高中一轮复习物理 第九章 磁场
2013高考一轮复习优秀课件:第九章磁场第一单元 第2课时
②若导线是曲线时,连结导线两端点的直线长度,才是受 安培力的有效长度.
③安培力的实质是通电导线中所有运动电荷受到的洛伦兹 力的宏观表现.
④安培力作用点为磁场中该部分导体的中点. ⑤分析通电导体在安培力作用下的运动问题时, 应会根据立体图画出投影截面图,做好受力分析,然 后运用平衡条件或牛顿定律求解. (2)安培力做功的实质:能量的传递
题型训练 1.如图所示,用一块蹄形磁铁缓慢 地接近发光的白炽灯的灯丝,可以看到灯 丝( ) A.静止不动 B.只向上边摆
C.只向下边摆
D.颤抖起来
解析:由于灯丝流过的电流是大小和方向作周期性变化 的交流电,根据左手定则可知灯丝所受的安培力的方向也作 周期性的变化,故可看到通电灯丝在磁场中发生颤抖.
答案:D 点评:安培力作用下物体运动方向的判断方法:(1)电流 元受力分析法:即把整段电流等效为很多段直流电流元,先用 左手定则判断出每小段电流元受的安培力的方向,从而判断出 整段电流所受合力的方向,确定其运动方向.(2)特殊位置分 析法:把电流或磁铁转到一个便于分析的特殊位置(如转过 90°)后再判断所受安培力的方向,从而确定运动的方向.
①安培力做正功:是将电源的能量传递给通电导 线或转化为导线的动能或转化为其他形式的能.
②安培力做负功:是将其他形式的能转化为电能, 或储存或再转化为其他形式的能.
考点二
磁电式电流表
基础回顾 1.磁电式电流表的主要构成 如图(a)所示,主要由五部分 组成: (1)磁性很强的蹄形磁铁;
(2)圆柱形铁芯,固定在磁铁 的两极间;
如右图所示,质量为m= 50 g,长L=10 cm的铜棒,用长 度亦为L的两根轻导线水平悬吊 在竖直向上的匀强磁场中,磁感 应强度B=0.5 T.未通电时,轻 线在竖直方向,通入恒定电流后, 棒向外偏转的最大角度θ=37°, 不考虑导体棒切割磁感线产生的 感应电流,求此棒中恒定电流的 大小.
(统考版)2023版高考物理一轮复习 第九章 磁场 第1讲 磁场及其对电流的作用学生用书
第1讲磁场及其对电流的作用一、磁场、磁感应强度1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有________的作用.(2)方向:小磁针的________所受磁场力的方向.2.磁感应强度(1)物理意义:描述磁场的________和________.(2)大小:B=________(通电导线垂直于磁场放置).(3)方向:小磁针静止时________的指向.(4)单位:特斯拉(T).3.匀强磁场(1)定义:磁感应强度的大小________、方向________的磁场称为匀强磁场.(2)特点:疏密程度相同、方向相同的平行直线.二、磁感线通电直导线和通电线圈周围磁场的方向1.磁感线及特点(1)磁感线:在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的____________的方向一致.(2)特点①磁感线上某点的________方向就是该点的磁场方向.②磁感线的________定性地表示磁场的强弱.③磁感线是________曲线,没有起点和终点.④磁感线是假想的曲线,客观上________.三、安培力、安培力的方向匀强磁场中的安培力1.安培力的大小F=ILB sin θ(其中θ为B与I之间的夹角)(1)磁场和电流垂直时:F=________.(2)磁场和电流平行时:F=________.2.安培力的方向左手定则判断:(1)伸出左手,让拇指与其余四指________,并且都在同一个平面内.(2)让磁感线从掌心进入,并使四指指向________方向.(3)________所指的方向就是通电导线在磁场中所受安培力的方向.,教材拓展1.[人教版选修3-1P94T1改编]下面的几个图显示了磁场对通电直导线的作用力,其中正确的是( )2.[人教版选修3-1P90T1改编]把一小段通电直导线放入磁场中,导线受到安培力的作用.关于安培力的方向,下列说法中正确的是( )A.安培力的方向一定跟磁感应强度的方向相同B.安培力的方向一定跟磁感应强度的方向垂直,但不一定跟电流方向垂直C.安培力的方向一定跟电流方向垂直,但不一定跟磁感应强度方向垂直D.安培力的方向一定跟电流方向垂直,也一定跟磁感应强度方向垂直3.[人教版选修3-1P90T3改编](多选)通电螺线管如图所示.A为螺线管外一点,B、C 两点在螺线管的垂直平分线上,则下列说法正确的是( )A.磁感线最密处为A处,最疏处为B处B.磁感线最密处为B处,最疏处为C处C.小磁针在B处和A处N极都指向左方D.小磁针在B处和C处N极都指向右方考点一安培定则的应用和磁场的叠加1.安培定则的应用:在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”.2.磁场的叠加:(1)磁感应强度是矢量,计算时与力的计算方法相同,遵守平行四边形定则,可以用正交分解法进行合成与分解.(2)两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生的磁场在该处的磁感应强度叠加而成的.3.磁场叠加问题的一般解题思路:(1)确定磁场场源,如通电导线.(2)定位空间中需求解磁场的磁感应强度的点,利用安培定则判定各个场源在这一点上产生的磁场的磁感应强度.如图所示为M、N在c点产生的磁场的磁感应强度.(3)应用平行四边形定则进行合成,如图中的合磁感应强度.例1. [2021·全国甲卷,16]两足够长直导线均折成直角,按图示方式放置在同一平面内,EO与O′Q在一条直线上,PO′与OF在一条直线上,两导线相互绝缘,通有相等的电流I,电流方向如图所示.若一根无限长直导线通过电流I时,所产生的磁场在距离导线d处的磁感应强度大小为B,则图中与导线距离均为d的M、N两点处的磁感应强度大小分别为( )A.B、0 B.0、2BC.2B、2B D.B、B跟进训练1.[2021·浙江1月,8]如图所示是通有恒定电流的环形线圈和螺线管的磁感线分布图.若通电螺线管是密绕的,下列说法正确的是( )A.电流越大,内部的磁场越接近匀强磁场B.螺线管越长,内部的磁场越接近匀强磁场C.螺线管直径越大,内部的磁场越接近匀强磁场D.磁感线画得越密,内部的磁场越接近匀强磁场2.[2022·山东泰安统考]已知通电的长直导线在周围空间某位置产生的磁感应强度大小与电流大小成正比,与该位置到长直导线的距离成反比.如图所示,现有通有电流大小相同的两根长直导线分别固定在正方体的两条棱dh和hg上,彼此绝缘,电流方向分别由d 流向h、由h流向g,则顶点e和a两处的磁感应强度大小之比为( )A.2∶√3 B.1∶√3C.2∶√2 D.1∶1考点二安培力及安培力作用下导体的平衡问题角度1安培力的分析与计算1.用公式F=BIL计算安培力大小时应注意(1)B与I垂直.(2)L是有效长度.①公式F=BIL中L指的是“有效长度”.当B与I垂直时,F最大,F=BIL;当B与I 平行时,F=0.②弯曲导线的有效长度L等于在垂直磁场平面内的投影两端点所连线段的长度(如图所示),相应的电流方向沿L由始端流向末端.③闭合线圈通电后,在匀强磁场中受到的安培力的矢量和为零.2.安培力方向的判断(1)判断方法:左手定则.(2)方向特点:F既垂直于B,也垂直于I,所以安培力方向一定垂直于B与I决定的平面.例2. [2021·浙江6月,15] (多选)如图所示,有两根用超导材料制成的长直平行细导线a、b,分别通以80 A和100 A流向相同的电流,两导线构成的平面内有一点p,到两导线的距离相等.下列说法正确的是( )A.两导线受到的安培力F b=1.25F aB.导线所受的安培力可以用F=ILB计算C.移走导线b前后,p点的磁感应强度方向改变角度2安培力作用下导体的平衡问题例3. 某兴趣小组制作了一个可以测量电流的仪器,其主要原理如图所示.有一金属棒PQ放在两金属导轨上,导轨间距L=0.5 m,处在同一水平面上,轨道置于竖直向下的匀强磁场中,磁感应强度B=2 T.棒中点两侧分别固定有劲度系数k=100 N/m的相同弹簧.闭合开关S前,两弹簧为原长,P端的指针对准刻度尺的“0”处;闭合开关S后,金属棒PQ 向右移动,静止时指针对准刻度尺1.5 cm处.下列判断正确的是( )A .电源N 端为正极B .闭合开关S 后,电路中电流为1.5 AC .闭合开关S 后,电路中电流为3 AD .闭合开关S 后,将滑动变阻器的滑片向右移动,金属棒PQ 将继续向右移动[思维方法]解决安培力作用下平衡问题的两条主线(1)遵循平衡条件 基本解题思路如下:(2)遵循电磁学规律,受力分析时,要注意准确判断安培力的方向.跟进训练3.一个各边电阻相同、边长均为L 的正六边形金属框abcdef 放置在磁感应强度大小为B 、方向垂直金属框所在平面向外的匀强磁场中.若从a 、b 两端点通以如图所示方向的电流,电流大小为I ,则关于金属框abcdef 受到的安培力的判断正确的是( )A .大小为BIL ,方向垂直ab 边向左B .大小为BIL ,方向垂直ab 边向右C .大小为2BIL ,方向垂直ab 边向左D .大小为2BIL ,方向垂直ab 边向右4.[2022·河北保定调研]如图所示,空间有与竖直平面夹角为θ的匀强磁场,在磁场中用两根等长轻细金属丝将质量为m 的金属棒ab 悬挂在天花板的C 、D 两处,通电后导体棒静止时金属丝与磁场方向平行.已知磁场的磁感应强度大小为B ,接入电路的金属棒长度为l ,重力加速度为g ,以下关于导体棒中电流的方向和大小正确的是( )A .由b 到a ,mg tan θBlB .由a 到b ,mgBlC .由a 到b ,mg sin θBlD .由b 到a ,mg sin θBl考点三 安培力作用下导体运动趋势及运动情况的判断例 4. [2021·广东卷,5]截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线.若中心直导线通入电流I1,四根平行直导线均通入电流I 2,I 1≫I 2,电流方向如图所示.下列截面图中可能正确表示通电后长管发生形变的是( )命题分析跟进训练5.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将( ) A.不动B.顺时针转动C.逆时针转动 D.在纸面内平动6.[2022·贵阳中学月考]如图所示,一平行于光滑斜面的轻弹簧一端固定于斜面上,一端拉住条形磁铁,条形磁铁处于静止状态,磁铁中垂面上放置一通电导线,导线中电流方向垂直纸面向里且缓慢增大,下列说法正确的是( )A.弹簧弹力逐渐变小B.弹簧弹力先减小后增大C.磁铁对斜面的压力逐渐变小D.磁铁对斜面的压力逐渐变大考点四与安培力相关的STSE问题素养提升情境1 磁式电流表(多选)实验室经常使用的电流表是磁电式电流表,这种电流表的构造如图甲所示,蹄形磁铁和铁芯间的磁场是均匀辐向分布的.