2021年高中数学《3.3.简单的线性规划》教案3 新人教A版必修5

合集下载

2021-2022学年人教A版必修5 3.3.2 简单的线性规划问题 教案(2)

2021-2022学年人教A版必修5 3.3.2 简单的线性规划问题 教案(2)

线性规划一、教学目标:1.会用不等式〔组〕表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题〞,会用作差法比拟大小;3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系;二、教学重点:不等式性质的应用,用二元一次不等式〔组〕表示平面区域,求线性目标函数在线性约束条件下的最优解。

三、教学难点:利用不等式加法法那么及乘法法那么解题,求目标函数的最优解。

.四、教学过程:教学过程设计意图一、复习复习直线及二元一次不等式所表示的平面区域的画法复习、预习作业相结合养成学生好的学习习惯二、探究简单的线性规划问题的过程1.本节课巧妙运用经典故事引入,利用导学案和预习作业做铺垫让学生轻松进入;2.利用Excel软件进行随机点名使每位学生积极思考、探索,利用smart交互性创造良好的互动课堂;3.运用几何画板软件模拟整个运动过程,形象、生动产生良好效果;4.小博士出题环节让学生主动参与出题,积极性高,趣味性强使学生成为课堂的主人;5.小组竞赛测试相关高考题,使学生积极备战有张有弛,比赛环节不仅学到了东西而且轻松快乐。

让学生对照二元一次不等式平面区域的画法,画二元一次不等式组的平面区域三、简单线性规划问题的解题步骤简单线性规划问题的解题步骤:1.找〔约束条件〕让学生熟悉解题思想,解题步骤。

观察几何画板软件,对图形有深刻的了解,2.画〔可行域、目标函数〕3.移〔平移目标函数寻找最值〕4.解〔写解题过程〕加深印象。

四、高考典例分析、小组竞赛高考典例:通过练习使学生不仅能够感受高考的脉搏而且加深理解会画图列式,求解线性规划的题四、小博士出题让学生主动参与进来,提高学生兴趣,活泼课堂,编一个数学小故事,增加互动通过变式训练,和自己出题五、小结与作业1.小结〔1〕线性规划题解题思路步骤;〔2〕画平面区域的方法;〔3〕感受高考,充分理解题意,会解题2.作业:同步导学P42-43回忆本节课的内容;布置作业,稳固学习效果。

高中数学《3.3.1简单的线形规划问题(二)》教案 新人教A版必修5

高中数学《3.3.1简单的线形规划问题(二)》教案 新人教A版必修5

福建省长乐第一中学高中数学必修五《3.3.1简单的线形规划问题(二)》教案教学重点能进行简单的二元线形规划问题教学难点从实际情景中抽象出一些简单的二元线形规划问题,列出线性目标函数并求最值并能加以解决.教学过程一.复习准备:什么是目标函数?线形目标函数?线形规划?可行解?可行域?二.讲授新课:1.出示例题:营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪. 1kg 食物A 含有0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费28元;而1kg 食物B 含有0.105kg 碳水化合物,0.14kg 蛋白质,0.07kg 脂肪,花费21元. 为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时使用食物A 和食物B 多少?教师分析——师生共同列出表格——转化成数学模型——列出目标函数——求最值2.练习:某校伙食长期以面粉和大米为主食,面食每100g 含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100g 含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应该如何配置盒饭,才能既科学有费用最少?(答案:面食百克,米食百克)3.小结:线性规划问题首先要根据实际问题列出表达约束条件的不等式,然后分析目标函数中所求量的几何意义,由数形结合思想求解问题. 利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,关键在于找出约束条件与目标函数,准确地描可行域,再利用图形直观求得满足题设的最优解.三. 巩固练习:1. 设满足约束条件,则的最大值是 (答案:5)2.甲,乙,丙三种食物维生素A ,B 含量以及成本如右表:某食物营养研究所想用千克甲种食物,千克乙种食物,千克丙种食物配成100千克混合物,并使混合物至少含有56000单位维生素A 和63000单位维生素B. 试用表示混合物的成本P (元);并确定的值,使成本最低,并求最低成本.项目 甲 乙 丙 维生素A (单位/千克) 600 700 400 维生素B (单位/千克) 800 400 500维生素C (单位/千克) 11 943.作业:P106 习题A组第4题。

高中数学 3.3.2简单的线性规划(第3课时)学案 新人教A版必修5

高中数学 3.3.2简单的线性规划(第3课时)学案 新人教A版必修5

3.3.2 简单的线性规划(第3课时)31**学习目标**1.进一步提高将实际问题转化为线性规划问题的能力; 2.能将代数问题转化为斜率或距离等几何问题。

**要点精讲**1、 两点()11,A x y ,()22,B x y 连线的斜率公式:2121AB y y k x x -=-。

2.两点()11,A x y ,()22,B x y 之间的距离:AB =3.以点(),C a b 为圆心,r 为半径的圆方程:()()222x a y b r -+-=。

