∠A′AC=∠A′CA=45°,∴∠AOE=∠ACA′=45°,∴AE=OE,OD=OA=AE,设AE=OE=x,则OD=OA=,∴DE=OD﹣OE=()x,在Rt△ADE中,由勾股定理得,=1,∴x2=,∴S⊙O=π•OE2=.【点评】本题考查了圆的切线性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解决问题的关键是熟练掌握有关基础知识.23.【分析】(1)如图2中,当OE=OF时,得到Rt△AOE≌Rt△COF,利用全等三角形的性质以及旋转的性质解决问题即可;(2)在图2中,过点A作AG⊥x轴于点G,利用三角形相似,可得结论;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,利用四点共圆,得出三角形FON 是等腰直角三角形是解决问题的关键,结合三角形全等的判定和性质和三角形的面积公式解决问题.【解答】解:(1)当OE=OF时,在Rt△AOE和Rt△COF中,,∴Rt△AOE≌Rt△COF(HL),∴∠AOE=∠COF(即∠AOE=旋转角),∴2∠AOE=45°,∴∠COF=∠AOE=22.5°,∴当旋转角为22.5°时,OE=OF;(2)过点A作AG⊥x轴于点G,则有AG=3,OG=4,∴,∵四边形OABC是正方形,∴OC=OA=5,∠AOC=∠C=90°,又∵∠COF+∠FOA=90°,∠AOG+∠FOA=90°,∴∠COG=∠GOA,∴Rt△AOG∽Rt△FOC,∴,∴,∴FC的长为;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,∵四边形OABC是正方形,∴∠BCA=∠OCA=45°,BC∥OA,又∠FON=45°,∴∠FCN=∠FON=45°,∴F、C、O、N四点共圆,∴∠OFN=∠OCA=45°,∴∠OFN=∠FON=45°,∴△FON是等腰直角三角形,∴FN=NO,∠FNO=90°,∴∠FNP+∠ONQ=90°,又∵∠NOQ+∠ONQ=90°,∴∠NOQ=∠FNP,∴△NOQ≌△FNP(AAS),∴NP=OQ,FP=NQ,∵四边形OQPC是矩形,∴CP=OQ,OC=PQ,∴,=,,=,=,=,∴,又∵△ANQ为等腰直角三角形,∴,∴,∴S关于n的函数表达式为.【点评】本题属于一次函数综合题,考查了正方形的性质,旋转的性质,全等三角形的判定和性质,相似角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题。
【真题汇总卷】2022年广东省清远市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)
2022年广东省清远市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,ABC ∆中,DE 是ABC ∆的中位线,连接DC ,BE 相交于点F ,若1DEF S ∆=,则ADE S ∆为( )A .3B .4C .9D .12 2、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )A .548510⨯B .648.510⨯C .74.8510⨯D .0.48510⨯ 3、下列问题中,两个变量成正比例的是( ) A .圆的面积S 与它的半径r B .三角形面积一定时,某一边a 和该边上的高h ·线○封○密○外C .正方形的周长C 与它的边长aD .周长不变的长方形的长a 与宽b4、已知二次函数y =x 2﹣2x +m ,点A (x 1,y 1)、点B (x 2,y 2)(x 1<x 2)是图象上两点,下列结论正确的是( )A .若x 1+x 2<2,则y 1>y 2B .若x 1+x 2>2,则y 1>y 2C .若x 1+x 2<﹣2,则y 1<y 2D .若x 1+x 2>﹣2,则y 1>y 2 5、下列各数中,是无理数的是( )A .0BC .227D .3.14159266、如图,在△ABC 和△DEF 中,AC ∥DF ,AC =DF ,点A 、D 、B 、E 在一条直线上,下列条件不能判定△ABC ≌△DEF 的是( ).A .C F ∠=∠B .ABC DEF ∠=∠ C .AB DE =D .BC EF =7、一圆锥高为4cm ,底面半径为3cm ,则该圆锥的侧面积为( )A .29cm πB .212cm πC .215cm πD .216cm π8、如图,要在二次函数()y x 2x =-的图象上找一点(),M a b ,针对b 的不同取值,所找点M 的个数,有下列三种说法:①如果3b =-,那么点M 的个数为0;②如果1b =.那么点M 的个数为1;③如果3b =,那么点M 的个数为2.上述说法中正确的序号是( )A .①B .②C .③D .②③9、下列图形中,既是轴对称图形又是中心对称图形是( ) A .B .C .D . 10、一把直尺与一块直角三角板按下图方式摆放,若237∠=︒,则1∠=( ) A .52°B .53°C .54°D .63°第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、如图,已知点B 在线段CF 上,AB ∥CD ,AD ∥BC ,DF 交AB 于点E ,联结AF 、CE ,S △BCE :S △AEF 的比值为___. ·线○封○密·○外2、若关于x 的二次三项式x 2−2(x +1)x +4是完全平方式,则k =____.3、如图,在△xxx 中,AB =AC =6,BC =4,点D 在边AC 上,BD =BC ,那么AD 的长是______4、如图,在△xxx 中,∠xxx =90°,xx =5,4BC =,xx 为△xxx的角平分线.M 为xx 边上一动点,N 为线段xx 上一动点,连接xx 、xx 、xx ,当xx +xx取得最小值时,△xxx 的面积为______.5、底面圆的半径为3,高为4的圆锥的全面积是______.三、解答题(5小题,每小题10分,共计50分)1、如图,ABC EDF △≌△,20AF =,8EC =,求AE 的值.2、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:248320x y x y -=⎧⎨-=⎩①②.解:①4⨯,得8416x y -=③,⋯⋯⋯⋯⋯⋯第一步, ②-③,得4y -=,⋯⋯⋯⋯⋯⋯⋯第二步, 4y =-.⋯⋯⋯⋯⋯第三步, 将4y =-代入①,得0x =.⋯⋯⋯⋯第四步, 所以,原方程组的解为04x y =⎧⎨=-⎩.⋯⋯⋯⋯⋯第五步. 填空: (1)这种求解二元一次方程组的方法叫做______. A 、代入消元法 B 、加减消元法 (2)第______步开始出现错误,具体错误是______; (3)直接写出该方程组的正确解:______. 3、已知二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点. (1)求a 和b 的值;(2)在坐标系xOy 中画出该二次函数的图象.4、如图,数轴上A 和B .·线○封○密○外(1)点A 表示 ,点B 表示 .(2)点C 表示最小的正整数,点D 表示38的倒数,点E 表示235,在数轴上描出点C 、D 、E .(3)将该数轴上点A 、B 、C 、D 、E 表示的数用“<”连起来: .5、在实数范围内分解因式:2x 2﹣3xy ﹣y 2.-参考答案-一、单选题1、A【分析】根据DE ∥BC ,得△DEF ∽△CBF ,得到4CBF DEF S S ∆∆=,利用BE 是中线,得到ADE S ∆+DEF S ∆=CBF S ∆,计算即可.【详解】∵DE 是ABC ∆的中位线,∴DE ∥BC ,BC =2DE ,∴△DEF ∽△CBF , ∴22()2CBF DEF S BC S DE ∆∆==, ∴4CBF DEF S S ∆∆=,∵1DEF S ∆=,∴4CBF S ∆=,∵BE 是中线,∴ABE S ∆=CBE S ∆, ∵DE 是ABC ∆的中位线, ∴DE ∥BC , ∴BDE S ∆=CDE S ∆,∴BDF S ∆=CFE S ∆, ∴BDF S ∆+ADE S ∆+DEF S ∆=CFE S ∆+CBF S ∆,∴ADE S ∆+DEF S ∆=CBF S ∆, ∴ADE S ∆=3, 故选A . 【点睛】 本题考查了三角形中位线定理,中线的性质,相似三角形的性质,熟练掌握中位线定理,灵活选择相似三角形的性质是解题的关键. 2、C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数. 【详解】 解:48500000科学记数法表示为:48500000=74.8510⨯. 故答案为:74.8510⨯. ·线○封○密○外【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3、C【分析】分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.【详解】解:2,S r 所以圆的面积S 与它的半径r 不成正比例,故A 不符合题意; 1,2S ah 2,S a h所以三角形面积一定时,某一边a 和该边上的高h 不成正比例,故B 不符合题意;=4,C a 所以正方形的周长C 与它的边长a 成正比例,故C 符合题意;22,C a b 长方形 2,2C b a 长方形 所以周长不变的长方形的长a 与宽b 不成正比例,故D 不符合题意;故选C【点睛】本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.4、A【分析】由二次函数y =x 2﹣2x +m 可知对称轴为x =1,当x 1+x 2<2时,点A 与点B 在对称轴的左边,或点A 在左侧,点B 在对称轴的右侧,且点A 离对称轴的距离比点B 离对称轴的距离小,再结合抛物线开口方向,即可判断.【详解】解:∵二次函数y =x 2﹣2x +m ,∴抛物线开口向上,对称轴为x =1,∵x 1<x 2,∴当x 1+x 2<2时,点A 与点B 在对称轴的左边,或点A 在左侧,点B 在对称轴的右侧,且点A 离对称轴的距离比点B 离对称轴的距离大, ∴y 1>y 2,故选:A .【点睛】本题考查了二次函数的性质,灵活应用x 1+x 2与2的关系确定点A 、点B 与对称轴的关系是解决本题的关键. 5、B 【分析】 无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断. 【详解】 A .0是整数,属于有理数,故本选项不合题意; BC.227是分数,属于有理数,故本选项不合题意; D .3.1415926是有限小数,属于有理数,故本选项不合题意; 故选:B .【点睛】本题考查了无理数,掌握无理数的含义是解题的关键.6、D【分析】·线○封○密○外根据各个选项中的条件和全等三角形的判定可以解答本题.【详解】解:∵AC∥DF,∴∠A=∠EDF,∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;故选:D.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.7、C【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.【详解】解: ∵一圆锥高为4cm,底面半径为3cm,∴圆锥母线5,∴圆锥的侧面积=1523152ππ⨯⨯⨯=(cm2).故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 8、B【分析】把点M 的坐标代入抛物线解析式,即可得到关于a 的一元二次方程,根据根的判别式即可判断. 【详解】解:∵点M (a ,b )在抛物线y =x (2-x )上,()2b a a ∴=- 当b =-3时,-3=a (2-a ),整理得a 2-2a -3=0, ∵△=4-4×(-3)>0, ∴有两个不相等的值, ∴点M 的个数为2,故①错误; 当b =1时,1=a (2-a ),整理得a 2-2a +1=0, ∵△=4-4×1=0, ∴a 有两个相同的值, ∴点M 的个数为1,故②正确; 当b =3时,3=a (2-a ),整理得a 2-2a +3=0, ∵△=4-4×3<0, ∴点M 的个数为0,故③错误; 故选:B . 【点睛】 本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.·线○封○密○外9、B【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意;B、既是轴对称图形又是中心对称图形,故选项正确,符合题意;C、不是轴对称图形,是中心对称图形,故选项错误,不符合题意;D、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意.故选:B.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.10、B【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线, ∵直尺的两边互相平行, ∴3237∠=∠=︒,14∠=∠, ∴490353∠=︒-∠=︒, ∴1453∠=∠=︒, 故选B . 【点睛】 本题主要考查了平行线的性质,掌握平行线的性质是解题的关键. 二、填空题 1、1 【分析】 连接BD ,利用平行线间距离相等得到同底等高的三角形面积相等即可解答. 【详解】 解:连接BD ,如下图所示: ·线○封○密○外∵BC∥AD ,∴S △AFD = S △ABD ,∴S △AFD - S △AED = S △ABD - S △AED ,即S △AEF = S △BED ,∵AB∥CD ,∴S △BED =S △BEC ,∴S △AEF =S △BEC ,∴S △BCE :S △AEF =1.故答案为:1.