若线圈中通以如图乙所示的电流,则下列说法中正确的是( )A.在量程内指针转至任一角度,线圈平面都跟磁感线平行B.线圈转动时,螺旋弹簧被扭动,阻碍线圈转动C.当线圈在如图乙所示的位置时,b端受到的安培力方向向上D.当线圈在如图乙所示的位置时,安培力的作用使线圈沿顺时针方向转动情境2 电子天平(多选)某电子天平原理如图甲所示,E形磁铁的两侧为N极,中心为S极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应,一总电阻为R的均匀导线绕成的正方形线圈套于中心磁极,其骨架与秤盘连为一体,当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后线圈两端C、D与外电路接通对线圈供电,使秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流可确定重物的质量.为了确定该天平的性能,某同学把该天平与电压可调的直流电源(如图乙)相接,经测量发现,当质量为M的重物放在秤盘上时,直流电源输出电压为U即可使秤盘和线圈恢复到未放重物时的位置并静止,重力加速度为g.则下列说法正确的是( )A.当线圈两端C、D与外电路接通对线圈供电时,线圈的C端应与外电路中的H端相接,D端应与G端相接B.线圈的匝数为MgR2BLUC.当质量为2M的重物放在秤盘上时,直流电源输出电压为2UD.若增加线圈的匝数,则能增大电子天平能称量的最大质量情境3 “电磁炮”“电磁炮”是利用电磁力对弹体加速的新型武器,具有速度快、效率高等优点.如图是“电磁炮”的原理结构示意图.光滑水平加速导轨电阻不计,轨道宽为L=0.2 m;在导轨间有竖直向上的匀强磁场,磁感应强度B=1×102 T;“电磁炮”弹体总质量m=0.2 kg,其中弹体在轨道间的电阻R=0.4 Ω;可控电源的内阻r=0.6 Ω,电源的电压能自行调节,以保证“电磁炮”匀加速发射;在某次试验发射时,电源为加速弹体提供的电流是I=4×103 A,不计空气阻力.求:(1)弹体所受安培力大小;(2)弹体从静止加速到4 km/s,轨道至少要多长?(3)弹体从静止加速到4 km/s过程中,该系统消耗的总能量.第九章磁场第1讲磁场及其对电流的作用必备知识·自主排查一、1.(1)磁场力(2)N极(3)N极2.(1)强弱方向(2)FIL3.(1)处处相等处处相同二、1.(1)磁感应强度(2)切线疏密闭合不存在三、1.(1)BIL(2)02.(1)垂直(2)电流(3)拇指教材拓展1.答案:C2.答案:D3.答案:BC关键能力·分层突破例1 解析:两直角导线可以等效为如图所示的两直导线,由安培定则可知,两直导线分别在M处的磁感应强度方向为垂直纸面向里、垂直纸面向外,故M处的磁感应强度为零;两直导线在N处的磁感应强度方向均垂直纸面向里,故N处的磁感应强度为2B,B正确.答案:B1.解析:根据螺线管内部的磁感线分布可知,在螺线管的内部,越接近中心位置,磁感线分布越均匀,越接近两端,磁感线越不均匀,可知螺线管越长,内部的磁场越接近匀强磁场.故B正确,A、C、D错误.答案:B2.解析:设正方体棱长为L ,其中一根长直导线的电流在e 点产生的磁感应强度为B 0,则e 点的磁感应强度大小为B e =√B 02+B 02=√2B0处于ℎg 边的长直导线到a 点的距离为√2L ,在a 点产生的磁感应强度大小为√2 2B 0;处于dh 边的长直导线到a 点的距离为L ,在a点产生的磁感应强度大小为B 0,所以a 点的磁感应强度大小为B a =√(√22B 0)2+B 02=√6 2B 0,B e ∶B a =2∶√3,A 项正确.答案:A例2 解析:两导线受到的安培力是相互作用力,大小相等,A 错误;导线所受的安培力可以用F =ILB 计算,因为磁场与导线垂直,B 正确;移走导线b 前,b 的电流较大,则p 点磁场方向与b 产生磁场方向同向,向里,移走b 后,p 点磁场方向与a 产生磁场方向相同,向外,C 正确;在离两导线所在的平面有一定距离的有限空间内,两导线在任意点产生的磁场均不在同一条直线上,故不存在磁感应强度为零的位置,D 正确.答案:BCD例3 解析:闭合开关S 后,金属棒PQ 向右移动,根据左手定则可知,电流方向为从P 到Q ,电源的M 端为正极,选项A 错误;静止时,则2k ·Δx =BIL ,解得I =2k Δx BL =3 A ,选项B 错误,C 正确;闭合开关S 后,将滑动变阻器的滑片向右移动,则电路中电阻增大,电流减小,金属棒PQ 所受安培力减小,将向左移动,故选项D 错误.答案:C3.解析:电流从a 点流入金属框后,可认为金属框的ab 与afedcb 部分并联,设ab 边的电阻为R ,则afedcb 部分的电阻为5R ,则通过ab 边的电流为5I 6,通过afedcb 部分的电流为I 6,可将afedcb 部分等效为长度为L 、方向与ab 相同的导线,根据左手定则可知,两部分所受安培力大小分别为5BIL 6、BIL 6,方向均垂直ab 边向左,故金属框受到的安培力为BIL ,方向垂直ab 边向左,选项A 正确,B 、C 、D 错误.答案:A4.解析:对导体棒进行受力分析,导体棒静止,则其受力如图所示.根据左手定则可知,导体棒中的电流方向为由a 到b ,根据平衡条件可知安培力的大小为:F =BIl =mg sin θ,所以感应电流的大小为:I =mg sin θBl ,故A 、B 、D 错误,C 正确.答案:C例4 解析:根据“同向电流相互吸引,异向电流相互排斥”的作用规律可知,左、右两导线与长管中心的长直导线相互吸引,上、下两导线与长管中心的长直导线相互排斥,C 正确.答案:C5.解析:方法一(电流元法) 把线圈L 1沿水平转动轴分成上下两部分,每一部分又可以看成由无数段直线电流元组成,电流元处在I 2产生的磁场中,根据安培定则可知各电流元所在处的磁场方向,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元所受安培力均指向纸内,因此从左向右看,线圈L 1将顺时针转动.方法二(等效法) 把线圈L 1等效为小磁针,该小磁针刚好处于环形电流I 2的中心,小磁针的N 极应指向该点环形电流I 2的磁场方向,由安培定则知I 2产生的磁场方向在其中心处竖直向上,而L 1等效成小磁针后,转动前,N 极指向纸内,因此小磁针的N 极应由指向纸内转为向上,所以从左向右看,线圈L 1将顺时针转动.方法三(结论法) 环形电流I 1、I 2之间不平行,则必有相对转动,直到两环形电流同向平行为止.据此可得,从左向右看,线圈L 1将顺时针转动.答案:B6.解析:本题考查安培力作用下的动态平衡问题.磁铁外部的磁感线从N 极出发回到S 极,则此时在导线处磁感线平行于斜面向下,如图所示,根据左手定则可以判断导线受到的安培力方向垂直斜面向上,因电流增大,所以安培力增大,安培力与斜面垂直,根据牛顿第三定律与受力平衡可知磁铁对斜面的压力逐渐变大,弹簧弹力不变,选项A 、B 、C 错误,D 正确.答案:D情境1 解析:指针在量程内线圈一定处于磁场之中,由于线圈与铁芯共轴,线圈平面总是与磁感线平行,故A 正确.电表的调零使得当指针处于“0”刻线时,螺旋弹簧处于自然状态,所以无论线圈向哪一方向转动都会使螺旋弹簧产生阻碍线圈转动的力,故B 正确.由左手定则知,b 端受到的安培力方向向下,a 端受到的安培力方向向上,安培力将使线圈沿顺时针方向转动,故C 错误,D 正确.答案:ABD情境2 解析:线圈两端C 、D 与外电路接通对线圈供电,使秤盘和线圈恢复到未放重物时的位置并静止,说明线圈受到的安培力向上,根据左手定则可知,电流应该从D 端流入线圈,故线圈的D 端应与外电路电源的正极(H 端)相接,C 端应与外电路中的G 端(负极)相接,故选项A 错误;设线圈的匝数为n ,外电路接通使秤盘和线圈恢复到未放重物时的位置并静止时根据平衡条件得:Mg =2nBIL ,其中I =U R ,联立上述两式得Mg =2nB U RL ,解得n =MgR 2BLU ,故选项B 正确;根据Mg =2nB U R L 知,当质量为2M 的重物放在秤盘上时,直流电源输出电压为2U ,选项C 正确;设线圈电阻的电阻率为ρ,导线的横截面积为S ,则R =ρ4nL S ,可得M=BUS 2ρg ,可见增加线圈的匝数,无法增大电子天平能称量的最大质量,故选项D 错误. 答案:BC情境3 解析:(1)由安培力公式F =IBL =8×104 Nmv2(2)方法一由动能定理Fx=12弹体从静止加速到4 km/s,代入数值得x=20 m 方法二由牛顿第二定律F=ma得加速度a=4×105 m/s2由v2−v02=2asv=4 km/s代入数值得x=20 m(3)根据F=ma,v=at知发射弹体用时t=mv=1×10-2 sF发射弹体过程产生的焦耳热Q=I2(R+r)t=1.6×105 J弹体的动能mv2=1.6×106 JE k=12系统消耗的总能量E=E k+Q=1.76×106 J答案:(1)8×104 N (2)20 m (3)1.76×106 J。
高考物理一轮复习第九章磁场本章学科素养提升课件.ppt
第九章 磁场
自主阅读素材9 本章学科素养提升
Hale Waihona Puke 感谢你的聆听1思维建模能力的培养
模型概述 带电粒子在周期性变化的电、磁场中的运动是高中物理的一个难点.题 目中的运动情景复杂、综合性强,将场的性质、运动学规律、牛顿运动 定律、功能关系以及交变电场等知识有机地结合,对空间想象能力、物 理过程和运动规律的综合分析能力,以及利用数学知识解决物理问题的 能力要求较高.
(有时候还要找出圆心角); (4)结合粒子运动的半径公式 r=mBqv(或周期公式 T=2qπBm)即可得出所求的
物理量.
2019-9-13
感谢你的聆听
12
【例2】 如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀
强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ和Ⅱ中,直径A2A4与 直径A1A3之间的夹角为α=60°.一质量为m、电荷量为q的带正电 粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成β= 30°角的方向射入磁场,随后该粒子以垂直于A2A4 的方向经过圆心进入Ⅱ区,最后再从A4处射出磁场. 已知该粒子从射入到射出磁场所用的时间为t,求:
(1)粒子在磁场区域Ⅰ和Ⅱ中运动的轨道半径R1与R2的比值; 答案 2
(2)Ⅰ区和Ⅱ区中磁场的磁感应强度B1和B2的大小.
2019-9-13
感谢你的聆听
答案 解析
5πm 5πm 6qt 3qt
13
解析
2019-9-13
感谢你的聆听
5
(3)若 B0=4mqdv0,为使粒子仍能垂直打在 P 板上,求 TB.