平面区域问题有以下几种常见类型:(1)根据题设条件画出平面区域,并求出区域面积、边界曲线方程;(2)计算平面区域中整点的个数;(3)运用平面区域求与之相关的最值、取值范围等问题。

**范例分析**1.根据题设条件画出平面区域 例1.A=(){},|1,1x y x y ≤≤,B=(){}22,|1x y xy +≤,C=(){},|1x y x y +≤,求A,B,C之间的包含关系?2.求平面区域内整点的个数例2.在直角坐标平面上,求满足不等式组313100y x y x x y ≤⎧⎪⎪≥⎨⎪+≤⎪⎩的整点个数。

3.根据平面区域求有关最值、取值范围例3.画出30502400,0x y x y x y x y -+≥⎧⎪+-≤⎪⎨--≤⎪⎪≥≥⎩所表示的平面区域:(1)求22(1)(1)z x y =++-的最值; (2)求11y z x -=+的取值范围。

3.利用平面区域求解代数问题例4.(1)设,)(2c ax x f -=且4(1)1,1(2)5f f -≤≤--≤≤,试用线性规划方法求)3(f的取值范围是 。

(2)实系数方程220x ax b ++=的两根,αβ满足01,12αβ<<<<,则21b a --的取值范围是( )A 、1,14⎛⎫ ⎪⎝⎭ B 、1,12⎛⎫ ⎪⎝⎭ C 、11,24⎛⎫- ⎪⎝⎭ D 、11,22⎛⎫- ⎪⎝⎭引申:求22z a b =+的取值范围。

高中数学必修5《简单线性规划》教学设计

高中数学必修5《简单线性规划》教学设计

课题:简单的线性规划(高三一轮复习课)主旨:本节课是人民教育出版全日制普通高级中学数学教科书(必修5)第三章第3节“简单的线性规划”.本节课是高三第一轮复习课,内容包括二元一次不等式表示平面区域、线性规则及线性规划的实际应用.下面我从三方面来说说对这节课的分析和设计.1. 教材地位分析一教学背景分析 2. 学生特征分析3. 教学目标分析1. 教学重点、难点分析二教学展开分析 2. 教学策略和方法指导3. 教学媒体选择4. 教学实施三教学结果分析一、教学背景分析1、教材地位分析(1)“简单的线性规划”是在复习了直线方程的基础上而再度学习的. 因线性规划的应用性广泛,“简单线性规划”不仅是“新大纲”中增加的新内容,也是“新课标”的必修内容;说明了教材重视数学知识的应用.(2)“简单的线性规划”体现了数学应用性的同时,还渗透了化归、数形结合等数学思想和数学建模法.(3)“简单的线性规划”内容已成为近年来高考数学命题的一个亮点. 几乎每年必考。

考查的题型有选择题,填空题..2、学生特征分析(1)学习任务分析:通过第一轮复习,学生对不等式、直线方程知识有了更系统的理解;这是复习“简单的线性规划”的起点能力.(2)认知能力分析:学生能应用不等式、直线方程知识来解决问题,加之,体会过“简单的线性规划”应用性;这有益于“简单的线性规划”的“同化”和“顺应”.(3)认知结构变量分析:“不等式”、“直线方程”与“简单的线性规划”是“类属关系”,故“简单的线性规划”的复习是“下位学习”,说明认知结构的可利用性和可分辩性. 但是,由于“简单的线性规划”在教材上的编排简约、图解方法的动态,影响到认知结构的稳固性;这要求通过创设问题情境、自主探究等来促进认知结构的稳固性,进行意义建构.3、教学目标分析(1)知识技能:掌握二元一次不等式表示平面区域,进一步了解线性规划的意义,并能应用其解决一些简单的实际问题.(2)过程与方法:通过自主探究,师生会话,体验数学发现和创造的历程;经历线性规划的实际应用,提高数学建模能力.(3)情感态度:通过自主探究,师生会话,养成批判性的思维品质,形成良好的合作交流品质,提高“应用数学”的意识.以上三个目标确定是基于教材地位分析和学生特征分析.二、教学展开分析1、教学重点与难点分析重点:掌握二元一次不等式表示平面区域并灵活运用,以及线性规划最优解的求解.难点:实际问题转化为线性规划问题及其整数最优解、最优近似解的求解.利用例题、变式训练,求线性规划最优解的两种有效的方法——“调整优值法”、“换元取优法”的应用,以及“简单的线性规划解答器”的应用,来突出重点,突破难点.2、教学策略与方法指导(1)教学策略:本节课采用基于建构主义理论的“建构式教学方法”,即由“创设问题情境——自主探究——师生会话——意义建构”四个环节组成. 以学生为主体,并根据教学中的实际情况及时调整教学方案.(2)学法指导:教师平等地参与“师生会话”,间或参与“自主探究”并适时点拨指导;引导学生全员、全过程参与;自主探究的形式可以是小组学习,也可以是“学习共同体”等,引导学生反思评价.3、教学媒体的选择与运用使用多媒体辅助教学.4、教学实施按照“建构式教学法”的思想,围绕突出重点,解决难点,不断设置问题情境,激发学生自主探究,并由师生会话促进意义建构. 我把本节课的教学实施分成三大部分,即(1)概念“同化”,(2)例题研讨,(3)反思评价.Ⅱ例题分析三、教学结果分析通过本节课的学习,结合教学目标,从知识、能力、情感三个方面预测可能会出现的结果.1、学生能掌握并灵活运用二元一次不等式的平面区域,能够求出最优解;但在数学建模方面,估计有少部分学生会有一定的困惑. 另外,对线性规划和其它知识的交汇题的求解以及实际问题的整数最优解、近似最优解的求解仍会有学生感到陌生,故须督促学生课后加强消化.2、学生基本思想能力得到一定的提高,但良好的数学素养有待进一步提高.3、由于学生层次不同,已有的数学知识、观念不同,体验和认识也不同,对于学习层次较高的学生,应鼓励其严谨、谦虚、锲而不舍的求学态度;而对学习欠佳的同学,应多鼓励,并辅之以师生的帮助促进其进步.。