【点睛】本题以平行为背景考查了同底等高的三角形面积相等,找到要求的三角形有关的同(等)底或同(等)高是解题的关键.2、﹣3或1【分析】根据x 2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式x 2−2(x +1)x +4是完全平方式,∴x 2−2(x +1)x +4=22(2)44x x x -=-+或x 2−2(x +1)x +4=(x +2)2=x 2+4x +4, ∴−2(x +1)=4或−2(x +1)=−4,解得k =﹣3或k =1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.3、103 【分析】 根据等腰三角形的等边对等角可得∠ABC =∠C =∠BDC ,根据相似三角形的判定证明△ABC ∽△BDC ,根据相似三角形的性质求解即可. 【详解】 解:∵AB =AC ,BD =BC , ∴∠ABC =∠C ,∠C =∠BDC , ∴△ABC ∽△BDC ,∴xx xx =xx xx , ∵AB =AC =6,BC =4,BD =BC ,∴64=4xx , ∴xx =83, ∴AD =AC -CD =6-83=103, 故答案为:103. 【点睛】 本题考查等腰三角形的性质、相似三角形的判定与性质,熟练掌握等腰三角形的性质和相似三角形的判定与性质是解答的关键. 4、185 【分析】 ·线○封○密·○外利用点M关于AC的对称点确定N点,当x、x、x′三点共线且xx′⊥xx时,xx+xx′的长取得最小值,再利用三角形的面积公式求出xx′,在利用勾股定理求xx′后即可求出△xxx 的面积.【详解】∵xx为△xxx的角平分线,将xx沿xx翻折,∴x的对应点x′一定在xx边上.∴xx+xx=xx+xx′∴当x、x、x′三点共线且xx′⊥xx时,xx+xx′的长取得最小值∵在xx△xxx中,xx=5,4BC ,∴xx=3∵x△xxx=12xx⋅xx′=12xx⋅xx∴xx′=125∴在xx△xx′x中,xx′=√xx2−x′x2=95=xx∴x△xxx=12xx⋅xx=12×95×4=185.【点睛】本题考查了最短路径问题以及勾股定理,灵活运用勾股定理是解题的关键.5、24x【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的底面积和侧面积公式代入求出即可. 【详解】 ∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的底面积为:xx 2=9x ,圆锥的侧面积为:xxx =x ×3×5=15x , ∴圆锥的全面积为:9x +15x =24x 故答案为:24x . 【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键. 三、解答题1、6【分析】由ABC EDF △≌△全等的性质可知AC =EF ,进而推得AE =CF ,故()12AE AF CE =-. 【详解】 ∵ABC EDF △≌△ ∴AC =EF ∵AC AE CE EF CF CE =+=+,∴AE =CF ∴()()111208126222AE AF CE =-=-=⨯= 【点睛】 ·线○封○密○外本题考查了全等三角形的性质,全等三角形的对应边相等,对应角相等,可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等.2、(1)B(2)二;3(4)y y ---应该等于y(3)44x y =⎧⎨=⎩【分析】(1)②−③消去了x ,得到了关于y 的一元一次方程,所以这是加减消元法;(2)第二步开始出现错误,具体错误是−3y −(−4y )应该等于y ;(3)解方程组即可.(1)解:②-③消去了x ,得到了关于y 的一元一次方程,故答案为:B ;(2)解:第二步开始出现错误,具体错误是()34y y ---应该等于y ,故答案为:二;()34y y ---应该等于y ;(3)解:②-③得4y =, 将4y =代入①,得:4x =, ∴原方程组的解为44x y =⎧⎨=⎩. ·线故答案为:44x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.3、(1)12a b =⎧⎨=-⎩ (2)见解析【分析】(1)利用待定系数法将()()1,4,1,0A B --两点代入抛物线求解即可得;(2)根据(1)中结论确定函数解析式,求出与x ,y 轴的交点坐标及对称轴,然后用光滑的曲线连接即可得函数图象.(1)解:∵二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点,∴3430a b a b +-=-⎧⎨--=⎩, 解得:12a b =⎧⎨=-⎩ . (2)解:由(1)可得:函数解析式为:223y x x =--,当0y =时,2230x x --=,解得:11x =-,23x =,∴抛物线与x 轴的交点坐标为:()1,0-,()3,0,抛物线与y 轴的交点坐标为:()0,3-, 对称轴为:21221b x a -=-=-=⨯, 根据这些点及对称轴在直角坐标系中作图如下.【点睛】题目主要考查待定系数法确定函数解析式及作函数图象,熟练掌握待定系数法确定函数解析式是解题关键.4、(1)114,112(2)见解析(3)1<114<112<223<235 【分析】 (1)根据数轴直接写出A 、B 所表示的数即可;·线(2)根据最小的正整数是1,38的倒数是223,然后据此在数轴上找到C 、D 、E 即可; (3)将A 、B 、C 、D 、E 表示的数从小到大排列,再用 “<”连接即可.(1)解:由数轴可知A 、B 表示的数分别是:114,112. 故答案为:114,112. (2)解:∵最小的正整数是1,38的倒数是223∴C 表示的数是1,D 表示的数是223, ∴如图:数轴上的点C 、D 、E 即为所求.(3)解:根据(2)的数轴可知,将点A 、B 、C 、D 、E 表示的数用“<”连接如下:1<114<112<223<235. 【点睛】本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.5、3173172.44x y x y【分析】 先令22230,x xy y 把y 看作是常数,再解一元二次方程可得12317317,,44x y x y 从而可得因式分解的答案.【详解】解:令22230,x xy y222=342170,yy y 317,4y y x 12317317,,44x y x y 22317317232.44x xy y x y x y【点睛】本题考查的是在实数范围内进行因式分解,一元二次方程的解法,掌握“利用公式法解一元二次方程”是解本题的关键.。
2024届广东省清远市市级名校中考数学最后冲刺浓缩精华卷含解析
2024届广东省清远市市级名校中考数学最后冲刺浓缩精华卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A.116B.18C.316D.142.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为()A.62°B.38°C.28°D.26°3.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( ) A.3.5 B.3 C.4 D.4.54.不等式﹣12x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<45.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为330cm,则这块圆形纸片的直径为( )A.12cm B.20cm C.24cm D.28cm6.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣77.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.13B.14C.15D.168.当a>0 时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.(a2)3=a59.实数a、b在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<010.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣3B.π+3C.π+23D.2π﹣2311.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>012.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校体育室里有球类数量如下表:球类篮球排球足球数量 3 5 4如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_____.14.一元二次方程x2=3x的解是:________.15.直线y=﹣x+1分别交x轴,y轴于A、B两点,则△AOB的面积等于___.16.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.17.用换元法解方程221231x xx x+-=+时,如果设21xyx+=,那么原方程化成以y为“元”的方程是________.18.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD 面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?20.(6分)如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC 边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).21.(6分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.22.(8分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.23.(8分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)24.(10分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?25.(10分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?26.(12分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值是多少cm.27.(12分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.解:共16种情况,和为6的情况数有3种,所以概率为.故选C.2、C【解题分析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.详解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故选C.点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.3、B【解题分析】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=12∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=1.故选B.4、A【解题分析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.【题目详解】移项得:−12x>3−1,合并同类项得:−12x>2,系数化为1得:x<-4.故选A.【题目点拨】本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.5、C【解题分析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr ,解得r ,然后利用勾股定理得到R )2=(2+)2,再解方程求出R 即可得到这块圆形纸片的直径. 【题目详解】设这块圆形纸片的半径为R ,圆锥的底面圆的半径为r ,则AB R ,根据题意得:2πr =90π180⋅,解得:r =4R R )2=(2+(4R )2,解得:R =12,所以这块圆形纸片的直径为24cm . 故选C . 【题目点拨】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 6、C 【解题分析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C .考点:科学记数法. 7、C 【解题分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得. 【题目详解】 解:列表得:∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为525=15,故选C.【题目点拨】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8、A【解题分析】直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【题目详解】A选项:a0=1,正确;B选项:a﹣1= 1a,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【题目点拨】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.9、C【解题分析】直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案.【题目详解】选项A,从数轴上看出,a在﹣1与0之间,∴﹣1<a<0,故选项A不合题意;选项B,从数轴上看出,a在原点左侧,b在原点右侧,∴a<0,b>0,∴ab<0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,∴a<b,即a﹣b<0,故选项C符合题意;选项D,从数轴上看出,a在﹣1与0之间,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故选项D不合题意.