解析
答案 见解析
2019-9-13
感谢你的聆听
7
方法感悟
磁场(解析版)—2025年高考物理一轮复习知识清单
磁场带电粒子在匀强电场中做类抛体运动的相关计算掌握磁场和磁感应强度的概念,会用磁感线描述磁场,熟悉几种常见磁场模型的磁感线分布图;会判断安培力的方向,能够计算安培力的大小,会分析计算安培力作用下导体的平衡与加速问题;掌握洛伦兹力的概念,会分析和计算带电粒子在有界磁场中运动的临界、极值问题,会分析计算带电粒子在组合场、叠加场中的问题;掌握带电粒子在磁场中的多解问题、交变磁场和立体空间中的问题;了解与磁场相关的仪器,重点掌握质谱仪、回旋加速器和霍尔效应的原理。
核心考点01 磁场中的概念一、磁场 (4)二、磁感线 (4)三、磁感应强度 (6)四、磁通量 (8)核心考点02 安培力 (10)一、安培力的方向 (10)二、安培力的大小 (11)三、安培力作用下导体的平衡与加速问题 (12)核心考点03 洛伦兹力 (14)一、洛伦兹力 (14)二、带电粒子在匀强磁场中的运动 (15)三、有界匀强磁场的运动模型 (18)四、动态圆模型 (22)五、带电粒子在组合场中的运动 (24)六、带电粒子在叠加场中的运动 (27)七、带电粒子在交变磁场的运动 (30)八、带电粒子在磁场中的多解问题 (32)九、带电粒子在立体空间的运动 (34)核心考点04 与磁场相关的仪器 (36)一、速度选择器 (36)二、质谱仪 (37)三、回旋加速器 (39)四、磁流体发电机 (41)五、电磁流量计 (42)六、霍尔效应模型 (43)01一、磁场1、磁性物质吸引铁、钴、镍等物质的性质。
2、磁体具有磁性的物体,如磁铁。
3、磁极磁体上磁性最强的区域。
任何磁体都有两个磁极,一个叫北极(N极),另一个叫南极(S极)。
并且,任何一个磁体都有两个磁极,无论怎样分割磁体,磁极总是成对出现,不存在磁单极。
【注意】同名磁极相互排斥,异名磁极相互吸引。
4、磁场的定义磁体或电流周围存在的一种特殊物质,能够传递磁体与磁体之间、磁体与电流之间、电流与电流之间的相互作用。
高中物理高考 高考物理一轮复习专题课件 专题9+磁场(全国通用)
2.回旋加速器 (1)基本构造:回旋加速器的核心部分是放置在磁场中的两个D形 的金属扁盒 (如图所示),其基本组成为:
①粒子源 ②两个D形金属盒 ③匀强磁场 ④高频电源 ⑤粒子引出装置
(2)工作原理
①电场加速 qU=ΔEk; ②磁场约束偏转 qBv=mvr2,v=qmBr∝r;
③加速条件:高频电源的周期与带电粒子在 D 形盒中运动的周 2πm
知识点一 磁场及其描述 1.磁场 (1)基本特性:对放入其中的磁体、电流和运动电荷都有_磁__场__力__的 作用. (2)方向:磁场中任一点小磁针_北__极__(N__极__)的受力方向为该处的磁场 方向.
2.磁感应强度
B=IFL
强弱
方向
北极(N极)
3.磁感应强度与电场强度的比较
磁感应强度 B 电场强度 E
要点一 通电导线在安培力作用下的运动的判断方法 [突破指南]
电流元法
把整段导线分为直线电流元,先用左手定则判 断每段电流元受力的方向,然后判断整段导线 所受合力的方向,从而确定导线运动方向.
等效法
环形电流可等效成小磁针,通电螺线管可以等 效成条形磁铁或多个环形电流,反过来等效也 成立.
特殊 通过转动通电导线到某个便于分析的特殊位置,然 位置法 后判断其所受安培力的方向,从而确定其运动方向.
A.FN1<FN2,弹簧的伸长量减小 B.FN1=FN2,弹簧的伸长量减小 C.FN1>FN2,弹簧的伸长量增大 D.FN1>FN2,弹簧的伸长量减小
解析 采用“转换研究对象法”:由于条形磁铁的磁感线是从N 极出发到S极,所以可画出磁铁在导线A处的一条磁感线,此处磁 感应强度方向斜向左下方,如图,导线A中的电流垂直纸面向外, 由左手定则可判断导线A必受 斜向右下方的安培力,由牛顿 第三定律可知磁铁所受作用力的方向是斜向左上方,所以磁铁对 斜面的压力减小,FN1>FN2.同时,由于导线A比较靠近N极,安 培力的方向与斜面的夹角小于90°,所以电流对磁铁的作用力有 沿斜面向下的分力,使得弹簧弹力增大,可知弹簧的伸长量增大, 所以正确选项为C.
高三物理第一轮复习磁场基本性质;磁场对电流的作用
准兑市爱憎阳光实验学校高三物理第一轮复习:磁场根本性质;磁场对电流的作用【本讲信息】一. 教学内容:1. 磁场根本性质2. 磁场对电流的作用【要点扫描】磁场根本性质〔一〕磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的根本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.〔二〕磁感线为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.1、疏密表示磁场的强弱.2、每一点切线方向表示该点磁场的方向,也就是磁感强度的方向.3、是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。
4、匀强磁场的磁感线平行且距离相.没有画出磁感线的地方不一没有磁场.5、安培那么:拇指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个圆,每点磁场方向是在该点的切线方向。
*熟记常用的几种磁场的磁感线:〔三〕磁感强度1、磁场的最根本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。
2、在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感强度.①表示磁场强弱的物理量.是矢量.②大小:ILFB 〔电流方向与磁感线垂直时的公式〕.③方向:左手那么:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.④单位:牛/安米,也叫特斯拉,单位制单位符号T.⑤点B:就是说磁场中某一点了,那么该处磁感强度的大小与方向都是值.⑥匀强磁场的磁感强度处处相.⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,那么该点的磁感强度是各电流或磁体在该点激发的磁场的磁感强度的矢量和,满足矢量运算法那么。
〔四〕磁通量与磁通密度1、磁通量Φ:穿过某一面积磁力线条数,是标量.2、磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感强度,是矢量.3、二者关系:B=Φ/S〔当B与面垂直时〕,Φ=BScosθ,Scosθ为面积垂直于B方向上的投影,θ是B与S法线的夹角.磁场对电流的作用〔一〕安培力1、安培力:通电导线在磁场中受到的作用力叫做安培力.说明:磁场对通电导线中向移动的电荷有力的作用,磁场对这些向移动电荷作用力的宏观表现即为安培力.2、安培力的计算公式:F=BILsinθ〔θ是I与B的夹角〕;通电导线与磁场方向垂直时,即θ=90°,此时安培力有最大值;通电导线与磁场方向平行时,即θ=0°,此时安培力有最小值,F=0N;0°<B<90°时,安培力F介于0和最大值之间。
2019版高考物理一轮复习 第九章 磁场 配餐作业26 磁场对运动电荷的作用
配餐作业(二十六) 磁场对运动电荷的作用A 组·基础巩固题1.如图表示洛伦兹力演示仪,用于观察运动电子在磁场中的运动,在实验过程中下列选项错误的是( )A .不加磁场时电子束的径迹是直线B .加磁场并调整磁感应强度,电子束径迹可形成一个圆周C .保持磁感应强度不变,增大出射电子的速度,电子束圆周的半径减小D .保持出射电子的速度不变,增大磁感应强度,电子束圆周的半径减小解析 不加磁场时电子不受力,电子束的径迹是直线,故A 项正确;加磁场使磁场的方向与电子初速度的方向垂直,并调整磁感应强度电子束径迹可形成一个圆周,故B 项正确;电子受到的洛伦兹力提供向心力,则qvB =mv 2r 所以r =mv qB,保持磁感应强度不变,增大出射电子的速度,电子束圆周的半径增大,故C 项错误;保持出射电子的速度不变,增大磁感应强度,电子束圆周的半径减小,故D 项正确。
答案 C2.(多选)带电油滴以水平速度v 0垂直进入磁场,恰做匀速直线运动,如图所示,若油滴质量为m ,磁感应强度为B ,则下述说法正确的是( )A .油滴必带正电荷,电荷量为mg v 0B B .油滴必带正电荷,比荷q m =g v 0BC .油滴必带负电荷,电荷量为mg v 0BD .油滴带什么电荷都可以,只要满足q =mg v 0B 解析 油滴水平向右匀速运动,其所受洛伦兹力必向上与重力平衡,故带正电,其电荷量q =mg v 0B ,油滴的比荷为q m =g Bv 0,A 、B 项正确。
答案 AB3.如图所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )A .1∶2B .2∶1C .1∶ 3D .1∶1解析 正、负电子在磁场中运动轨迹如图所示,正电子做匀速圆周运动在磁场中的部分对应圆心角为120°,负电子圆周部分所对应圆心角为60°,故时间之比为2∶1。
新高考物理 磁场9-1 磁场的描述 磁场对电流的作用
立体 图
三、安培力 1.安培力的大小 (1)磁场方向和电流方向垂直时:F=_B__I_L_。 (2)磁场方向和电流方向平行时:F=0。 2.安培力的方向 —— 左手定则判断 (1)伸开左手,使拇指与其余四个手指_垂__直___,并且都与手掌在同一个平面内。 (2)让磁感线从掌心垂直进入,并使四指指向_电__流___的方向。 (3)_拇__指__ 所指的方向就是通电导线在磁场中所受安培力的方向。
3.[安培力的叠加问题]
(2019·全国卷Ⅰ) 如图,等边三角形线框LMN由三根相同的导体
棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向
垂直,线框顶点M、N与直流电源两端相接。已知导体棒MN受
到的安培力大小为F,则线框LMN受到的安培力的大小为
答案:B
[要点自悟明] 1.磁场的基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用。 2.磁感应强度的理解 (1)描述磁场的强弱和方向。 (2)B=IFL成立的条件为:通电导线垂直于磁场。 (3)磁场方向:小磁针 N 极受力的方向。
3.磁感线的特点 (1)磁感线上某点的切线方向就是该点的磁场方向。 (2)磁感线的疏密定性地表示磁场的强弱。 (3)磁感线是闭合曲线,没有起点和终点。 (4)磁感线是假想的曲线,客观上不存在。 4.磁通量 (1)大小:当S⊥B时,Φ=BS,标量。 (2)理解为穿过线圈平面的磁感线条数。
B.与运动电荷所受磁场力的方向一致
C.与小磁针N极所受磁场力的方向一致
D.与小磁针S极所受磁场力的方向一致
解析:磁场中某一点磁感应强度的方向,与小磁针N极受力方向一致,C正确,
A、B、D错误。
答案:C