高中数学 3.3.2简单的线性规划(一)新人教A版必修5

高中数学 3.3.2简单的线性规划(一)新人教A版必修5

3.3.2简单的线性规划【教学过程】 2.讲授新课1.引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ ……………………….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。

(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线。

当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x =-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。

可以看到,直线233zy x =-+与不等式组(1)的区域的交点满足不等式组(1),而且当截距3z最大时,z 取得最大值。

因此,问题可以转化为当直线233zy x =-+与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P ,使直线经过点P 时截距3z最大。

(5)获得结果:由上图可以看出,当实现233zy x =-+经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 的值最大,最大值为143,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。

高中数学 3.2《简单的线性规划》教案(6)新人教A版必修5

高中数学 3.2《简单的线性规划》教案(6)新人教A版必修5

线性规划一、知识要点1、二元一次不等式表示平面区域(1)一般地,二元一次不等式0>++C By Ax 在平面直角坐标系中表示直线0=++C By Ax 某一侧的所有点组成的平面区域(半平面)不含边界线.不等式0≥++C By Ax 所表示的平面区域(半平面)包括边界线.(2)对于直线0=++C By Ax 同一侧的所有点(x,y ),使得C By Ax ++的值符号相同。

因此,如果直线0=++C By Ax 一侧的点使0>++C By Ax ,另一侧的点就使0<++C By Ax 。

所以判定不等式0>++C By Ax (或0<++C By Ax )所表示的平面区域时,只要在直线0=++C By Ax 的一侧任意取一点),(00y x ,将它的的坐标代入不等式,如果该点的坐标满足不等式,不等式就表示该点所在一侧的平面区域;如果不满足不等式,就表示这个点所在区域的另一侧平面区域。

(3) 由几个不等式组成的不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分. 2、线性规划 ⑴ 基本概念⑵用图解法解决线性规划问题的一般步骤①、设出所求的未知数②、列出约束条件(即不等式组)③、建立目标函数④、作出可行域⑤、运用图解法求出最优解二、基本训练1.不等式240--=的x y-->表示的平面区域在直线240x y()()A左上方()B右上方()C左下方()D右下方2.表示图中阴影部分的二元一次不等式组是()3.给出平面区域(包括边界)如图所示,若使目标函数=+>取得最大值的最优解有无穷多个,(0)z ax y a则a的值为()4.原点和点(1,1)在直线0x y a+-=的两侧,则a的取值范围是.5.由|1|1≤-+表示平面区域的面积是 .y x≥+-及||1y x三、例题分析例1、Z =0.9x +y ,式中变量x ,y 满足下列条件⎪⎩⎪⎨⎧≤≤≤≤≥+40602843y x y x 求Z 的最小值。

高中数学人教A版必修五3.3.2教学设计《简单的线性规划问题》

高中数学人教A版必修五3.3.2教学设计《简单的线性规划问题》

《简单的线性规划问题》1、知识与技能(1)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;(2)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值。