故选:C.【题目点拨】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.10、D【解题分析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴BC2242-3∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC=2211113223 222ππ⨯+⨯-⨯⨯=323 22ππ+-223π=-.故选:D.点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S 半圆ACD +S 半圆BCD -S △ABC 是解答本题的关键.11、D【解题分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【题目详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【题目点拨】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 12、B【解题分析】 试题分析:根据平行线分线段成比例可得AC BD CE DF =,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2. 故选B考点:平行线分线段成比例二、填空题:(本大题共6个小题,每小题4分,共24分.)13、13【解题分析】先求出球的总数,再用足球数除以总数即为所求.【题目详解】解:一共有球3+5+4=12(个),其中足球有4个,∴拿出一个球是足球的可能性=41123=. 【题目点拨】本题考查了概率,属于简单题,熟悉概率概念,列出式子是解题关键.14、x 1=0,x 2=1【解题分析】先移项,然后利用因式分解法求解.【题目详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1【题目点拨】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解15、1 2 .【解题分析】先求得直线y=﹣x+1与x轴,y轴的交点坐标,再根据三角形的面积公式求得△AOB的面积即可. 【题目详解】∵直线y=﹣x+1分别交x轴、y轴于A、B两点,∴A、B点的坐标分别为(1,0)、(0,1),S△AOB=12OA•OB=12×1×1=12,故答案为12.【题目点拨】本题考查了直线与坐标轴的交点坐标及三角形的面积公式,正确求得直线y=﹣x+1与x轴、y轴的交点坐标是解决问题的关键.16、6【解题分析】已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.【题目详解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1, ∴= 故答案为6.【题目点拨】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.17、y-23y= 【解题分析】分析:根据换元法,可得答案. 详解:21x x +﹣221x x +=1时,如果设21x x +=y ,那么原方程化成以y 为“元”的方程是y ﹣2y =1. 故答案为y ﹣2y=1. 点睛:本题考查了换元法解分式方程,把21x x +换元为y 是解题的关键. 18、1【解题分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D 点,设其交AB 与E,则2 ,作DF ⊥AB 于点F.利用三角函数即可求得DF 即平行四边形的高,然后利用平行四边形的面积公式即可求解【题目详解】解:由图象可知,当移动距离为4时,直线经过点A ,当移动距离为7时,直线经过点D ,移动距离为1时,直线经过点B ,则AB =1﹣4=4,当直线经过点D ,设其交AB 于点E ,则DE =2 ,作DF ⊥AB 于点F ,∵y =﹣x 于x 轴负方向成45°角,且AB ∥x 轴,∴∠DEF =45°,∴DF =EF ,∴在直角三角形DFE 中,DF 2+EF 2=DE 2,∴2DF 2=1∴DF =2,那么ABCD 面积为:AB•DF =4×2=1, 故答案为1.【题目点拨】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、今年的总收入为220万元,总支出为1万元.【解题分析】试题分析:设去年总收入为x 万元,总支出为y 万元,根据利润=收入-支出即可得出关于x 、y 的二元一次方程组,解之即可得出结论.试题解析:设去年的总收入为x 万元,总支出为y 万元.根据题意,得()()50110%120%100x y x y -=⎧⎨+--=⎩, 解这个方程组,得200150x y =⎧⎨=⎩, ∴(1+10%)x =220,(1-20%)y =1.答:今年的总收入为220万元,总支出为1万元.20、(1)证明见解析;(2)y =18x 2(x >0);(3)①163π或8π或(17)π;②21. 【解题分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【题目详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH 垂直平分线段AD ,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°,∴AB =833, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB =22AC BC +216x + ∴OA 216x +, ∵AF 22EF AE +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭216x +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭解得x =4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2,∵EF=18x2=98,∴FG=2﹣98,AF==158,AH2,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CG AF AH=,∴9281582-=,∴CG=5﹣10,=.故答案为【题目点拨】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.21、53米.【解题分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值. 【题目详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为:53米.【题目点拨】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.22、见解析【解题分析】作∠CAB=∠α,再作∠CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD的垂线,从而得出△ABC.【题目详解】解:如图所示,△ABC即为所求.【题目点拨】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.23、解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.【解题分析】易得M在AB的垂直平分线上,且到C的距离等于AB的一半.24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解题分析】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【题目点拨】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.25、(1);(2),;(1);(2)【解题分析】试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:X ﹣10 1 2 1y 0 1 2 1 0 图象如下.(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.∴抛物线与x轴的交点为(﹣1,0),(1,0).∵y=﹣x2+2x+1=﹣(x﹣1)2+2∴抛物线顶点坐标为(1,2).(1)由图象可知:当﹣1<x<1时,抛物线在x轴上方.(2)由图象可知:当x>1时,y的值随x值的增大而减小考点: 二次函数的运用26、(1)①点C的坐标为(-3,9);②滑动的距离为63﹣1)cm;(2)OC最大值1cm.【解题分析】试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=1,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'O B'中,由勾股定理得,(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,故答案为1.考点:相似三角形综合题.27、“石鼓阁”的高AB的长度为56m.【解题分析】根据题意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根据反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,根据相似三角形的性质可得ABBC=EDDC,再根据∠AHB=∠GHF,可证△ABH∽△GFH,同理得ABBH=GFFH,代入数值计算即可得出结论.【题目详解】由题意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,由反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,∴ABBC=EDDC,即ABBC=1.62.2①,∵∠AHB=∠GHF,∴△ABH∽△GFH,∴ABBH=GFFH,即2.229.43.4ABBC+++=1.73.4②,联立①②,解得:AB=56,答:“石鼓阁”的高AB的长度为56m.【题目点拨】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.。
(精品中考卷)广东省中考数学真题(解析版)
2022年广东省初中学业水平考试数学本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的值等于()A. 2B.12- C. 12D. ﹣2【答案】A【解析】【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A.2. 计算22的结果是()A. 1B.C. 2D. 4【答案】D【解析】【分析】利用乘方的意义计算即可.【详解】解:22224=⨯=故选:D .【点睛】本题考查有理数的乘方,熟练掌握乘方的意义是解答本题的关键.3. 下列图形中具有稳定性的是( )A. 平行四边形B. 三角形C. 长方形D. 正方形【答案】B【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性可得结论. 详解】解:三角形具有稳定性;故选:B .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,比较简单.4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=40°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°【答案】B【解析】 【分析】两条平行线被第三条直线所截,同位角相等.即:两直线平行,同位角相等.【详解】 //a b ,140∠=︒,∴240∠=︒.故选B .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 5. 如图,在ABC 中,4BC =,点D ,E 分别为AB ,AC 的中点,则DE =( )A. 14B. 12 C. 1 D. 2【答案】D【解析】【【分析】利用中位线的性质即可求解.【详解】∵D 、E 分比为AB 、AC 的中点,∴DE 为△ABC 的中位线, ∴12DE BC =, ∵BC =4,∴DE =2,故选:D .【点睛】本题考查了中位线的判定与性质,掌握中位线的判定与性质是解答本题的关键. 6. 在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A. ()3,1B. ()1,1-C. ()1,3D. ()1,1- 【答案】A【解析】【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键. 7. 书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( ) A. 14 B. 13 C. 12 D. 23【答案】B【解析】【分析】根据概率公式直接求概率即可;【详解】解:一共有3本书,从中任取1本书共有3种结果,选中的书是物理书的结果有1种,∴从中任取1本书是物理书的概率=13, 故选: B .【点睛】本题考查了概率的计算,掌握概率=所求事件的结果数÷总的结果数是解题关键. 8. 如图,在ABCD 中,一定正确的是( )A. AD CD =B. AC BD =C. AB CD =D. CD BC =【答案】C【解析】【分析】根据平行四边形的性质:平行四边形的对边相等,然后对各选项进行判断即可.【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ,AD =BC故选C .【点睛】本题考查了平行四边形的性质.解题的关键在于熟练掌握平行四边形的性质. 9. 