2.[磁感应强度的大小] (多选)一小段长为 L 的通电直导线放在磁感应强度为 B 的磁场中,当通过它的 电流为 I 时,所受安培力为 F。以下关于磁感应强度 B 的说法正确的是 ( ) A.磁感应强度 B 一定等于IFL B.磁感应强度 B 可能大于或等于IFL C.磁场中通电直导线受力大的地方,磁感应强度一定大 D.在磁场中通电直导线也可以不受安培力
高考物理一轮复习 第9章 磁场 第3节 带电粒子在复合场中的运动教案-人教版高三全册物理教案
第3节 带电粒子在复合场中的运动带电粒子在组合场中的运动 [讲典例示法]带电粒子在电场和磁场的组合场中运动,实际上是将粒子在电场中的加速与偏转,跟在磁场中偏转两种运动有效组合在一起,有效区别电偏转和磁偏转,寻找两种运动的联系和几何关系是解题的关键。
当带电粒子连续通过几个不同的场区时,粒子的受力情况和运动情况也发生相应的变化,其运动过程则由几种不同的运动阶段组成。
[典例示法] (2018·全国卷Ⅱ)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ′,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行。
一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出。
不计重力。
(1)定性画出该粒子在电、磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷及其从M 点运动到N 点的时间。
[解析] (1)粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称,如图(a)所示。
图(a)(2)设粒子从M 点射入时速度的大小为v 0,进入磁场的速度大小为v ,方向与电场方向的夹角为θ,如图(b ),速度v 沿电场方向的分量为v 1。
图(b)根据牛顿第二定律有qE =ma ① 由运动学公式有l ′=v 0t ② v 1=at ③ v 1=v cos θ④设粒子在磁场中做匀速圆周运动的轨迹半径为R ,由洛伦兹力公式和牛顿第二定律得qvB =mv 2R⑤ 由几何关系得l =2R cos θ ⑥ 联立①②③④⑤⑥式得v 0=2El ′Bl。
⑦(3)由运动学公式和题给数据得 v 1=v 0cot π6⑧联立①②③⑦⑧式得q m =43El ′B 2l2⑨设粒子由M 点运动到N 点所用的时间为t ′,则t ′=2t +2⎝ ⎛⎭⎪⎫π2-π62πT ⑩式中T 是粒子在磁场中做匀速圆周运动的周期, T =2πmqB⑪由③⑦⑨⑩⑪式得t ′=Bl E ⎝ ⎛⎭⎪⎪⎫1+3πl 18l ′。
高考物理一轮复习 第9章 磁场 第2节 核心素养 科学思维系列—“动态圆”模型在电磁学中的应用学案
学习资料科学思维系列-“动态圆"模型在电磁学中的应用“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆"法磁场的磁感应强度大小为B,一质量为m、电荷量为q的带正电的粒子(重力不计)从AC边的中点O垂直于AC边射入该匀强磁场区域,若该三角形的两直角边长均为2l,则下列关于粒子运动的说法中不正确的是()A.若该粒子的入射速度为v=错误!,则粒子一定从CD边射出磁场,且距点C的距离为lB.若要使粒子从CD边射出,则该粒子从O点入射的最大速度应为v=错误!C.若要使粒子从CD边射出,则该粒子从O点入射的最大速度应为v=错误!D.当该粒子以不同的速度入射时,在磁场中运动的最长时间为错误!C[若粒子射入磁场时速度为v=错误!,则由qvB=m错误!可得r=l,由几何关系可知,粒子一定从CD边上距C点为l的位置离开磁场,选项A正确;因为r=错误!,所以v=错误!,因此,粒子在磁场中运动的轨迹半径越大,速度就越大,由几何关系可知,当粒子在磁场中的运动轨迹与三角形的AD边相切时,能从CD边射出的轨迹半径最大,此时粒子在磁场中做圆周运动的轨迹半径r =(2+1)l ,故其最大速度为v =错误!,选项B 正确,C 错误;粒子在磁场中的运动周期为T =2πm qB,故当粒子从三角形的AC 边射出时,粒子在磁场中运动的时间最长,由于此时粒子做圆周运动的圆心角为180°,故其最长时间应为t =πm qB,选项D 正确。
新课标2023版高考物理一轮总复习第九章磁场第2讲带电粒子在磁场中的运动课件
电荷处在电场中
大小
F=qvB(v⊥B)
F=qE
方向
F⊥B且F⊥v
正电荷受力与电场方向相同,负电 荷受力与电场方向相反
可能做正功,可能做负功,也可能 做功情况 任何情况下都不做功
不做功
(二) 半径公式和周期公式的应用(固基点)
[题点全练通]
1.[半径公式、周期公式的理解]
(选自鲁科版新教材)(多选)在同一匀强磁场中,两带电量相等的粒子,仅受磁
[答案] D
类型(二) 平行直线边界的磁场 1.粒子进出平行直线边界的磁场时,常见情形如图所示:
2.粒子在平行直线边界的磁场中运动时存在临界条件,如图a、c、d所示。
3.各图中粒子在磁场中的运动时间: (1)图 a 中粒子在磁场中运动的时间 t1=θBmq,t2=T2=πBmq。 (2)图 b 中粒子在磁场中运动的时间 t=θBmq。 (3)图 c 中粒子在磁场中运动的时间
[答案] BD
[例 3] 如图所示,平行边界区域内存在匀强磁场,比荷相同 的带电粒子 a 和 b 依次从 O 点垂直于磁场的左边界射入,经磁场 偏转后从右边界射出,带电粒子 a 和 b 射出磁场时与磁场右边界 的夹角分别为 30°和 60°,不计粒子的重力,下列判断正确的是( )
A.粒子 a 带负电,粒子 b 带正电 B.粒子 a 和 b 在磁场中运动的半径之比为 1∶ 3 C.粒子 a 和 b 在磁场中运动的速率之比为 3∶1 D.粒子 a 和 b 在磁场中运动的时间之比为 1∶2
(三) 带电粒子在有界匀强磁场中的圆周运动(精研点) 类型(一) 直线边界的磁场
1.粒子进出直线边界的磁场时,常见情形如图所示:
2.带电粒子(不计重力)在直线边界匀强磁场中的运动时具有两个特性: (1)对称性:进入磁场和离开磁场时速度方向与边界的夹角相等。 (2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运
(统考版)2023版高考物理一轮复习 第九章 磁场 专题七 带电粒子在复合场中的运动学生用书
专题七带电粒子在复合场中的运动考点一带电粒子在组合场中的运动1.组合场电场与磁场各位于一定的区域内,并不重叠;或在同一区域分时间段交替出现.2.“电偏转”或“磁偏转”的比较垂直进入磁场(磁偏转)垂直进入电场(电偏转) F=qv B,F大小不变,方向总指向圆例1.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x 轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;,求该粒子的比荷及其(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6从M点运动到N点的时间.[教你解决问题](1)读题→画轨迹(2)模型建构→求速度[思维方法]解决带电粒子在组合场中运动问题的一般思维模板跟进训练1.[2021·广东卷,14]如图是一种花瓣形电子加速器简化示意图.空间有三个同心圆a、b、c围成的区域,圆a内为无场区,圆a与圆b之间存在辐射状电场,圆b与圆c之间有三个圆心角均略小于90°的扇环形匀强磁场区Ⅰ、Ⅱ和Ⅲ.各区磁感应强度恒定,大小不同,方向均垂直纸面向外.电子以初动能E k0从圆b上P点沿径向进入电场,电场可以反向,保证电子每次进入电场即被全程加速.已知圆a与圆b之间电势差为U,圆b半径为R,圆c半径为√3R,电子质量为m,电荷量为e,忽略相对论效应,取tan 22.5°=0.4.(1)当E k0=0时,电子加速后均沿各磁场区边缘进入磁场,且在电场内相邻运动轨迹的夹角θ均为45°,最终从Q点出射,运动轨迹如图中带箭头实线所示.求Ⅰ区的磁感应强度大小、电子在Ⅰ区磁场中的运动时间及在Q点出射时的动能;(2)已知电子只要不与Ⅰ区磁场外边界相碰,就能从出射区域出射.当E k0=keU时,要保证电子从出射区域出射,求k的最大值.考点二带电粒子在叠加场中的运动1.磁场力、重力并存(1)若重力和洛伦兹力平衡,则带电体做匀速直线运动.(2)若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.2.电场力、磁场力并存(不计重力的微观粒子)(1)若电场力和洛伦兹力平衡,则带电体做匀速直线运动.(2)若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.3.电场力、磁场力、重力并存(1)若三力平衡,一定做匀速直线运动.(2)若重力与电场力平衡,一定做匀速圆周运动.(3)若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.例2.如图所示,平面直角坐标系的第二象限内存在水平向左的匀强电场和垂直纸面向里的匀强磁场,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x 轴负方向成37°角,在y轴与MN之间的区域Ⅰ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅱ内存在宽度为d的竖直向上的匀强电场和垂直纸面向里的匀强磁场,小球在区域Ⅱ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,求:(1)第二象限内电场强度E1的大小和磁感应强度B1的大小;(2)区域Ⅰ内最小电场强度E2的大小和方向;(3)区域Ⅱ内电场强度E3的大小和磁感应强度B2的大小.[教你解决问题]——读题抓已知条件→模型建构跟进训练2.[2022·广西南宁统考]如图所示,空间中存在水平方向的匀强电场和匀强磁场,电场方向水平向左,磁场方向垂直纸面向里.一带电小球恰能以速度v0沿与水平方向成30°角斜向右下方做匀速直线运动,最后进入一轴线沿小球运动方向且固定摆放的一光滑绝缘管道(管道内径略大于小球直径),下列说法正确的是( )A.小球带负电=√3v0B.电场和磁场的大小关系为EBC.若小球刚进入管道时撤去磁场,小球仍做匀速直线运动D.若小球刚进入管道时撤去电场,小球的机械能不断增大3.如图所示,在竖直平面内的坐标系xOy中,第三象限存在垂直于纸面向外的匀强磁场和沿x轴负方向的匀强电场,第一象限y≥0.35 m的区域有竖直向下的匀强电场和垂直于纸面向里的匀强磁场,两区域磁场的磁感应强度大小均为B=0.5 T,电场的场强大小均为E=2 N/C.一带电荷量为q的油滴从图中第三象限的P点获得一初速度v0,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限,经过一段时间后再次穿过x轴离开第一象限,重力加速度g取10 m/s2,求:(1)油滴在P点得到的初速度v0的大小;(2)油滴在第一象限运动的时间;(3)油滴再次穿过x轴时的横坐标x1.