2、过程与方法本节课是以二元一次不等式表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决。

考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性。

同时,可借助计算机的直观演示可使教学更富趣味性和生动性。

3、情感态度与价值观渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识;激发学生的学习兴趣。

【教学重点】线性规划的图解法。

【教学难点】寻求线性规划问题的最优解。

(一)新课导入某工厂用A ,B 两种配件生产甲,乙两种产品,每生产一件甲种产品使用4个A 配件耗时1h ,每生产一件乙种产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是什么?若生产1件甲种产品获利2万元,生产1 件乙种产品获利3万元,采用哪种生产安排利润最大?把问题1的有关数据列表表示如下:设甲,乙两种产品分别生产x ,y 件,由己知条件可得到哪些不等式呢?(二)新课讲授设甲,乙两种产品分别生产x ,y 件,由己知条件可得:⎩⎪⎨⎪⎧ x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,将上面不等式组表示成平面上的区域,区域内所有坐标为整数的点P(x ,y),安排生产任务x ,y 都是有意义的。

问题:求利润2x+3y 的最大值。

若设利润为z ,则z=2x+3y ,这样上述问题转化为:当x ,y 在满足上述约束条件时,z 的最大值为多少?把z =2x +3y 变形为y =-23x +z 3,在y 轴上的截距为z 3,当点P 在可允许的取值范围变化时, 求截距z 3的最值,即可得z 的最值。

高中数学必修五(人教新A版)教案24简单的线性规划1

高中数学必修五(人教新A版)教案24简单的线性规划1


问题与情境及教师活动
学生活动
解:不等式组所表示的平面区域如图所示:
从图示可知,直线3x+5y=t在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t最小,以经过点( )的直线所对应的t最大.
所以zmin=3×(-2)+5×(-1)=-11.
zmax=3× +5× =14.
学生独立完成




用图解法解决简单的线性规划问题的基本步骤:
(1)寻找线性约束条件,线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;
(3)在可行域内求目标函数的最优解
课后
反思
④可行解、可行域和最优解:
满足线性约束条件的解(x,y)叫可行解.
由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
3、变换条件,加深理解
探究:课本第100页的探究活动
(1)在上述问题中,如果生产一件甲产品获利3万元,每生产一件乙产品获利2万元,有应当如何安排生产才能获得最大利润?在换几组数据试试。
(1)
学生
回顾并回答
学生思考并写出不等式组
高中数学必修五课时教案







问题与情境及教师活动
学生活动
(2)画出不等式组所表示的平面区域:
如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:
进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8பைடு நூலகம்计算,该厂所有可能的日生产安排是什么?

高中数学(3.3.2简单线性规划问题)示范教案新人教A版必修5

高中数学(3.3.2简单线性规划问题)示范教案新人教A版必修5

使目标函数取得最大值和最小值,它们都叫做这个问题的最优解
课堂小结
用图解法解决简单的线性规划问题的基本步骤:
1. 首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)
2. 设 t=0 ,画出直线 l 0
3. 观察、分析,平移直线 l 0,从而找到最优解
4. 最后求得目标函数的最大值及最小值
已知条件,找出约束条件和目标函数,利用图解法求得最优解
. 为突出重点,本节教学应指
导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化
课时安排 3 课时
三维目标
一、知识与技能
1. 运用线性规划问题的图解法,并能应用它解决一些简单的实际问题 掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、
2x

3y
12,

x
12 , 7
5x 4 y 20.
20 y.
7
令 90x+100y=t ,作直线 :90x+100y=0 ,即 9x+10y=0 的平行线 90x+100y=t ,当 90x+100y=t
过点 M( 12 , 20 )时,直线 90x+100y=t 中的截距最大 77
12
20
由此得出 t 的值也最大, z ma =90× +100×
线y
2 x
1 z ,这说明,截距
z[]3
可以由平面内的一个点的坐标唯一确定
33
. 可以看到直
线y
2 x 1 z 与表示不等式组的区域的交点坐标满足不等式组,而且当截距 33
z 最大时, 3
z 取最大值,因此,问题转化为当直线
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高中数学《3.3.2简单的线性规划》教案3 新人教A版必修5
【学习目标】
1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;
2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;
3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

【学习重点】用图解法求线性目标函数的最值问题。

【学习难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。

【授课类型】新授课
【学习方法】合作探究
直线)
2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:
3、用图解法解决简单的线性规划问题的基本步骤:
2.讲授新课
1.线性规划在实际中的应用:
例5在上一节例4中,若生产
1车皮甲种肥料,产生的利润为
10 000元;生产1车皮乙种肥料,
产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?
2.课本第91页的“阅读与思考”——错在哪里?
若实数,满足
求4+2的取值范围.
错解:由①、②同向相加可求得:
0≤2≤4 即 0≤4≤8 ③
由②得—1≤—≤1。

相关文档
最新文档