点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A. 1yB. 2yC. 3yD. 4y 【答案】D【解析】【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>, ∴在每个象限内,y 随x 的增大而减小, ∵点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x =图象上, ∴1234y y y y >>>,故选D .【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键. 10. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2πC r =.下列判断正确的是( )A. 2是变量B. π是变量C. r 是变量D. C 是常量【答案】C【解析】【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.【详解】解:2与π为常量,C 与r 为变量,故选C .【点睛】本题考查变量与常量概念,能够熟练掌握变量与常量的概念为解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11. sin30°的值为_____. 【答案】12【解析】【详解】试题分析:根据特殊角的三角函数值计算即可:sin30°=12.12. 单项式3xy 的系数为___________.【答案】3【解析】【分析】单项式中数字因数叫做单项式的系数,从而可得出答案.【详解】3xy 的系数是3,故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义. 13. 菱形的边长为5,则它的周长为____________.【答案】20【解析】【分析】根据菱形的四条边相等,即可求出.【详解】∵菱形的四条边相等.∴周长:5420⨯=,故答案为:20.【点睛】本题考查菱形的性质;熟练掌握菱形的性质是本题解题关键.14. 若1x =是方程220x x a -+=的根,则=a ____________.【答案】1【解析】【分析】本题根据一元二次方程的根的定义,把x =1代入方程得到a 的值.【详解】把x =1代入方程220x x a -+=,得1−2+a =0,解得a =1,故答案:1. 的为【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.15. 扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________.【答案】π【解析】【分析】根据扇形面积公式可直接进行求解. 【详解】解:由题意得:该扇形的面积为2902360ππ⨯⨯=; 故答案为π.【点睛】本题主要考查扇形面积公式,熟练掌握扇形的面积公式是解题的关键.三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解不等式组:32113x x ->⎧⎨+<⎩. 【答案】12x <<【解析】【分析】分别解出两个不等式,根据求不等式组解集的口诀得到解集.【详解】解:32113x x ->⎧⎨+<⎩①②解①得:1x >,解②得:2x <,∴不等式组的解集是12x <<.【点睛】本题考查求不等式组的解集,掌握求不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解题关键.17. 先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【解析】【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式化简求值,掌握平方差公式是解题关键.18. 如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为的D ,E .求证:OPD OPE ≌V V .【答案】见解析【解析】【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌V V .【详解】证明:∵AOC BOC ∠=∠,∴OC 为AOB ∠的角平分线,又∵点P 在OC 上,PD OA ⊥,PE OB ⊥,∴PD PE =,90PDO PEO ∠=∠=︒,又∵PO PO =(公共边),∴()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生人数为7人,该书的单价为53元.【解析】【分析】设学生人数为x 人,然后根据题意可得8374x x -=+,进而问题可求解.【详解】解:设学生人数为x 人,由题意得:8374x x -=+,解得:7x =,∴该书的单价为77453⨯+=(元),答:学生人数为7人,该书的单价为53元.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.20. 物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足函数关系15y kx =+.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5y 15 19 25(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量.【答案】(1)215y x =+(2)所挂物体的质量为2.5kg【解析】【分析】(1)由表格可代入x =2,y =19进行求解函数解析式;(2)由(1)可把y =20代入函数解析式进行求解即可.【小问1详解】解:由表格可把x =2,y =19代入解析式得: 21519k +=,解得:2k =,∴y 与x 的函数关系式为215y x =+;【小问2详解】解:把y =20代入(1)中函数解析式得:21520x +=,解得: 2.5x =,即所挂物体的质量为2.5kg .【点睛】本题主要考查一次函数的应用,解题的关键是得出一次函数解析式. 21. 为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)作图见解析;(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;(3)月销售额定为7万元合适,【解析】【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;(2)根据众数、中位数及平均数的计算方法求解即可;(3)根据题意,将月销售额定为7万元合适.【小问1详解】解:根据数据可得:销售额为4万元的人数为4人;销售额为8万元的人数为2人;补全统计图如图所示:【小问2详解】由条形统计图可得:月销售额在4万元的人数最多;将数据按照从小到大排序后,中间的月销售额为第8名销售员的销售额为5万元; 平均数为:3144537182103181715⨯+⨯+⨯+⨯+⨯+⨯+⨯=万元; 小问3详解】月销售额定为7万元合适,给予奖励,可以激发销售员的积极性,振兴乡村经济.【点睛】题目主要考查条形统计图及相关统计数据的计算方法,包括,众数、中位数、平均数,以及利用平均数做决策等,理解题意,综合运用这些知识点是解题关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22. 如图,四边形ABCD 内接于O ,AC 为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明;(2)若AB =,1AD =,求CD 的长度.【答案】(1)△ABC 是等腰直角三角形;证明见解析;(2【解析】【分析】(1)根据圆周角定理可得∠ABC =90°,由∠ADB =∠CDB 根据等弧对等角可得∠ACB =∠CAB ,即可证明;(2)Rt △ABC 中由勾股定理可得AC ,Rt △ADC 中由勾股定理求得CD 即可;【【小问1详解】证明:∵AC 是圆的直径,则∠ABC =∠ADC =90°,∵∠ADB =∠CDB ,∠ADB =∠ACB ,∠CDB =∠CAB ,∴∠ACB =∠CAB ,∴△ABC 是等腰直角三角形;【小问2详解】解:∵△ABC 是等腰直角三角形,∴BC =AB ,∴AC 2=,Rt △ADC 中,∠ADC =90°,AD =1,则CD =∴CD ; 【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.23. 如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,()1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ 面积的最大值,并求此时P 点坐标.【答案】(1)223y x x =+-(2)2;P (-1,0)【解析】【分析】(1)用待定系数法将A ,B 的坐标代入函数一般式中,即可求出函数的解析式;(2)分别求出C 点坐标,直线AC ,BC 的解析式,PQ 的解析式为:y =-2x +n ,进而求出P ,Q 的坐标以及n 的取值范围,由CPQ CPA APQ S S S =-△△△列出函数式求解即可.【小问1详解】解:∵点A (1,0),AB =4,∴点B 的坐标为(-3,0),将点A (1,0),B (-3,0)代入函数解析式中得:01093b c b c =++⎧⎨=-+⎩, 解得:b =2,c =-3,∴抛物线的解析式为223y x x =+-;【小问2详解】解:由(1)得抛物线的解析式为223y x x =+-,顶点式为:2y (x 1)4=+-,则C 点坐标为:(-1,-4),由B (-3,0),C (-1,-4)可求直线BC 的解析式为:y =-2x -6,由A (1,0),C (-1,-4)可求直线AC 的解析式为:y =2x -2,∵PQ ∥BC ,设直线PQ 的解析式为:y =-2x +n ,与x 轴交点P ,02n ⎛⎫ ⎪⎝⎭, 由222y x n y x =-+⎧⎨=-⎩解得:22,42n n Q +-⎛⎫ ⎪⎝⎭, ∵P 在线段AB 上, ∴312n -<<, ∴n 的取值范围为-6<n <2,则CPQ CPA APQ S S S =-△△△11214122222n n n -⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()21228n =-++ ∴当n =-2时,即P (-1,0)时,CPQ S △最大,最大值为2.【点睛】本题考查二次函数的面积最值问题,二次函数的图象与解析式间的关系,一次函数的解析式与图象,熟练掌握数形结合思想是解决本题的关键。
广东省清远市中考数学试题
★機密·启用前广东省清远市中考数学真题试卷说明:1.全卷共4页,考試時間為100分鐘,满分12.选择题每小題选出答案后,用2B 铅笔把答题卡上对应题的标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效. 4.考生务必保持答题卡的整洁.考试结束时,将本试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上. 1.(11·清远)—3的倒数是 A .3 B .—3C .13D .— 13【答案】D2.(11·清远)数据2、2、3、4、3、1、3的众数是 A .1 B .2C .3D .4【答案】C3.(11·清远)图1中几何体的主视图是【答案】C4.(11·清远)据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为 A .0.68×109B .6.8×108C .6.8×107D .68×107【答案】B5.(11·清远)下列选项中,与xy 2是同类项的是 A .—2xy 2B .2x 2yC .xyD .x 2y 2【答案】AB . A .C .D .C图26.(11·清远)已知∠α=35°,则∠α的余角是 A .35° B .55°C .65°D .145°【答案】B7.(11·清远)不等式x —1>2的解集是 A .x >1 B .x >2C .x >3D .x <3【答案】C8.(11·清远)如图2,点A 、B 、C 在⊙O 上,若∠BAC =则∠BOC 的度数为 A .B .30º C .40ºD .70º【答案】C9.(11·清远)一次函数y =x +2的图象大致是【答案】A10.(11·清远)如图3,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是 A .AB =CDB .AD =BC C .AB =BCD .AC =BD【答案】C二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应师号的答题卡.11.(11·清远)计算:2x 2·5x 3= _ ▲ .【答案】10x 712.(11·清远)分解因式:2x 2-6x =_ ▲ .【答案】2x (x -3)13.(11·清远)反比例函数y =k x的图象经过点P(-2,3),则k 的值为 _ ▲ .【答案】y =- 6x14.(11·清远)已知扇形的圆心角为60°,半径为6,则扇形的弧长为_ ▲.(结果保留π)B图3【答案】2π15.(11·清远)为了甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分均为85分,方差分别为S 2甲=18,S 2乙=12,S 2丙=23.根据统计结果,应派去参加竞赛的同学是 _ ▲ .(填“甲”、乙、“丙”中的一个) 【答案】(填)16.(11·清远)如图4,在□ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若△ECF 的面积为1,则四边形ABCE 的面积为 _ ▲ .【答案】三、解答题(本大题共5小题,每小题6分,共30分) 17.(11·清远)计算:9+2cos60º+(12)-1-0.【答案】原式=3+1+2-1=5 18.(11·清远)解方程:x 2-4x -1=o .【答案】【答案】方法一:由原方程,得(x -2)2=5 x +2=± 5∴x =-2± 5方法一:△= x =-4±202∴x =-2± 519.