考点三复合场与现代科技素养提升原理图例3. [2021·河北卷,5]如图,距离为d的两平行金属板P、Q之间有一匀强磁场,磁感应强度大小为B1,一束速度大小为v的等离子体垂直于磁场喷入板间.相距为L的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为B2,导轨平面与水平面夹角为θ,两导轨分别与P、Q相连.质量为m、电阻为R的金属棒ab垂直导轨放置,恰好静止.重力加速度为g,不计导轨电阻、板间电阻和等离子体中的粒子重力.下列说法正确的是( )A.导轨处磁场的方向垂直导轨平面向上,v=mgR sinθB1B2LdB.导轨处磁场的方向垂直导轨平面向下,v=mgR sinθB1B2LdC.导轨处磁场的方向垂直导轨平面向上,v=mgR tanθB1B2LdD.导轨处磁场的方向垂直导轨平面向下,v=mgR tanθB1B2Ld跟进训练4.(多选)如图甲是回旋加速器D形盒外观图,如图乙是回旋加速器工作原理图,微观粒子从S处由静止开始被加速,达到其可能的最大速度v m后将到达导向板处,由导出装置送往需要使用高速粒子的地方.下列说法正确的是( )A.D形盒半径是决定v m的一个重要因素B.粒子从回旋加速器的磁场中获得能量C.高频电源的电压是决定v m的重要因素D.高频电源的周期等于粒子在磁场中的运动周期5.[2022·郑州模拟](多选)某种质谱仪的工作原理示意图如图所示.此质谱仪由以下几部分构成:粒子源N,P、Q间的加速电场,静电分析器,磁感应强度为B的有界匀强磁场、方向垂直纸面向外,胶片M.若静电分析器通道中心线半径为R,通道内有均匀辐射电场,在中心线处的电场强度大小为E;由粒子源发出一质量为m、电荷量为q的正离子(初速度为零,重力不计),经加速电场加速后,垂直场强方向进入静电分析器,在静电分析器中,离子沿中心线做匀速圆周运动,而后由S点沿着既垂直于磁分析器的左边界,又垂直于磁场方向射入磁分析器中,最终打到胶片上的某点.下列说法正确的是( )ERA.P、Q间加速电压为12B.离子在磁场中运动的半径为√mERqC.若一质量为4m、电荷量为q的正离子加速后进入静电分析器,离子不能从S射出D.若一群离子经过上述过程打在胶片上同一点,则这些离子具有相同的比荷情境2 CT扫描机例4. CT扫描是计算机X射线断层扫描技术的简称,CT扫描机可用于对多种病情的探测.图甲是某种CT机主要部分的剖面图,其中X射线产生部分的示意图如图乙所示.图乙中M、N之间有一电子束的加速电场,虚线框内有匀强偏转磁场;经调节后电子束从静止开始沿带箭头的实线所示的方向前进,打到靶上,产生X射线(如图中带箭头的虚线所示),将电子束打到靶上的点记为P点.则( )A.M处的电势高于N处的电势B.增大M、N之间的加速电压可使P点左移C.偏转磁场的方向垂直于纸面向外D.增大偏转磁场磁感应强度的大小可使P点左移[思维方法]解决实际问题的一般过程专题七带电粒子在复合场中的运动关键能力·分层突破例 1 解析:(1)粒子运动的轨迹如图甲所示.(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)(2)粒子从电场下边界入射后在电场中做类平抛运动.设粒子从M点射入时速度的大小为v0,在下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为θ(见图乙),速度沿电场方向的分量为v1.根据牛顿第二定律有qE=ma①式中q和m分别为粒子的电荷量和质量.由运动学公式有v1=at②l′=v0t③v1=v cos θ④粒子在磁场中做匀速圆周运动,设其运动轨道半径为R,由洛伦兹力公式和牛顿第二定律得qvB =m v 2R ⑤ 由几何关系得l =2R cos θ ⑥ 联立①②③④⑤⑥式得v 0=2El ′Bl⑦(3)由运动学公式和题中所给数据得v 1=v 0tanπ6⑧联立①②③⑦⑧式得q m=4√3El ′B 2l 2⑨设粒子由M 点运动到N 点所用的时间为t ′,则t ′=2t +2(π2−π6)2πT ⑩式中T 是粒子在磁场中做匀速圆周运动的周期T =2πm qB⑪由③⑦⑨⑩⑪式得t ′=BlE (1+√3πl 18l ′) ⑫答案:(1)图见解析 (2)2El ′Bl(3)4√3El ′B 2l 2Bl E(1+√3πl 18l ′)1.解析:(1)设电子经圆b 的加速电场加速两次后以速度v 1进入Ⅰ区磁场,Ⅰ区的磁感应强度大小为B 1,则由动能定理得2eU =12mv 12-0,由几何知识得,电子在Ⅰ区做匀速圆周运动的半径r 1=R tan θ2=R tan 22.5°=0.4R ,由洛伦兹力提供向心力可得ev 1B 1=m v 12 r1, 联立解得B 1=5√meUeR , 运动时间t 1=360°−135°360°T ,又T =2πmeB 1,联立解得t 1=πR √meU 4eU,电子由P →Q ,由动能定理得8eU =E k ,所以动能E k =8eU .(2)k 最大时,电子进入Ⅰ区时速度v 最大,做匀速圆周运动的半径r 最大,所以当电子轨迹与Ⅰ区磁场的圆弧相切时,半径r 最大,由几何关系知(√3R -r )2=R 2+r 2,解得r =√33R ,根据洛伦兹力提供向心力有evB 1=m v 2r , 解得v =5√3meU3m,电子从P 点进入圆b 到刚进入Ⅰ区,由动能定理得 2eU =12mv 2-E k0,又E k0=keU ,解得k =136. 答案:(1)5√meU eR πR √meU4eU8eU (2)136例2 解析:(1)带电小球在第二象限内受重力、电场力和洛伦兹力作用做直线运动,三力满足如图所示关系且小球只能做匀速直线运动.由图知tan 37°=qE 1mg,得E 1=3mg 4q,cos 37°=mgqv 0B 1,得B 1=5mg4qv 0.(2)区域Ⅰ中小球做直线运动,电场强度最小,受力如图所示(电场力方向与速度方向垂直),小球做匀加速直线运动.由图知cos 37°=qE 2mg ,得E 2=4mg 5q.方向与x 轴正方向成53°角向上.(3)小球在区域Ⅱ内做匀速圆周运动,所以mg =qE 3,得E 3=mgq ,因小球恰好不从右边界穿出,小球运动轨迹如图所示.由几何关系得r =5d8,由洛伦兹力提供向心力知q ·2v 0B 2=m (2v 0)2r,联立得B 2=16mv 05qd.答案:(1)3mg 4q5mg 4qv 0(2)4mg 5q ,方向与x 轴正方向成53°角向上 (3)mgq16mv 05qd2.解析:带电小球受到竖直向下的重力,垂直速度方向的洛伦兹力,沿水平方向的电场力,根据质点做匀速直线运动的条件可知,小球带正电,选项A 错误;由sin 30°=qE qv 0B可得,电场和磁场的大小关系为EB=v02,选项B 错误;若小球刚进入管道时撤去磁场,重力沿速度方向的分力与电场力沿速度方向的分力大小相等,方向相反,所以小球仍做匀速直线运动,选项C 正确;若小球刚进入管道时撤去电场,只有重力做功,小球的机械能守恒,选项D 错误.答案:C3.解析:(1)如图所示,根据平衡条件可得mg =qE ,qv 0B =√2qE解得v 0=√2EB=4√2 m/s.(2)进入第一象限后,在0≤y ≤0.35 m 区域内,油滴做斜抛运动,根据运动的合成与分解,油滴在水平方向上做匀速直线运动,在竖直方向上做竖直上抛运动,刚到O 点时,有v 0x =v 0cos 45°,v 0y =v 0sin 45°竖直方向上,油滴做竖直上抛运动,有v −y 2v 0y 2=-2g ℎvy =v0y -gt1进入y>ℎ区域后,电场力和重力大小相等,方向相反,油滴在洛伦兹力作用下做匀速圆周运动,则进入到y>ℎ区域时,有v1=√v 0x 2+v y2 根据速度的合成与分解可得tan α=vy v 0x运动时间t 2=2α360°T其中周期T =2πm qB总时间t =2t 1+t 2联立解得t =15 s +37π225 s =0.72 s.(3)进入第一象限后,在0≤y ≤h 区域内,油滴在水平方向上做匀速直线运动,有L 1=v 0x t 1进入y >h 区域后,电场力和重力大小相等,方向相反,油滴在洛伦兹力作用下做匀速圆周运动,有qv 1B =mv 12 R由几何关系得L 2=R sin α由对称性得x 1=2L 1+2L 2, 解得x 1=3.2 m.答案:(1)4√2 m/s (2)0.72 s (3)3.2 m例3 解析:由左手定则可知Q 板带正电,P 板带负电,所以金属棒ab 中的电流方向为从a 到b ,对金属棒受力分析可知,金属棒受到的安培力方向沿导轨平面向上,由左手定则可知导轨处磁场的方向垂直导轨平面向下,由受力平衡可知B 2IL =mg sin θ,而I =UR ,而对等离子体受力分析有q U d=qvB 1,解得v =mgR sin θB 1B 2Ld.故B 正确,A 、C 、D 错误.答案:B4.解析:回旋加速器中的加速粒子最后从磁场中做匀速圆周运动离开,根据半径公式R =mv m qB,可得v m =qBR m,则粒子的最大速度与加速的电压无关,而与D 形盒的半径、磁感应强度以及粒子的电荷量和质量有关,D 形盒半径越大,v m 越大;磁场越强,v m 越大,A 正确,C 错误.回旋加速器是利用电场加速、磁场偏转来加速粒子的,B 错误;粒子在磁场中转动两个半圆的过程,电场的方向变换两次,则T 电=2×T 磁2=T 磁=2πm qB,D 正确.答案:AD5.解析:直线加速过程,根据动能定理得qU =12mv 2,电场中偏转过程,根据牛顿第二定律得qE =m v 2R,在磁场中偏转过程,根据牛顿第二定律得qvB =m v 2r,解得U =12ER ,r =m qB√qER m=1B √mER q,故选项A 正确,B 错误;只要满足R =2UE ,所有粒子都可以在弧形电场区通过,故选项C 错误;由r =1B √mER q可知,打到胶片上同一点的粒子的比荷一定相等,故选项D 正确.答案:AD例4 解析:本题结合CT 扫描机考查带电粒子的加速、偏转问题.电子束在M 、N 之间需要加速,故N 处的电势高于M 处的电势,A 错误;若增大M 、N 之间的加速电压,会使得电子获得的速度变大,电子在磁场中偏转,洛伦兹力提供向心力,有Bvq =m v 2R ,可得电子的偏转轨迹半径R =mvqB ,则电子在磁场中运动轨迹的半径变大,电子出磁场时偏转角减小,P 点向右移,B 错误;电子进入磁场中向下偏转,由左手定则可知,偏转磁场的方向垂直于纸面向里,故C 错误;根据R =mvqB 可知,偏转磁场的磁感应强度越大,电子的运动轨迹半径越小,在偏转磁场中偏转越明显,P 点向左移,故D 正确.答案:D。
2021高考人教版物理一轮复习讲义:第9章第2讲磁场对运动电荷的作用(含解析)
第2讲磁场对运动电荷的作用主干梳理对点激活知识点1 洛伦兹力、洛伦兹力的方向 I洛伦兹力公式 n 1.定义:_01运动电荷在磁场中所受的力称为洛伦兹力。
2. 方向(1) 判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动 的反方向。