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位.(1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.B 图4【答案】11·清远)先化简、再求值:(1-1x +1)÷xx 2-1,其中x =2+1. 【答案】原式=(x +1x +1-1x +1)÷x x 2-1=x x +1×x 2-1x =x x +1×(x -1)( x +1)x=x -121.(11·清远)如图6,小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC 为24米,且山坡坡角∠A 的度数为28º,问小明从山脚爬上山顶需要多少时间?(结果精确到0.1).(参考数据:sin28º=0.46,cos28º=0.87,tan28º=0.53)【答案】在Rt △ABC 中,BC =24,∠A =28º,AB =BC ÷sin ∠A =24÷0.46≈52.18 ∴小明从山脚爬上山顶需要时间=52.183÷3≈17.4 (秒) 答:小明从山脚爬上山顶需要17.4秒四、解答题(本大题共3小题,每小题8分,共24分)22.(11·清远)如图2,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A ,D 为⊙O 上一点,AD与OC 相交于点E ,且∠DAB =∠C . (1)求证:OC ∥BD ;(2)若AO =5,AD =8,求线段CE 的长.【答案】(1)∵AB 是⊙O 的直径,∴∠ADB =90º,∵AC 与⊙O 相切,∴∠CAB =90º, ∵∠DAB =∠C ∴∠AOC =∠B ∴OC ∥BD(2)∵AO =5,∴AB =10,又∵AD =8,∴BD =6 ∵O 为AB 的中点,OC ∥BD , ∴OE =3,∵∠DAB =∠C ,∠AOC =∠B∴△AOC ∽△DBA∴CO AB =AO DB ∴CO 10=56 ∴CO =253∴CE =CO -OE =253-3=16323.(11·清远)在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余相同),图7A图6C其中黄球有1个,从袋中任意摸出一个球是黄球的概率为13.(1)求袋中白球的个数;(2)第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画状图的方法求两次都摸到黄球的概率.【答案】(1)1÷13=3(个)∴白球的个数=3-1=2(2)列表如下:∴共有16种不同的情况,两次都摸出黄球只有一种情况, 故两次都摸到黄于的概率是1924.(11·清远)如图8,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:AB =DF ;(2)若AD =10,AB =6,求tan ∠EDF 的值.【答案】(1)在矩形ABCD 中,AD ∥BC ,AD =BC ,∠ABE =90º ∴∠DAE =∠AEB , 又∵AE =BC ∴AE =AD ∵DF ⊥AE ∠AFD =90º ∴∠AFD =∠ABE∴△ABE ≌△DFA ∴AB =DF(2)∵△ABE ≌△DFA ∴AB =DF =6 AE =AD =10B 图8E在Rt △ADF 中,AD =10 DF =6 ∴AF =8 ∴EF =2在Rt △DFE 中,tan ∠EDF =EF DF =13五、解答题(本大题共2小题,每小题9分,共18分)25.(11·清远)某电器城经销A 型号彩电,今年四月份每台彩电售价为元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元. (1)问去年四月份每台A 型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B 型号彩电.已知A 型号彩电每台进货价为1800元,B 型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共问有哪几种进货方案?(3)电器城准备把A 型号彩电继续以原价每台元的价格出售,B 型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获得最大?最大利润是多少?【答案】(1)设去年四月份每台A 型号彩电售价是x 元 50000x =400002000 ∴x =2500经检验x =2500 满足题意答:去年四月份每台A 型号彩电售价是2500元≤≥ (2)设购进A 型号彩电y 台,则购进B 型号彩电()台根据题意可得:⎩⎨⎧1800y +1500(20-y )≥320001800y +1500(20-y )≤33000解得203≤y ≤10∵y 是整数∴y 可取的值为7,8,9,10共有以下四种方案:购进A 型号彩电7台,则购进B 型号彩电13台 购进A 型号彩电8台,则购进B 型号彩电12台 购进A 型号彩电9台,则购进B 型号彩电11台 购进A 型号彩电10台,则购进B 型号彩电10台 (3)设利润为W 元,则W =(-1800) y +(1800-1500) ()=6000-100 y ∵W 随y 的增大而减小 ∴y 取最小值7时利润最大 W =6000-100 y =6000-100×7=5300(元)购进A 型号彩电7台,则购进B 型号彩电13台时,利润最大,最大利润是5300元26.(11·清远)如图9,抛物线y =(x +1)2+k 与x 轴交于A 、B 两点,与y 轴交于点C (0,-3).(1)求抛物线的对称轴及k 的值;(2)抛物线的对称轴上存在一点P ,使得PA +PC 的值最小,求此时点P 的坐标; (3)点M 是抛物线上一动点,且在第三象限.① 当M 点运动到何处时,△AMB 的面积最大?求出△AMB 的最大面积及此时点M 的坐标;② 当M 点运动到何处时,四边形AMCB 的面积最大?求出四边形AMCB 的最大面积及此时点M 的坐标.【答案】(1)抛物线的对称轴为直线x =-1,把C (0,-3)代入y =(x +1)2+k 得 -3=1+k ∴k =-4 (2)连结AC ,交对称轴于点P∵y =(x +1)2-4 令y =0 可得(x +1)2-4=0∴x 1=1 x 2=-3 ∴A (-3,0) B (1,0) 设直线AC 的关系式为:y =m x +b把A (-3,0),C (0,-3)代入y =m x +b 得, -3m +b =0 b =-3 ∴m =-1 ∴线AC 的关系式为y =-x -3 当x =-1时,y =1-3=-2 ∴P (-1,-2)② 当M 点运动到何处时,四边形AMCB 的面积最大?求出四边形AMCB 的最大面积及此时点M 的坐标.(3)① 设M 的坐标为(x , (x +1)2-4)∴S △AMB =12×AB ×|y m |=12×4×[4-(x +1)2]=8-2(x +1)2当x =-1时,S 最大,最大值为S =8M 的坐标为(-1,-4)② 过M 作x 轴的垂线交于点E ,连接OM ,S 四边形AMCB =S △AMO +S △CMO +S △CBO =12×AB ×|y m |+12×CO ×|x m |+12×OC ×BO=6-32 (x +1)2+12×3×(-x )+12×3×1=-32x 2-92 x +6=-32(x 2+3x -9)=-32(x +32)2-818当x =-32 时,S 最大,最大值为818。
广东省清远市市级名校2023年中考数学最后冲刺模拟试卷含解析
2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某中学篮球队12名队员的年龄如下表: 年龄:(岁)13 14 15 16 人数 1 5 4 2 关于这12名队员的年龄,下列说法错误的是( ) A .众数是14岁 B .极差是3岁 C .中位数是14.5岁 D .平均数是14.8岁2.下列二次根式中,是最简二次根式的是( )A .48B .22x y +C .15D .0.33.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF ⊥AC 分别交DC 于F ,交AB 于点E ,点G 是AE 中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG ;(2)OG= 12BC ;(3)△OGE 是等边三角形;(4)16AOE ABCD S S ∆=矩形.A .1B .2C .3D .44.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为 ( )A .3B .2C .3D 65.式子2x 1+有意义的x 的取值范围是( )A.1x2≥-且x≠1B.x≠1C.1x2≥-D.1x>2-且x≠16.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A.B.C.D.7.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q8.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④9.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a210.如图,在△ABC中,EF∥BC,AE1EB2=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.估计19273⨯-的运算结果应在哪个两个连续自然数之间()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣412.下列各数中,最小的数是()A.﹣4 B.3 C.0 D.﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2sin245°﹣tan45°=______.14.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)15.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.16.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.17.计算(﹣12a2b)3=__.18.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_____(请写出盈利或亏损)_____元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.20.(6分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示). 21.(6分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)22.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:根据统计图所提供的倍息,解答下列问题:(1)本次抽样调查中的学生人数是多少人;(2 )补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.23.(8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.24.(10分)求不等式组()7153x 3x 134x x ⎧+≥+⎪⎨-->⎪⎩ 的整数解. 25.(10分)观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯= ⋯⋯2222211111(1)(1)(1)(1)(1)2345n -----=______(用含n 的代数式表示,n 是正整数,且 n ≥ 2)26.(12分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C1与经过点A 、D 、B 的抛物线的一部分C2组合成一条封闭曲线,我们把这条封 闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.27.(12分)如图,将一张直角三角形ABC 纸片沿斜边AB 上的中线CD 剪开,得到△ACD ,再将△ACD 沿DB 方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B 时,A′C′交CD 于E ,D′C′交CB 于点F ,连接EF ,当四边形EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:16﹣13=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.故选D.“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.2、B【解析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【详解】A483B22 x yC 155,不符合题意;D0.33010,不符合题意;故选B.【点睛】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3、C【解析】∵EF⊥AC,点G是AE中点,∴OG=AG=GE=12AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE 是等边三角形,故(3)正确;设AE=2a ,则OE=OG=a ,由勾股定理得,,∵O 为AC 中点,∴, ∴BC=12,在Rt △ABC 中,由勾股定理得,,∵四边形ABCD 是矩形,∴CD=AB=3a ,∴DC=3OG ,故(1)正确; ∵OG=a ,12BC=, ∴OG≠12BC ,故(2)错误;∵S △AOE=12=22,2,∴S △AOE=16SABCD ,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C .【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.4、A【解析】连接BD ,交AC 于O ,∵正方形ABCD ,∴OD=OB ,AC ⊥BD ,∴D 和B 关于AC 对称,则BE 交于AC 的点是P 点,此时PD+PE 最小,∵在AC 上取任何一点(如Q 点),QD+QE 都大于PD+PE (BE ),∴此时PD+PE 最小,此时PD+PE=BE ,∵正方形的面积是12,等边三角形ABE ,∴BE=AB=1223=,即最小值是23,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE 最小时P 点的位置.5、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使2x 1x 1+-在实数范围内有意义,必须12x 10x 1{{x 2x 102x 1+≥≥-⇒⇒≥--≠≠且x 1≠.故选A .6、D【解析】根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,∴随着水的深度变高,需要的注水量也是均匀升高,∴水瓶的形状是圆柱,故选:D .【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.7、C【解析】根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【详解】解:连接OA 、OM 、ON 、OP ,根据旋转的性质,点A 的对应点到旋转中心的距离与OA 的长度应相等根据网格线和勾股定理可得:OA=22345+=,OM=22345+=,ON=22345+=,OP=222425+=,OQ=5∵OA=OM=ON=OQ≠OP∴则点A不经过点P故选C.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.8、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
2020年广东省清远市中考数学试卷-含详细解析
2020年广东省清远市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2024年中考数学终极押题密卷(广东卷)数学试题及答案
广东省(统考新题型)2024年中考(新题型)猜题卷02数 学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷总分120分,考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的考生信息. 3.请在答题卡上各题的指定区域内作答,否则作答无效. 4.作图时,先用铅笔作图,再用规定签字笔描黑. 5.考试结束,本试卷和答题卡一并交回.第一部分(选择题 共30分)一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4−B .2−C .2D .42.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨B .101.0210×吨C .1010210×吨D .70.10210×吨3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图是由5个相同的小正方体组成的立体图形,它的主视图是( )A .B .C .D .5.下列计算正确的是( )A .325a a a +=B .325a a a ⋅=C .()22242a a a +=++ D .()235a a −=6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .347.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×−C .300003000045003x x =×− D .300003000050034x x =− 10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm +第二部分(非选择题 共75分)二、填空题(共15分) 11.因式分解:2a 2﹣8= .12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 . 13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .15.如图,在正方形ABCD中,4AB=,点E是CD边的中点,ABE∠的平分线交AD于点F,连接EF,则tan DEF∠的值为.三、解答题(共75分)16.(511)2sin605π−−−°+.17.(5分)解方程组:7 22 x yx y−=+=①②18.(5分)如图,已知B C∠=∠,AD平分BAC∠,求证:ABD ACD△≌△.19.(5分)如图,点A是∠MON边OM上一点,AE//ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE的大小为________.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形ABCD ∽菱形AEFG ,如图3,5AD =,6AC =,AG 平分DAC ∠,点P 在射线AG 上,在射线AF 上截取AQ ,使得35AQ AP =,连接PQ ,QC ,当4tan 3PQC ∠=时,直接写出AP 的长.广东省(统考新题型)2024年中考(新题型)猜题卷02数 学全解全析一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4− B .2− C .2 D .4【答案】B【分析】本题考查了有理数的加法运算,理解有理数加法运算法则,根据题意列出算式计算即可.【详解】解:比3−大1的数为:312−+=−, 故选:B .2.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨 B .101.0210×吨 C .1010210×吨 D .70.10210×吨【答案】A【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【详解】解:81.021.0210=×亿, 故选:A .3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】D【分析】本题考查了轴对称图形及中心对称图形,轴对称图形是沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形是绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项不符合题意,B.是中心对称图形,不是轴对称图形,故该选项不符合题意,C.既不是轴对称图形也不是中心对称图形,故该选项不符合题意,D.既是轴对称图形又是中心对称图形,故该选项符合题意,故选:D.4.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【分析】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的方向:从正面看所得到的图形.根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选B.5.下列计算正确的是()A.325+=B.325a a a⋅=a a aC.()22+=++D.()235242a a a−=a a【答案】B【分析】本题考查了整式的混合运算,掌握整式的运算法则是解决本题的关键.利用整式的运算法则计算每一个,根据计算结果得结论.【详解】解:32a a不能合并,故选项A计算错误;,325⋅=,故选项B计算正确;a a a()22+=++,故选项C计算错误;244a a a()236a a −=,故选项D 计算错误;故选:B .6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .34【答案】A【分析】本题主要考查了树状图法或列表法求解概率.先列表得到所有等可能性的结果数,再找到他们选择的诗人相同的结果数,最后依据概率计算公式求解即可.【详解】解:王维、柳宗元、白居易、王勃四位唐代山西诗人分别用A 、B 、C 、D 表示,列表如下: 小明小颖A B C DA(),A A (),B A (),C A (),D AB(),A B (),B B (),C B (),D BC(),A C (),B C (),C C (),D CD(),A D (),B D (),B D (),D D由表格可知,一共有16种等可能性的结果数,其中他们选择的诗人相同的结果数有4种, ∴他们选择的诗人相同的概率为41164=, 故选:A .7.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−【答案】C 【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:426231x x −< +≥①② 解不等式①得:2x <,解不等式②得:1x ≥−,∴不等式组的解集为12x −≤<,故选:C .8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想【答案】D 【分析】本题考查了平面直角坐标系,根据平面直角坐标系使得我们可以用代数的方法研究几何问题,又可以用几何的方法研究代数问题,即可确定答案.【详解】解:用代数的方法研究几何问题,可知这种研究方法体现了数形结合思想, 故选:D .9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×− C .300003000045003x x =×− D .300003000050034x x =− 【答案】D【分析】本题考查了列分式方程;设购进甲种品牌的自行车x 辆,则购进乙种品牌的自行车34x 辆,用总价除以单价表示出购进自行车的数量,根据两种自行车的数量相等列出方程求解即可.【详解】设购进甲种品牌的自行车x 辆,依题意得300003000050034x x =− 故选:D .10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm + 【答案】C 【分析】此题考查了矩形的性质,三角形内角和定理,过中间三角形的三个顶点分别向绿化带作垂线,首先根据题意得到1m AD BC MC GH GF DE ======,求出扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,然后利用绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形求解即可.【详解】如图所示,过中间三角形的三个顶点分别向绿化带作垂线,根据题意得,1m ADBC MC GH GF DE ======,四边形ADCB ,DEFG ,GHMC 是矩形 ∴90ADC BCD MCG CGH DGF GDE ∠=∠=∠=∠=∠=∠=° ∴180AEDCDG ∠=°−∠,180BCM DCG ∠=°−∠,180FGH DGC ∠=°−∠ ∵180∠+∠+∠=°CDG DCG DGC∴360BCM ADE HGF∠+∠+∠=° ∴扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,∴绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形2π1AD DC MC DC DE DC =⋅+⋅+⋅+×()2215π15πm =×+×=+. 故选:C .二、填空题(共15分)11.因式分解:2a 2﹣8= .【答案】2(a +2)(a -2).【分析】首先提取公因数2,进而利用平方差公式分解因式即可.【详解】2a 2-8=2(a 2-4)=2(a +2)(a -2).故答案为2(a +2)(a -2).考点:因式分解.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 .【答案】3−【分析】此题主要考查了解一元二次方程,以及根的定义.先把2x =代入原方程,求出k 的值,进而再将k 的值代入原方程,然后解方程即可求出方程的另一个根.【详解】解:∵2x =是方程260x kx +−=的一个根, ∴22260k +−=, 解得:1k =,将1k =代入原方程得:260x x +−=, 解得:122,3x x ==−,∴方程的另一个根为3−.故答案为:3−.13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .【答案】()4,3−−【分析】本题考查了作图—位似变换,对应顶点所在直线相交于一点即为位似中心,确定位似中心是解题的关键.连接'A A ,'B B 并延长交于一点,交点即为所求.【详解】解:如图,连接'A A ,'B B 并延长交于一点P ,点P 即为所求.由网格图形可知,点P 的坐标为()4,3−−. 故答案为:()4,3−−.14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .【答案】73/123【分析】本题主要考查了切线的性质,勾股定理,如图所示,连接OC ,设O 的半径为r ,则OC OB r ==,3OD r =+,由切线的性质可得90OCD ∠=°,则由勾股定理可得()22234r r +=+,解方程即可得到答案.【详解】解:如图所示,连接OC ,设O 的半径为r ,则OCOB r ==, ∴3OD r =+,∵CD 是O 的切线,∴90OCD ∠=°, 在Rt COD 中,由勾股定理得222OD OC CD =+,∴()22234r r +=+, 解得76r =, ∴O 的直径为723r =, 故答案为:73.15.如图,在正方形ABCD 中,4AB =,点E 是CD 边的中点,ABE ∠的平分线交AD 于点F ,连接EF ,则tan DEF ∠的值为 .