⑵方向特点:F 丄B , F 丄V 。
即F 垂直于02 B 和 v 所决定的平面。
(注意B 和 v 可以有任意夹角)。
由于F 始终03垂直于v 的方向,故洛伦兹力永不做功。
3. 洛伦兹力的大小:F = qvBsin B其中B 为电荷运动方向与磁场方向之间的夹角。
⑴当电荷运动方向与磁场方向垂直时, F = qvB 。
(2) 当电荷运动方向与磁场方向平行时,F = 0。
(3) 当电荷在磁场中静止时,F = 0。
知识点2 带电粒子在匀强磁场中的运动 n1. 两种特殊运动⑴若v // B ,带电粒子以入射速度v 做丽匀谏直线运动(2)若v 丄B ,带电粒子在垂直于磁感线的平面内,以入射速度 周运动。
2. 基本公式向心力公式: qvB = m* = m 罕2「。
3. 导出公式注意:T 、f 和①的大小与轨道半径r 和运行速率v 无关,只与磁场的[03 磁感v 做l~02匀速圆(1)轨道半径:mvBq (2)周期: 2 n r qB应强度B和粒子的「04比荷m有关。
比荷m相同的带电粒子,在同样的匀强磁场中----- m mT、f、3相同。
「双基夯实一堵点疏通1 .带电粒子在磁场中运动时,一定会受到磁场力的作用。
()2. 洛伦兹力的方向垂直于B和v决定的平面,洛伦兹力对带电粒子永远不做功。
()2 n3. 根据公式T=晋,说明带电粒子在匀强磁场中的运动周期T与v成反比。
()4. 用左手定则判断洛伦兹力方向时,四指指向电荷的运动方向。
()5. 带电粒子在磁场中运动时的轨道半径与粒子的比荷成正比。
()6. 当带电粒子进入匀强磁场时,若v与B夹角为锐角,带电粒子的轨迹为螺旋线。
2022高考物理第一轮复习 09 磁场及综合
2022高考物理第一轮复习 09 磁场及综合一、单选题(共15题;共30分)1.(2分)截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线,若中心直导线通入电流I1,四根平行直导线均通入电流I2,I1≫I2,电流方向如图所示,下列截面图中可能正确表示通电后长管发生形变的是()A.B.C.D.2.(2分)如图,圆形区域内有垂直纸面向里的匀强磁场,质量为m、电荷量为q(q>0) 的带电粒子从圆周上的M点沿直径MON方向射入磁场。
若粒子射入磁场时的速度大小为v1,离开磁场时速度方向偏转90° ;若射入磁场时的速度大小为v2,离开磁场时速度方向偏转60° ,不计重力,则v1v2为()A.12B.√33C.√32D.√33.(2分)两足够长直导线均折成直角,按图示方式放置在同一平面内,EO与O′Q在一条直线上,PO′与OF在一条直线上,两导线相互绝缘,通有相等的电流I,电流方向如图所示。
若一根无限长直导线通过电流I时,所产生的磁场在距离导线d处的磁感应强度大小为B,则图中与导线距离均为d的M、N两点处的磁感应强度大小分别为()A.B、0B.0、2B C.2B、2B D.B、B4.(2分)如图,距离为d的两平行金属板P、Q之间有一匀强磁场,磁感应强度大小为B1,一束速度大小为v的等离子体垂直于磁场喷入板间,相距为L的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为B2,导轨平面与水平面夹角为θ ,两导轨分别与P、Q相连,质量为m、电阻为R的金属棒ab垂直导轨放置,恰好静止,重力加速度为g,不计导轨电阻、板间电阻和等离子体中的粒子重力,下列说法正确的是()A.导轨处磁场的方向垂直导轨平面向上,v=mgRsinθB1B2LdB.导轨处磁场的方向垂直导轨平面向下,v=mgRsinθB1B2LdC.导轨处磁场的方向垂直导轨平面向上,v=mgRtanθB1B2LdD.导轨处磁场的方向垂直导轨平面向下,v=mgRtanθB1B2Ld5.(2分)如图所示是通有恒定电流的环形线圈和螺线管的磁感线分布图。
高一物理第九章知识点
高一物理第九章知识点第一节:电磁感应电磁感应是指导体中的电磁场发生变化时,会在导体中产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁场变化率成正比,与导线的长度无关。
磁感应强度的改变和导线运动方式的不同,会产生不同类型的电磁感应现象。
第二节:电磁感应现象1. 磁场中导体的感应电动势:当导体与磁场相对运动或磁场发生变化时,导体中会产生感应电动势。
同时,若导体形成闭合回路,则会产生感应电流。
2. 线圈的感应电动势:当线圈与磁场相对运动或磁场发生变化时,线圈中会产生感应电动势。
感应电动势的大小与线圈的匝数和磁场变化率有关。
3. 电磁感应定律:当导体中产生感应电动势时,感应电流会形成磁场,其磁场的方向与原磁场相反。
第三节:发电机和电动机1. 发电机:利用电磁感应原理,将机械能转化为电能的设备称为发电机。
发电机由转子和定子组成,转子与定子之间的磁场变化会引发感应电动势,产生电流输出。
2. 电动机:利用电流在磁场中受到力的作用,将电能转化为机械能的设备称为电动机。
电动机可以实现电能到机械能的转换,广泛应用于各种机械设备中。
第四节:电磁感应的应用1. 变压器:变压器利用电磁感应原理,通过互感现象实现电压的升降,起到调节电压的作用。
变压器主要由两个线圈和一个铁芯组成,其中一个线圈为原线圈,另一个为副线圈。
2. 电能计量:电能计量仪表是利用电磁感应原理,测量和计量电能消耗的设备。
电能计量仪表可以根据电流和电压的变化,精确测量电能的消耗。
3. 电磁感应加热:电磁感应加热是指通过电磁感应现象,将电能转化为热能,实现物体加热的技术。
电磁感应加热广泛应用于工业领域中的加热炉和热处理设备。
4. 电磁感应制动:电磁感应制动是指利用电磁感应原理,通过电磁感应现象产生的感应电流,使物体受到阻力,达到制动的效果。
电磁感应制动在列车和电动车中得到广泛应用。
第五节:勒让德定律和法拉第电磁感应定律1. 勒让德定律:勒让德定律描述了导体中感应电流的产生规律。
《高考调研》高考物理大一轮复习题组层级快练:第九单元 磁场 作业43 含答案
一、选择题1.(20xx·绵阳二诊)如图所示,一个不计重力的带电粒子以v0沿各图的虚线射入场中.A中I是两条垂直纸平面的长直导线中等大反向的电流,虚线是两条导线连线的中垂线;B中+Q是两个位置固定的等量同种点电荷的电荷量,虚线是两位置连线的中垂线;C中I是圆环线圈中的电流,虚线过圆心且垂直圆环平面;D中是正交的匀强电场和匀强磁场,虚线垂直于电场和磁场方向,磁场方向垂直纸面向外.其中,带电粒子不可能做匀速直线运动的是( )答案B解析图A中两条垂直纸平面的长直导线中通有等大反向的电流,在中垂线上产生的合磁场方向水平向右,带电粒子将沿中垂线做匀速直线运动;图B中等量同种正点电荷在中垂线上的合场强先水平向左后水平向右,带电粒子受力方向不同,粒子不可能做匀速直线运动;图C中粒子运动方向与磁感线平行,粒子做匀速直线运动;图D是速度选择器的原理图,只要v0=,粒子也会做匀速直线运动,故选B项.2.如图所示,一个带正电荷的物块m,由静止开始从斜面上A点下滑,滑到水平面BC上的D点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B处时的机械能损失.先在ABC所在空间加竖直向下的匀强电场,第二次让物块m从A点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC所在空间加水平向里的匀强磁场,再次让物块m从A点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( )A.D′点一定在D点左侧B.D′点一定与D点重合C.D″点一定在D点右侧D.D″点一定与D点重合答案BC解析仅在重力场中时,物块由A点至D点的过程中,由动能定理得mgh-μmgcosαs1-μmgs2=0,即h-μcosαs1-μs2=0,由题意知A点距水平面的高度h、物块与斜面及水平面间的动摩擦因数μ、斜面倾角α、斜面长度s1为定值,所以s2与重力的大小无关,而在ABC所在空间加竖直向下的匀强电场后,相当于把重力增大了,s2不变,D′点一定与D点重合,选项B正确;在ABC所在空间加水平向里的匀强磁场后,洛伦兹力垂直于接触面向上,正压力变小,摩擦力变小,重力做的功不变,所以D″点一定在D点右侧,选项C正确.3.磁流体发电机,又叫等离子体发电机,下图中的燃烧室在3 000 K 的高温下将气体全部电离为电子与正离子,即高温等离子体.高温等离子体经喷管提速后以1 000 m/s进入矩形发电通道,发电通道有垂直于喷射速度方向的匀强磁场,磁感应强度为6 T.等离子体发生偏转,在两极间形成电势差.已知发电通道长a=50 cm,宽b=20 cm,高d=20 cm.等离子体的电阻率ρ=2 Ω·m.则以下判断中正确的是( )A.发电机的电动势为1 200 VB.因不知道高速等离子体为几价离子,故发电机的电动势不能确定C.当外接电阻为8 Ω时,发电机效率最高D.当外接电阻为4 Ω时,发电机输出功率最大答案AD解析E=Bdv=1 200 V,外接电阻越大发电机效率越高.发电机的内阻为r=ρ=4 Ω,当外接电阻为4 Ω时,发电机输出功率最大.4.如图所示,匀强磁场垂直于纸面向里,匀强电场平行于斜面向下,斜面是粗糙的.一带正电物块以某一初速度沿斜面向上滑动,经a点后到b点时速度减为零,接着又滑了下来.设物块带电荷量保持不变,则从a到b和从b回到a两过程相比较( )A.加速度大小相等B.摩擦产生热量不相同C.电势能变化量的绝对值不相同D.动能变化量的绝对值相同答案B解析两过程中,重力、电场力恒定、支持力方向不变,洛伦兹力、摩擦力方向相反,故物块所受合外力不同,由牛顿第二定律知,加速度必定不同,A项错误;上滑过程中,洛伦兹力垂直斜面向上,物块所受滑动摩擦力Ff=μ(mgcosθ-qvB),下滑过程中,洛伦兹力垂直斜面向下,物块所受滑动摩擦力Ff=μ(mgcosθ+qvB),摩擦产生热量Q=Ffx,两过程位移大小相等,摩擦力大小不同,故产生热量不同,B项正确;a、b两点电势确定,由Ep=qφ可知,两过程中电势能变化量的绝对值相等,C项错误;整个过程中,重力做功为零,电场力做功为零,摩擦力做功不为零,故物块动能一定变化,所以上滑和下滑两过程中动能变化量绝对值一定不同,D项错.5.如图所示,在一竖直平面内,y轴左侧有一水平向右的匀强电场E1和一垂直纸面向里的匀强磁场B,y轴右侧有一竖直方向的匀强电场E2,一电荷量为q(电性未知)、质量为m的微粒从x轴上A点以一定初速度与水平方向成θ=37°角沿直线经P点运动到图中C点,其中m、q、B均已知,重力加速度为g,则( )A.微粒一定带负电B.电场强度E2一定竖直向上C.两电场强度之比=43D.微粒的初速度为v=5mg4Bq答案BD解析微粒从A到P受重力、电场力和洛伦兹力作用做直线运动,则微粒做匀速直线运动,由左手定则及电场力的性质可确定微粒一定带正电,选项A错误;此时有qE1=mgtan37°,微粒从P到C在电场力、重力作用下做直线运动,必有mg=qE2,所以E2的方向竖直向上,选项B正确;由以上分析可知=,选项C错误;AP段有mg=Bqvcos37°,即v=,选项D正确.6.