【答案】33+【分析】本题考查正方形的性质,角平分线的性质定理,勾股定理,全等三角形的判定与性质,求角的正切值等,作FG BE ⊥于点G ,由角平分线的性质可得AF FG =,再证Rt BGF ≌()Rt HL BAF ,推出4BG AB ==,AF GF =,设AF GF x ==,用勾股定理解Rt EDF 和Rt EGF ,求出x 的值,再根据tan DF DEF DE∠=即可求解.【详解】解:如图,作FG BE ⊥于点G , 正方形ABCD 中,4AB =,点E 是CD 边的中点,∴90A C D ∠=∠=∠=°,4CD BC AD AB ====, 122CE DE CD ===, ∴BEBF 平分ABE ∠,FG BE ⊥,FA AB ⊥,∴AF FG =,在Rt BAF △和Rt BGF 中,AF FG BF BF = =, ∴Rt BGF ≌()Rt HL BAF ,∴4BG AB ==,AF GF =,∴4GE BE BG =−=,设AFGF x ==,则4FD AD AF x =−=−, 在Rt EDF 中,222DE DF EF +=,在Rt EGF 中,222EG FG EF +=, ∴2222EG FG DE DF +=+,即()()2222424x x +=+−, 解得2x =,∴()426FD =−=−∴tan 3DF DEF DE ∠=故答案为:3三、解答题(共75分)16.(5101)2sin 605π− −−°+ . 【答案】4【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】解:原式125=−− 4=. 【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.(5分)解方程组:722x y x y −=+=①② 【答案】34x y = =− 【分析】本题考查的是二元一次方程组的解法,掌握解法步骤是解本题的关键,直接利用加减消元法解方程组即可.【详解】解:722x y x y −= +=①②, ①+②得39x =,解得3x =.将3x =代入②,得4y =−.所以 34x y = =− ,. 18.(5分)如图,已知B C ∠=∠,AD 平分BAC ∠,求证:ABD ACD △≌△.【答案】见解析【分析】本题主要考查对全等三角形的判定,三角形的角平分线定义;根据角平分线的定义得出BAD CAD ∠=∠,根据AAS 即可证出答案. 【详解】证明:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD △和ACD 中B C BAD CAD AD AD ∠=∠ ∠=∠ =, ()AAS ABD ACD ∴ ≌.19.(5分)如图,点A 是∠MON 边OM 上一点,AE//ON .(1)尺规作图:作∠MON 的角平分线OB ,交AE 于点B (保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE 的大小为________.【答案】(1)见解析;(2)156°【分析】(1)利用基本作图作OB 平分∠MON ;(2)先利用平行线的性质得到∠MON =∠MAE =48°,再根据角平分线的定义得到∠NOB =24°,接着根据平行线的性质得到∠OBA 的度数,然后利用邻补角的定义计算∠OBE 的度数.【详解】解:(1)如图,OB 为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB=12∠MON=24°,∵AB∥ON,∴∠OBA=∠NOB=24°,∴∠OBE=180°-∠OBA=180°-24°=156°.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的性质.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.【答案】第一家网店每支签字笔的价格是10元【分析】本题主要考查了分式方程的应用等知识点,首先设第一家网店每支签字笔的单价是x 元,现在每支签字笔的价格是1.5x元,即可根据题意列出方程,解此分式方程即可求得答案,注意分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.【详解】解:设第一家网店每支签字笔的单价是x元,现在每支签字笔的价格是1.5x元,依题意得:606021.5x x=+,解得:10x=,经检验:10x=是原方程的解,答:第一家网店每支签字笔的价格是10元.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.【答案】(1)40,54°(2)画图见解析(3)不少于1.5小时的学生有330人【分析】(1)根据统计图中的数据可以求得本次调查的学生数;根据A组的学生人数以及总人数即可求得A组对应的圆心角的度数;(2)求出C组的学生人数,补全条形统计图即可;(3)利用用样本估计总体的计算方法列式计算即可求得.【详解】(1)解:本次调查的学生人数为:1230%=40÷(人);A组(0.5小时)在扇形统计图中的圆心角α的大小为:6360=54°×°,40故答案为:40,54°;(2)解:C 组的人数为:40-6-12-8=14(人), 补全条形统计图如下:(3)解:14860033040+×=(人) 答:估计该校九年级每天自主学习时间不少于1.5小时的学生人数有330人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)【答案】653m【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,可得BF DE DF BE ==,,设m AE x =,则()320m BF DE x ==−,解Rt ABE △得到 2.7m AB x ≈,解Rt BCF 得到()6402m BC x =−,进而得到2.76402x x =−,解方程得到136m 184m AE BF ==,,再解直角三角形求出BE CF ,的长即可得到答案.【详解】解:如图所示,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,∴BF DEDF BE ==,, 设m AE x =,则()320m BF DE AD AE x ==−=−, 在Rt ABE △中, 2.7m sin AEABx ABE =≈∠,在Rt BCF 中,()6402m sin BF BC x C==−,∵AB BC =,∴2.76402x x =−, 解得136x ≈,∴136m184m AE BF ==,, 在Rt ABE △中,136340m tan 0.4AE BE ABE =≈=∠,在Rt BCF 中,313m tan BFCF C=≈, ∴653m CD DF CF =+=, ∴CD 的长约为653m .23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.【答案】(1)216k = (2)2x >【分析】本题考查反比例函数的图象与性质,全等三角形的判定与性质,解题的关键是灵活运用所学知识解决问题,(1)过点A 作y 轴的垂线,垂足为D ,证明ADC BOC ≌进而求出结论; (2)先求出()2,8A ,根据图象写出结论即可. 【详解】(1)解:过点A 作y 轴的垂线,垂足为D .点C 为AB 的中点,BC AC ∴=,又90BOC ADC ∠=∠=°;BCO ACD ∠=∠, ∴ADC BOC ≌, ∴DC OC =,设(),A x y ,点A 在第一象限, 则111142222x y x y ⋅=⋅=,即16xy =, ∴216k =.(2)因为2OB =, 所以()2,0B −,由ADC BOC ≌,得2ADOB ==, 所以,()2,8A .当120y y >>时,x 的取值范围是:2x >. 24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C 两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.【答案】(1)()212531616y x =−−+ (2)小华此次击球不能飞过球网 (3)小华击球高度取值范围大于1916m 小于12731024m【分析】本题考查了二次函数的实际应用,待定系数法求解析式,相似三角形的判定与应用,熟练掌握知识点是解题的关键. (1)待定系数法求解析式即可;(2)连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,由ANM BPM △△∽求得M 的坐标为()5,0,再代入函数解析式即可;(3)设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q ,可求67,08Q,将()5,1.5,67,08分别代入,得到174k =,218491024k =,再将将0x =分别代入即可.【详解】(1)解:根据题意,得()0,1D ,()3,C b ,()8,0B , 设此抛物线的解析式为()23y a x b =−+, 将点()0,1D ,()8,0B 代入,得19,025,a b a b =+=+解得1,1625.16a b=−=所以此抛物线的解析式为()212531616y x =−−+. (2)解:连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,如图所示.根据题意,得8AB =,4AN =, 2.4BP . ∵,BP l AN l ⊥⊥, ∴BP AN , ∴ANM BPM △△∽,452.43AM AN BM BP ∴===, 558AM AB ∴, 即点M 的坐标为()5,0.将点()5,0M 代入()212531616y x =−−+,得2116y =.2124 1.51616<=, ∴小华此次击球不能飞过球网.(3)解:∵小华仍从点A 处发球,且击球时的用力方向和大小不变,∴设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q .场地内边线距离场地中线的距离为6.7m,∴由(2)同理可得67,08Q.要求球越过球网且落在球场内边线内,∴将()5,1.5,67,08分别代入()21316y x k =−−+,得174k =,218491024k =.将0x =分别代入()211316y x k =−−+,()221316y x k =−−+, 得11916y =,212731024y =. ∴小华击球高度取值范围大于19m 16小于1273m 1024. 25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形。
2022年广东省中考数学试卷真题及解析word版(完美版可编辑)
2022年广东省初中学业水平考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.|2|-=( )A .﹣2B .2C .12-D .122.计算22( )A .1B .2C .2D .43.下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形4.如题4图,直线a//b ,∠1=40°,则∠2=( )A .30°B .40°C .50°D .60°5.如题5图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )A .14B .12C .1D .26.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A .(3,1)B .(﹣1,1)C .(1,3)D .(1,﹣1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A .14B .13C .12D .238.如题8图,在▱ABCD 中,一定正确的是( )A .AD=CDB .AC=BDC .AB=CD D .CD=BC9.点(1,1y ),(2,2y ),(3,3y ),(4,4y )在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A .1yB .2yC .3yD .4y10.水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( ) A .2是变量B .π是变量C .r 是变量D .C 是常量二、填空题(本大题共有5小题,每小题3分,共15分) 11.sin30°=12.单项式3xy 的系数为13.菱形的边长为5,则它的周长为14.若x =1是方程022=+-a x x 的根,则a =15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为三、解答题(一)(本大题共有3小题,每小题8分,共24分)16.解不等式:⎩⎨⎧<+>-31123x x17.先化简,再求值:112--+a a a ,其中5=a18.如题18图,已知∠AOC=∠BOC ,点P 在OC 上,PD 上OA ,PE ⊥OB ,垂足分别为D ,E .求证:△OPD ≌△OPE.19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本,若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 3y15 19 25(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?22.如题22图,四边形ABCD 内接于⊙O ,AC 为OO 的直径,∠ADB=∠CDB . (1)试判断△ABC 的形状,并给出证明;(2)若AB=2,AD=1,求CD 的长度.23.如题23图,抛物线c bx x y ++=2(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点, A(1,0),AB=4,点P 为线段AB 上的动点,过P 作PQ ∥/BC 交AC 于点Q . (1)求该抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标.2022年广东省初中学业水平考试数学参考答案一、选择题:本大题共10小题,每小题3分,共30分.