(20xx·浙江模拟)电磁泵在目前的生产、科技中得到了广泛应用.如图所示,泵体是一个长方体,ab边长为L1,两侧端面是边长为L2的正方形;流经泵体内的液体密度为ρ、在泵头通入导电剂后液体的电导率为σ(电阻率的倒数),泵体所在处有方向垂直向外的磁场B,把泵体的上下两表面接在电压为U(内阻不计)的电源上,则( )A.泵体上表面应接电源正极B.通过泵体的电流I=UL1/σC.增大磁感应强度可获得更大的抽液高度D.增大液体的电阻率可获得更大的抽液高度答案AC解析当泵体上表面接电源的正极时,电流从上向下流过泵体,这时受到的磁场力水平向左,拉动液体,故A项正确;根据电阻定律,泵体内液体的电阻R=ρ=×=;因此流过泵体的电流I==UL1·σ,故B项错误;增大磁感应强度B,受到的磁场力变大,因此可获得更大的抽液高度,故C项正确;若增大液体的电阻率,可以使电流减小,受到的磁场力减小,使抽液高度减小,故D项错误.7.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为( ) A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正答案A解析血液中正负离子流动时,根据左手定则,正离子受到向上的洛伦兹力,负离子受到向下的洛伦兹力,所以正离子向上偏,负离子向下偏.则a带正电,b带负电.最终血液中的离子所受的电场力和磁场力的合力为零,有q=qvB,所以v== m/s=1.3 m/s.故A项正确,B、C、D三项错误.8.如图所示,绝缘的中空轨道竖直固定,圆弧段COD光滑,对应圆心角为120°,C、D两端等高,O为最低点,圆弧的圆心为O′,半径为R;直线段AC、HD粗糙且足够长,与圆弧段分别在C、D端相切.整个装置处于方向垂直于轨道所在平面向里、磁感应强度大小为B的匀强磁场中,在竖直虚线MC左侧和虚线ND右侧存在着电场强度大小相等、方向分别为水平向右和水平向左的匀强电场.现有一质量为m、电荷量恒为q、直径略小于轨道内径、可视为质点的带正电小球,从轨道内距C点足够远的P点由静止释放.若小球所受电场力的大小等于其重力的倍,小球与直线段AC、HD间的动摩擦因数均为μ,重力加速度为g,则( )A.小球在第一次沿轨道AC下滑的过程中,最大加速度amax= gB.小球在第一次沿轨道AC下滑的过程中,最大速度vmax=3mg3μqB C.小球进入DH轨道后,上升的最高点比P点低D.小球经过O点时,对轨道的弹力最小值一定为|2mg-qB|答案AC解析A项,小球第一次沿轨道AC下滑的过程中,由题意可知,电场力与重力的合力方向恰好沿着斜面AC,则刚开始小球与管壁无作用力,当从静止运动后,由左手定则可知,洛伦兹力导致球对管壁有作用力,从而导致滑动摩擦力增大,而重力与电场力的合力大小为:F==mg,其不变,根据牛顿第二定律可知,做加速度减小的加速运动,故刚下滑时,加速度最大,即为amax==g;故A项正确;B项,当小球的摩擦力与重力及电场力的合力相等时,洛伦兹力大小等于弹力,小球做匀速直线运动,小球的速度达到最大,即为qvB=N,而μN=f,且f =mg,因此解得:vmax=,故B项错误;C项,根据动能定理,可知,取从静止开始到进入DH轨道后,因存在摩擦力做功,导致上升的最高点低于P点,故C项正确;D项,对小球在O点受力分析,且由C 向D运动,则有:N-mg+Bqv=m;由C到O点,机械能守恒,则有:mg(R-Rsin30°)=mv2;由上综合而得:对轨道的弹力为2mg-qB,当小球由D向C运动时,则对轨道的弹力为2mg+qB,故D项错误.二、计算题9.如图所示,与水平面成37°的倾斜轨道AC,其延长线在D点与半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C 点处于MN边界上).一质量为0.4 kg的带电小球沿轨道AC下滑,至C点时速度为vC= m/s,接着沿直线CD运动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点速度为vF=4 m/s(不计空气阻力,g=10 m/s2,cos37°=0.8).求:(1)小球带何种电荷;(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F点飞出时磁场同时消失,小球离开F点后的运动轨迹与直线AC(或延长线)的交点为G点(未标出),求G点到D点的距离.答案(1)带正电荷(2)Wf=27.6 J(3)GD=2.26 m解析(1)依题意可知小球在CD间做匀速直线运动,在CD段受重力、电场力、洛伦兹力且合力为0,因此带电小球应带正电荷.(2)在D点速度为vD=vC= m/s设重力与电场力的合力为F,则F=qvCB又F==5 N解得qB==720在F处由牛顿第二定律,可得qvFB+F=mvF2R把qB=代入,得R=1 m小球在DF段克服摩擦力做功Wf,由动能定理,可得-Wf-2FR=m(vF2-vD2)2Wf=27.6 J(3)小球离开F点后做类平抛运动,其加速度为a=Fm由2R=,得t== s交点G与D点的距离GD=vFt= m=2.26 m10.在竖直面内建立直角坐标系,曲线y=位于第一象限的部分如图,在曲线上不同点以初速度v0向x轴负方向水平抛出质量为m,带电量为+q的小球,小球下落过程中都会通过坐标原点,之后进入第三象限的匀强电场和匀强磁场区域,磁感应强度为B= T,方向垂直纸面向里,小球恰好做匀速圆周运动,并在做圆周运动的过程中都能打到y轴负半轴上(已知重力加速度g=10 m/s2,=102 C/kg).求:(1)第三象限的电场强度大小及方向;(2)沿水平方向抛出的初速度v0;(3)为了使所有的小球都能打到y轴的负半轴,所加磁场区域的最小面积.解析(1)小球做匀速圆周运动,则:mg=qE E=mgq解得:E=0.1 N/C 方向竖直向上(2)令小球释放点坐标为(x,y),由平抛规律可知x=v0t y=gt2y=x2由题意可知:y=x220联立可得v0=10 m/s(3)设小球在进入第三象限时合速度为v,与x轴负半轴夹角为α.则有v0=vcosα洛伦兹力提供向心力qvB=,r=mvqB打在y轴负方向上的点与原点距离为:H=2rcosα=2mv0qB可见所有小球均从y轴负半轴上同一点进入第四象限最小磁场区域是一半径为R=的半圆其面积为Smin==π()2解得:Smin=0.5 m211.如图所示,在平面直角坐标系中,OA是∠xOy的角平分线,x轴上方存在电场强度方向水平向左的匀强电场,下方存在电场强度方向竖直向上的匀强电场和磁感应强度方向垂直纸面向里的匀强磁场,两电场的电场强度大小相等.一质量为m、电荷量为+q的质点从OA上的M点由静止释放,质点恰能沿AO运动而通过O点,经偏转后从x轴上的C 点进入第一象限内并击中AO上的D点.已知OD=OM,匀强磁场的磁感应强度大小为B=(T),重力加速度为g=10 m/s2.求:(1)两匀强电场的电场强度E的大小;(2)OM的长L;(3)质点从M点出发到击中D点所经历的时间t.答案(1) (2)20 m或 m(3)7.71 s或6.38 s解析(1)质点在第一象限内受重力和水平向左的电场力作用沿AO做匀加速直线运动,所以有mg=qE,即E=.(2)质点在x轴下方,重力与电场力平衡,质点做匀速圆周运动,从C点进入第一象限后做类平抛运动,其轨迹如图所示,有Bqv=m v2R由运动学规律知v2=2aL,a=g由类平抛运动规律知R=vt3,R-=at32联立解得L=20 m或 m.(3)质点做匀加速直线运动有L=at12,得t1=2 s或 s质点做匀速圆周运动有t2=×=4.71 s质点做类平抛运动有R=vt3,得t3=1 s质点从M点出发到击中D点所经历的时间为t=t1+t2+t3=7.71 s或6.38 s.12.如图甲所示,在光滑绝缘水平桌面内建立xOy坐标系,在第Ⅱ象限内有平行于桌面的匀强电场,场强方向与x轴负方向的夹角θ=45°.在第Ⅲ象限垂直于桌面放置两块相互平行的平板C1、C2,两板间距为d1=0.6 m,板间有竖直向上的匀强磁场,两板右端在y轴上,板C1与x轴重合,在其左端紧贴桌面有一小孔M,小孔M离坐标原点O的距离为L=0.72 m.在第Ⅳ象限垂直于x轴放置一块平行y 轴且沿y轴负向足够长的竖直平板C3,平板C3在x轴上垂足为Q,垂足Q与原点O相距d2=0.18 m.现将一带负电的小球从桌面上的P点以初速度v0=4 m/s垂直于电场方向射出,刚好垂直于x轴穿过C1板上的M孔,进入磁场区域.已知小球可视为质点,小球的比荷=20C/kg,P点与小孔M在垂直于电场方向上的距离s= m,不计重力.求:(1)匀强电场的场强大小;(2)要使带电小球无碰撞地穿出磁场并打到平板C3上,求磁感应强度的取值范围.解析(1)小球在第Ⅱ象限内做类平抛运动有:s=v0tat=v0tanθ由牛顿第二定律有:qE=ma代入数据解得:E=8 V/m(2)设小球通过M点时的速度为v,由类平抛运动规律:v==8 m/s小球垂直磁场方向进入两板间做匀速圆周运动,轨迹如图,由牛顿第二定律有:qvB=m v2R得:B=mvqR小球刚好不与C2板相碰时磁感应强度最小设为B1此时粒子的轨迹半径为R1由几何关系有:R1=d1解得:B1= T小球刚好能打到Q点磁感应强度最大设为B2.此时小球的轨迹半径为R2由几何关系有:=L-R2R2解得:R2=0.4 m B2=1 T综合得磁感应强度的取值范围:T≤B≤1 T。
2020版高考物理一轮复习第九章磁场(第1课时)课件
解析:(1)导体棒受力如图甲所示,由平衡条件得:
mgsin θ=BILcos θ, 解得 B=mILgtan θ.
返回导航
(2)如图乙所示,当安培力平行斜面向上,安培力和重力沿斜面
的分力平衡时,安培力最小,有
mgsin θ=BminIL,
解得 Bmin=mILgsin θ.
由左手定则可知磁感应强度的方向垂直斜面向上.
返回导航
2.磁感应强度 (1)物理意义:描述磁场的__强__弱__和__方__向__. (2)定义式:B=IFL(通电导线垂直于磁场). (3)方向:小磁针__静__止__时 N 极的指向. 二、磁感线 电流的磁场 1.磁感线 在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点 的__磁__感__应__强__度___的方向一致.磁感线可以形象地描述磁场.
返回导航
BC 解析:同向电流相互吸引,反向电流相互排斥.对 L1 受 力分析,如图甲所示,可知 L1 所受磁场作用力的方向与 L2、L3 所 在的平面平行,故 A 错误;对 L3 受力分析,如图乙所示,可知 L3 所受磁场作用力的方向与 L1、L2 所在的平面垂直,故 B 正确;设三 根导线两两之间的相互作用力的大小为 F,则 L1、L2 受到的磁场作 用力的合力大小均等于 F,L3 受到的磁场作用力的合力大小为 3F, 即 L1、L2、L3 单位长度所受的磁场作用力大小之比为 1∶1∶ 3, 故 C 正确,D 错误.
返回导航
2.方向 (1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直, 并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指 向_电___流__的__方__向__,这时拇指所指的方向就是通电导线在磁场中所受 ___安__培__力___的__方__向____. (2)安培力的方向特点:F⊥B,F⊥I,即 F 垂直于 B 和 I 决定 的平面.(注意:B 和 I 可以有任意夹角)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章磁场第一讲磁场及其对电流的作用考点一安培定则的应用和磁场的叠加1、如图所示,两根相互平行的长直导线分别通有方向相反的电流 I1和I2,且I1>I2,M为导线某一横截面所在平面内的一点,且M点到两导线的距离相等,图中有四个不同的方向a、b、c和d,则M点的磁感应强度的方向可能为图中的( )A.a方向B.b方向C.c方向D.d方向2、下列关于磁感应强度的说法中正确的是()。
A: 一小段通电导体放在磁场中A处,受到的磁场力比B处的大,说明A处的磁感应强度比B 处的磁感应强度大B: 由可知,某处的磁感应强度的大小与放入该处的通电导线所受磁场力成正比,与导线的成反比C: 一小段通电导体在磁场中某处不受磁场力作用,则该处磁感应强度一定为零D: 小磁针N极在某处所受磁场力的方向与该处磁感应强度的方向一致3、为了解释地球的磁性,19世纪安培假设:地球的磁场由以地心为圆心的环形电流I引起的。
在下列四个图中,能正确表示安培假设中环形电流方向的是()。
A: B: C: D:4、如图,两根平行长直导线相距2L,通有大小相等、方向相同的恒定电流:a、b、c是导线所在平面内的三点,左侧导线与它们的距离分别为L/2、L和3L。
关于这三点处的磁感应强度,下列判断正确的是A、a处的磁感应强度大小比c处的大B、b、c两处的磁感应强度大小相等C、a、c两处的磁感应强度方向相同D、b处的磁感应强度为零考点二安培力的分析与计算1、关于通电直导线在均匀磁场中所受的安培力,下列说法正确的是()。
A: 安培力的方向可以不垂直于直导线B: 安培力的方向总是垂直于磁场的方向C: 安培力的大小与通电直导线和磁场方向的夹角无关D: 将直导线从中点折成直角,安培力的大小一定变为原来的一半2、如图所示,一个半径为R的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B大小相等,方向均与环面轴线方向成θ角(环面轴线为竖直方向).若导线环上载有如图所示的恒定电流I,则下列说法正确的是( )A 导电圆环有收缩的趋势B 导电圆环所受安培力方向竖直向上C 导电圆环所受安培力的大小为D导电圆环所受安培力的大小为3、考点三安培力作用下导体的平衡1、如图所示,在倾角为θ=37°的斜面上,固定一宽为L=1.0m的平行金属导轨。
现在导轨上垂直导轨放置一质量m=0.4kg、电阻R0=2.0Ω、长为1.0m的金属棒ab,它与导轨间的动摩擦因数为0.5。
整个装置处于方向竖直向上、磁感应强度大小为B=2T的匀强磁场中。
导轨所接电源的电动势为E=12V,内阻r=1.0Ω,若最大静摩擦力等于滑动摩擦力,滑动变阻器的阻值符合要求,其他电阻不计,g取10m/s2,sin37°=0.6,cos37°=0.8。
现要保持金属棒ab在导轨上静止不动,求:(1)金属棒所受安培力的取值范围。
(2)滑动变阻器接入电路中的阻值范围。
2、如图所示,金属棒MN两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M向N的电流,平衡时两悬线与竖直方向夹角均为θ,如果仅改变下列某一个条件,θ角的相应变化情况是()。
A: 棒中的电流变大,θ角变大B: 两悬线等长变短,θ角变小C: 金属棒质量变大,θ角变大D: 磁感应强度变大,θ角变小3、如图所示,将长为50cm、质量为10g的均匀金属棒ab的两端用两只相同的弹簧悬挂在水平状态,位于垂直于纸面向里的匀强磁场中。
当金属棒中通以0.4A的电流时,弹簧恰好不伸长。
g=10m/s2。
(1)求匀强磁场的磁感应强度的大小。
(2)当金属棒中通过大小为0.2A、方向由a到b的电流时,弹簧伸长1cm。
如果电流方向由b到a,而电流大小不变,则弹簧伸长又是多少?方法系列(九)安培力作用下导体运动情况的判断方法1、如图所示,把轻质导线圈用绝缘细线悬挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心且垂直于线圈平面。
当线圈内通以图中所示方向的电流后,线圈的运动情况是()A.线圈向左运动B.线圈向右运动C.从上往下看顺时针转动D.从上往下看逆时针转动2、用两根绝缘细线把两个完全相同的圆形导线环悬挂起来,让二者等高平行放置,如图所示. 两导线环中通入方向相同的电流、时,则有( )A.两导线环相互吸引B.两导线环相互排斥C.两导线环间无相互作用力D.两导线环先吸引后排斥3、第二讲磁场对运动电荷的作用考点一洛伦兹力的特点和应用1、如图所示,在竖直绝缘的水平台上,一个带正电的小球以水平速度v0抛出,落在地面上的A点,若加一垂直纸面向里的匀强磁场,小球仍能落到地面上,则小球的落点()A.仍在A点B.在A点左侧C.在A点右侧D.无法确定2、下列说法正确的是()。
A: 运动电荷在磁感应强度不为零的地方,一定受到洛伦兹力的作用B: 运动电荷在某处不受洛伦兹力的作用,则该处的磁感应强度一定为零C: 洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的速度D: 洛伦兹力一定对带电粒子不做功3、如图所示,a是竖直平面P上的一点。
P前有一条形磁铁垂直于P,且S极朝向a点,P后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a点。
在电子经过a点的瞬间,条形磁铁的磁场对该电子的作用力的方向()A.向上B.向下C.向左D.向右4、如图所示,一带电塑料小球质量为m,用丝线悬挂于O点,并在竖直平面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面。
当小球自左方摆到最低点时,悬线上的张力恰为零,则小球自右方最大摆角处摆到最低点时悬线上的张力为()A.0B.2mgC.4mgD.6mg考点二带电粒子在匀强磁场中的运动1、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场。
一带正电的粒子从f点沿fd方向射入磁场区域,当速度大小为时,从b点离开磁场,在磁场中运动的时间为,当速度大小为时,从c点离开磁场,在磁场中运动的时间为,不计粒子重力。
则( )A.B.C.D.2、3、汤姆孙提出的测定带电粒子的比荷(q/m)的实验原理如图所示,带电粒子经过电压为U的加速电场加速后,垂直于磁场方向进入宽为L的有界匀强磁场,某次测定中发现带电粒子穿过磁场时发生的偏转位移为d=L/2,已知匀强磁场的磁感应强度为B,粒子重力不计,取sin37°=0.6,cos37°=0. 8,π≈3,则下列说法正确的是()A.带电粒子的比荷为32U/25B2L2B.带电粒子的偏转角为θ=37°C.带电粒子在磁场中运动的时间约为7BL2/10UD.带电粒子运动的加速度大小为125U2/25B2L34、如图所示,半径为R的圆形区域内有垂直于纸面向里的匀强磁场。
重力不计、电荷量一定的带电粒子以速度v正对着圆心O射入磁场,若粒子射入、射出磁场点间的距离为R,则粒子在磁场中的运动时间为()模型系列(九)带电粒子在磁场中的运动的多解模型1、如图所示,在 x 轴上方有一匀强磁场,磁感应强度为 B;x 轴下方有一匀强电场,电场强度为 E.屏 MN 与 y 轴平行且相距 L.一质量 m,电荷量为 e的电子,在 y 轴上自 A 点静止释放,如果要使电子垂直打在屏 MN 上,那么(1)电子释放位置与原点O的距离X需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?2、在M、N两条长直导线所在的平面内,一带电粒子的运动轨迹示意图如图所示.已知两条导线M、N只有一条导线中通有恒定电流,另一条导线中无电流,关于电流方向和粒子带电情况及运动的方向,说法正确的是( )A、 M中通有自上而下的恒定电流,带负电的粒子从a点向b点运动B、 M中通有自上而下的恒定电流,带正电的粒子从b点向a点运动C、N中通有自下而上的恒定电流,带正电的粒子从b点向a点运动D、 N中通有自下而上的恒定电流,带负电的粒子从a点向b点运动3、长为L的水平极板间,有垂直纸面向内的匀强磁场,如图,磁感强度为B,板间距离也为L,板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A、使粒子的速度B、使粒子的速度C、使粒子的速度D、使粒子速度专题八带电粒子在有界磁场中的临界极值问题考点一带电粒子在有界磁场中运动的临界极值问题1、如图所示,在直角三角形abc内,有垂直纸面向外的匀强磁场,磁感应强度大小为B.在a点有一个粒子发射源,可以沿ab方向源源不断地发出速率不同、电荷量为、质量为m的同种粒子.已知,,不计粒子的重力,下列说法正确的是( )A、在磁场中通过的弧长越长的粒子,在磁场内运动的时间越长B、从ac边中点射出的粒子,在磁场中的运动时间为2πm/3qBC、从ac边射出的粒子的最大速度值为2qBL/3mD、bc边界上只有长度为L的区域可能有粒子射出2、如图所示,横截面为正方形abcd的有界匀强磁场,磁场方向垂直纸面向里.一束电子以大小不同、方向垂直ad边界的速度飞入该磁场.对于从不同边界射出的电子,下列判断正确的是( )A、从ad边射出的电子在磁场中运动的时间都相等B、从c点离开的电子在磁场中运动时间最长C、电子在磁场中运动的速度偏转角最大为πD、从bc边射出的电子的速度一定大于从ad边射出的电子的速度3、4、S为电子射线源,它只能在如图所示纸面上的范围内发射速率相同,质量为m,电量为e的电子,MN是一块足够大的竖直挡板,与S的水平距离,挡板左侧充满垂直纸面向里的匀强磁场,磁感强度为B.(l)要使S发射的电子能到达挡板,则发射电子的速度至少多大?(2)若S发射电子的速度为时,挡板被电子击中范围多大?(要求指明在图示纸面内MN挡板被电子击中的范围,并在图示中画出能击中挡板距O上下最远的电子的运动轨迹)考点二求未知磁场的边界问题1、一带电质点,质量为m,电荷量为q,以平行于x轴的速度v从y轴上的a点射入图中的第一象限所示的区域,为了使该质点能从x轴上的b点以垂直于x轴的速度v射出,可在适当地方加一个垂直于xOy平面、磁感应强度为B的匀强磁场,若此磁场仅分布在一个圆形区域内,试求这个圆形磁场区域的最小半径。
(重力忽略不计)2、如图所示,在真空室中平面直角坐标系的y轴竖直向上,x轴上的P点与Q点关于坐标原点O对称,PQ间的距离d=30cm。
坐标系所在空间存在一匀强电场,场强的大小E=1.0N/C。
一带电油滴在xOy平面内,从P点与x轴成30°的夹角射出,该油滴将做匀速直线运动,已知油滴的速度v=2.0m/s射出,所带电荷量q=1.0×10-7C,重力加速度为g=10m/s2。
(1)求油滴的质量m。
(2)若在空间叠加一个垂直于xOy平面的圆形有界匀强磁场,使油滴通过Q点,且其运动轨迹关于y轴对称。