题号1 2 3 4 5 6 7 8 9 10 答案B D A B D A BCDC二、填空题:本大题共5小题,每小题3分,共15分. 参考答案:题号11 12 13 14 15 答案1/2 3 20 1 π三、解答题(二):本大题共3小题,每小题8分,共24分 16.参考答案:32113x x ->⎧⎨+<⎩①② 由①得:1x > 由②得:2x < ∴不等式组的解集:12x <<17.参考答案:原式=(1)(1)1211a a a a a a a -++=++=+- 将a =5代入得,2111a +=18.参考答案:证明:∵PD ⊥OA ,PE ⊥OB ∴∠PDO =∠PEO=90° ∵在△OPD 和△OPE 中PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩∠⎪⎨==, ∴△OPD ≌△OPE (AAS )四、解答题(二):本大题共3小题,每小题9分,共27分. 19.参考答案: 设学生人数为x 人8374x x -=+7x = 则该书单价是8353x -=(元)答:学生人数是7人,该书单价是53元.20.参考答案:(1)将2x =和19y =代入y =kx +15得19=2k +15, 解得:2k =∴y 与x 的函数关系式:y =2x +15(2)将20y =代入y =2x +15得20=2x +15, 解得: 2.5x =∴当弹簧长度为20cm 时,求所挂物体的质量是2.5kg . 21.参考答案:(1)月销售额数据的条形统计图如图所示:(2)3445378210318715x +⨯+⨯++⨯+⨯+==(万元)∴月销售额的众数是4万元;中间的月销售额是5万元;平均月销售额是7万元. (3)月销售额定为7万元合适.五、解答题(三):本大题共2小题,每小题12分,共24分. 22.参考答案:(1)△ABC 是等腰直角三角形,理由如下:∵∠ADB =∠CDB ∴AB BC = ∴AB BC = ∵AC 是直径 ∴∠ABC 是90° ∴△ABC 是等腰直角三角形(2)在Rt △ABC 中 222AC AB BC =+,可得:2AC =∵AC 是直径 ∴∠ADC 是90° ∴在Rt △ADC 中222AC AD DC =+可得:3DC = ∴CD 的长度是323.参考答案:(1)∵A (1,0),AB =4 ∴结合图象点B 坐标是(﹣3,0)将(1,0),(﹣3,0)代入2y x bx c =++得01093b c b c =++⎧⎨=-+⎩ 解得:23b c =⎧⎨=-⎩∴该抛物线的解析式:223y x x =+-(2)设点P 为(,0)m∵点C 是顶点坐标∴将1x =-代入223y x x =+-得4y =- ∴点C的坐标是(1,4)--将点(1,4)--,(1,0)代入y kx b =+得04k b k b =+⎧⎨-=-+⎩ 解得:22k b =⎧⎨=-⎩, ∴AC 解析式:22y x =- 将点(1,4)--,(﹣3,0)代入y kx b =+得034k b k b =-+⎧⎨-=-+⎩ 解得:26k b =-⎧⎨=-⎩, ∴BC 解析式:26y x =-- ∵PQ //BC ∴PQ 解析式:22y x m =-+2222y x m y x =-+⎧⎨=-⎩ 解得:121mx y m +⎧=⎪⎨⎪=-⎩ ∴点Q 坐标:1(,1)2mm +-(注意:点Q 纵坐标是负的) CPQ ABC APQ CPB S S S S =--△△△△11144(3)4(1)(1)222CPQ S m m m =⨯⨯-⨯+⨯-⨯-⨯-△21322CPQ S m m =--+△ 21(1)22CPQ S m =-++△当1m =-时,CPQ S △取得最大值2,此时点P 坐标是(﹣1,0) ∴△CPQ 面积最大值2,此时点P 坐标是(﹣1,0)。
2025届广东省清远市第三中学高三最后一卷数学试卷含解析
2025届广东省清远市第三中学高三最后一卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π2.设x 、y 、z 是空间中不同的直线或平面,对下列四种情形:①x 、y 、z 均为直线;②x 、y 是直线,z 是平面;③z 是直线,x 、y 是平面;④x 、y 、z 均为平面.其中使“x z ⊥且y z x y ⊥⇒∥”为真命题的是( ) A .③④B .①③C .②③D .①②3.已知数列{}n a 为等差数列,且16112a a a π++=,则()39sin a a +=的值为( ) A .32B .32-C .12D .12-4.设i 为虚数单位,z 为复数,若z i z+为实数m ,则m =( )A .1-B .0C .1D .25.设等差数列{}n a 的前n 项和为n S ,且80S =,33a =-,则9S =( ) A .9B .12C .15-D .18-6.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为30,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取3 1.732≈),则落在小正方形(阴影)内的米粒数大约为( )A .134B .67C .182D .108730x y m -+=过双曲线C :22221(0,0)x y a b a b-=>>的左焦点F ,且与双曲线C 在第二象限交于点A ,若||||FA FO =(O 为坐标原点),则双曲线C 的离心率为A .2B .31+C .5D .51-8.若AB 为过椭圆22116925x y +=中心的弦,1F 为椭圆的焦点,则△1F AB 面积的最大值为( )A .20B .30C .50D .609.已知0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,cos2tan 1sin 2βαβ=-,则( ) A .22παβ+=B .4παβ+=C .4αβ-=πD .22παβ+=10.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )A .122π-B .21π-C .22π-D .24π-11.设函数()22cos 23sin cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()17,22f x ⎡⎤∈⎢⎥⎣⎦,则m =( ) A .12B .32C .1D .7212.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122B .112C .102D .92二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省清远市数学中考最后一卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)(2018·崇阳模拟) 已知水星的半径约为24000000米,用科学记数法表示为()米.
A . 0.24×108
B . 2.4×106
C . 2.4×107
D . 24×106
2. (2分) (2018七上·腾冲期末) 如图所示的几何体,从左面看到的平面图形是().
A .
B .
C .
D .
3. (2分)(2018·莱芜) 下列图形中,既是中心对称,又是轴对称的是()
A .
B .
C .
D .
4. (2分)2x2y·( -3xy+y3)的计算结果是()
A . 2x2y4-6x3y2+x2y
B . -x2y+2x2y4
C . 2x2y4+x2y-6x3y2
D . x2y-6x3y2+2x2y4
5. (2分)(2020·西安模拟) 在正比例函数中,函数的值随值的增大而增大,则点
在()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
6. (2分)(2017·苍溪模拟) 如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD=()
A . 128°
B . 100°
C . 64°
D . 32°
7. (2分)(2020·凤县模拟) 如图,在中,的平分线交于点,交的延长线于点,则的长为()
A . 4
B . 2
C . 3
D .
8. (2分)郑州市统计部门公布最近五年消费指数增产率分别为8.5%,9.2%,10.2%,9.8%,业内人士评论说:“这五年消费指数增产率之间相当平稳”,从统计角度看,“增产率之间相当平稳”说明这组数据的()比较小
A . 方差
B . 平均数
C . 众数
D . 中位数
9. (2分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根为0,则实数a的值为()
A . 1
B . -1
C . 0
D . ﹣1或1
10. (2分)(2017·肥城模拟) 成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()
A . 5(x+21﹣1)=6(x﹣1)
B . 5(x+21)=6(x﹣1)
C . 5(x+21﹣1)=6x
D . 5(x+21)=6x
11. (2分)(2017·黑龙江模拟) 某初中决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()
A .
B .
C .
D .
12. (2分) (2018八上·兴隆期中) 实数a , b , c , d在数轴上的对应点的位置如图所示.若,则下列结论中正确的是()
A .
B .
C .
D .
二、填空题 (共6题;共6分)
13. (1分) (2018七上·青山期中) 飞机的无风航速为akm/h,风速为20km/h.飞机无风飞行4h比逆风飞行3h多行驶________km.
14. (1分) (2020七下·四川期中) 如图,AB∥CD ,点E在AB上,点F在CD上,如果∠CFE∶∠EFB=3∶4,∠ABF=40°,那么∠BEF的度数为________.
15. (1分)(2020·许昌模拟) 在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有________个
16. (1分)若⊙O是等边△ABC的外接圆,⊙O的半径为,则等边△ABC的边长为________.
17. (1分)(2018·枣阳模拟) 在△ABC中,AD是BC边上的高,AD=6,AC=10,tan∠BAD= ,则△ABC的面积为________.
18. (1分) (2017九下·建湖期中) 一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是________.
三、解答题 (共8题;共75分)
19. (5分)计算:
(1)计算:﹣|1﹣ |+20160;
(2)求x的值:(x+1)2=36.
20. (10分) (2019八上·白云期末) 如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)
21. (10分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
(1)图1中“统计与概率”所在扇形的圆心角为度;
(2)图2、3中的a= , b= ;
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
22. (5分)如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.
(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.
(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个②结论是否成立,若成立,请给予证明;若不成立,请说明理由.
23. (10分) (2015八下·宜昌期中) 某校初中义务交于服务范围内学生人数持续增加,2012年学生数比2011年增加了a%,2013年学生数比2012年多了100人,这样2013年学生人数就比2011年增加了2a%.(1)求2012年学生人数比2011年多多少人?
(2)由于教学楼改造,2013年的教室总面积比2011年增加了2.5a%,因而2013年每个学生人平均教室面积比2011年增加了,达到了 a(m2).求该校2013年的教室总面积.
24. (10分)已知点A(3,1)在反比例函数图象上
(1)求这个反比例函数的解析式;
(2)当x= 时,求y的值;
(3)请判断点B()是否在函数的图象上,并说明理由;
(4)画出这个函数的图象.
25. (15分)(2018·资中模拟) 如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D的直线于F,且∠BDF=∠CDB,BD与CG交于点N.
(1)求证:DF是⊙O的切线;
(2)连结MN,猜想MN与AB的位置有关系,并给出证明.
26. (10分)(2020·路北模拟) 如图1,已知抛物线与轴相交于点,与轴相交于点和点,点在点的右侧,点的坐标为,将线段沿轴的正方向平移个单位后得到线段.
(1)当 ________时,点或点正好移动到抛物线上;
(2)当点正好移动到抛物线上,与相交于点时,求点坐标;
(3)如图2,若点是轴上方抛物线上一动点,过点作平行于轴的直线交于点,探索是否存在点,使线段长度有最大值?若存在,直接写出点的坐标和长度的最大值;若不存在,请说明理由.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共6分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共8题;共75分)
19-1、
19-2、
20-1、21-1、21-2、
21-3、
23-1、
23-2、
24-1、24-2、
24-3、
24-4、25-1、
25-2、26-1、
26-2、26-3、。